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— Introductory Info

%tion Procedures:

« Exits are located...

\

e Restrooms out back

Classification:
« Absolutely no classified discussions
« If you have a concern, let us know

« Some material may be OUOQO, it will be marked
as such
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Summary for
Finite Element Method

egin with:
 Variational (weak) form of IBVP

and end with:

« Computational method for one-dimensional, steady
heat conduction equation

Additional References:
E. B. Becker, G. F. Carey & J. T. Oden,
“Finite Elements, An Introduction, Volume |,” Prentice-Hall, Englewood
Cliffs, NJ (1981)
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ons for Finite Element Method I:

}"ﬁ

 What is a finite element method?

« What are shape functions, trial functions, test
functions and weight functions?

* What is the form of the typical discrete equations for
a heat conduction problem ?
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ational Form — Heat Conduction

ecall the weighted integral form for the steady heat
conduction equation

o or
g_[w(xl.) a—%(k axjj dQ+£w(xi)QdQ:O

where W is a suitable weighting function. When
integrated by parts (divergence theorem) this
becomes a weak or variational form
T
J- ow k 0
50X, " 0x,

szijdQJrJ'wk a—Tn dI’
Q r

ij
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Solution Methods for

V
; * ’ ' Variational Forms (1)

We are going to use the MWR/variational form to
solve the boundary value problem. Following the
usual procedure, assume a functional form for the
temperature

?(xi):ZCi fi(xi)

Different methods are produced depending on the
choice of weighting function and the integral form.

Collocation, subdomain, Galerkin and least squares
are the common choices as you have seen from the
previous examples.
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Solution Methods for
Variational Forms (2)

}'

at are the drawbacks to these methods of solution for
general heat conduction (boundary value) problems?

For general multi-dimensional applications, the correct
choice of the approximating function proves to be very
difficult. For a successful solution

« The approximating (trial) function should be
computationally convenient, i.e., easy to integrate and
differentiate

 The trial function should be reasonably “close” to the
true solution

* The approximation should converge to the true solution
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Solution Methods for
V
., ' Variational Forms (3)

To make the variational form generally useful, we
need to be able to easily select approximating (trial)
functions that are simple to manipulate and compute
with on complex domains.

Trial functions that can be defined piecewise on
subregions of the domain provide the answer to the
above problem. This type of function approximation is
the essence of the finite element method.
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V_ ' Finite Element Method

“I'here are several ways to develop the ideas and
equations for a finite element method.

Many texts, especially in solid mechanics, begin by
subdividing the domain into elements and developing the
equations for an individual element. This is the so-called
direct stiffness method and is historically motivated from
the early aircraft structures applications. (Local Method)

We will begin with the Method of Weighted Residuals
route and a more global approach that avoids some of the
subtle technical questions of the direct stiffness method.

(Global Method)
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e-Dimensional Conduction (1)

Ider a one-dimensional domain, with the variational

form for steady conduction

L L
jdwde dx:ijdx+Wb q,
0

dx dx

L
0

0
Subdivide the domain 0 to L into N (non-overlapping)

intervals and define a temperature approximation
N
T(X):ZCZ- v, (x)
i=0

This still looks like our previous MWR method, except
that the v, functions will be defined to be nonzero
only on the individual subdomains (local support).
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e-Dimensional Conduction (2)

Finite Element Mesh:

—@ @ - - o>
1—1 <h—> ;o <h, > I+1 x

The N intervals are labeled as elements and the N +1
points joining the elements are labeled nodes. The
spatial coordinates for the nodes are x; and hl. Is the

element length, . =X, — X, . The element lengths are
not necessarily uniform.
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-Dimensional Conduction (3)

o 'e
i T(x):ZCiWi(x)

The trial function Y/, must satisfy certain criteria

 The trial functions are defined piecewise, element-by-
element with local support (Convenience)

 The trial functions must be complete and sufficiently
smooth (Completeness)

* The trial functions are interpolative — the C. in the
approximation are the values of 7" at the nodes
(Compatibility)
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e-Dimensional Conduction (4)

A particularly simple (and admissible) set of shape (trial)
functions for the domain can be written as

((x—xl.)/hl. for x,_ < x<x,
W, =4 (X =X)/ by, for x; <x<x;,
0 for x<x,_, and x=x,,

The derivatives of the shape (trial) functions are

1/h for xS x<yx,
dy .
[ p—
dx =<-1/h_, for x, <x<x,,
0 for x<x,_, and x=x,,

ESP300: Finite Element Method |



e-Dimensional Conduction (5)

rial Functions:

1
W l//i+1
i-1 <h— p <ha=> g X
Trial Function Derivatives:
oy, , 1 oy, 1 oV ., 1
Ox h, o0x h Ox h.,,
| | |
: i |
—e = - - o>
i~ <h— | <h,—> X
l : i
oV, 1 oy, 1 VY . 1
0x h ox h,, ox h, ,
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e-Dimensional Conduction (6)

0 complete the one-dimensional weak form, a
weighting (test) function must be selected. For 2nd

order, elliptic problems the optimal choice of weighting
IS a Galerkin method where

W(x)= Zb v, ()

and b, are arbltrary coefficients and ¥ ; are the
prewously defined piecewise functlons

The specified test and trial (shape) functions are then
inserted into the variational or weak form to produce a
useful set of equations.
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e-Dimensional Conduction (7)

the assumed shape (trial and test) functions, the
varlatlonal equation becomes

e 2o o] o o

=0

The flux boundary conditions have been ignored at the
ends of the domain; only essential boundary conditions
will be used in this example
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e-Dimensional Conduction (8)

A

Note that the b, and ¢, are independent of x and the
summations may be moved outside the integrals

N N L dl//l. dl//]. - N
gbi ]ng( " jk( - ]dxcj_—;;bi ! W, Q(x)dx_

The b, were arbitrary constants and the above equation
is really a set of equations for the ¢ ; coefficients. We
can rewrite the above in a more familiar form
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i "e-Dimensional Conduction (9)
ZK C; = for each 1=0,1,2,....N

with

t~

L
dy.  dy,
K = L d F = x) dx
U !dx L !wQ()

The entries in the diffusion matrix Kl] and the source
vector E can be computed directly from the definitions

of ¥, and simple integrals over the domain.
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e -Dimensional Conduction (10)

*]hat would you expect the equation for the coefficients

to look like for the case of the linear “hat” functions?

Working through the integrals for a node produces the
equation for the ith node
—ﬁc. +[£+ k ]C. _ K C, :(E-I—QJQ

h " \hoh,) Rk, " 2 2

i i+1 i+1

If a uniform subdivision (equal elements) is assumed,
the nodal equation becomes a standard centered

difference relation
k 2k k

—— Gy TG _Z €y =hQ

h h
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2k/h —k/h

—k/h 2k/h
0 —k/h
0 0
0 0

0
—k/h
2k/h
—k/h
0

0 0
0 0
—k/h 0
2k/h —k/h
—k/h 2k/h

> = <

474 )

e-Dimensional Conduction (9)

e matrix form for the assembled set of equations is

hO

hQ
hQ
hQ

hQ,

which can be solved for the coefficients when Q is given

and appropriate boundary conditions are specified.
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FEM Solution (1)

is an example, assume that O has a constant value of 2

on each element and that £ =1 for the previous one-
dimensional problem. Also, let the temperature at x =0
be set to 1 and the temperature at x=L =1 be setto 2
with a uniform 4 element mesh. The matrix problem is

then

-
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N

1 0 0 07(c) [1
4 8 -4 0 0ll¢| |12
0 8 —4 0 [{c,t=41/2
0 4 8 —4llc,| |12

0 0 0 1]le) |2



oduce the coefficients
c,=8/8 ; ¢,=11.5/8 ; c,=14/8

c,=155/8 ; ¢,=16/8
which are the temperatures at the nodes.

il ' FEM Solution (2)
%rix problem can be solved by elimination to
r

T
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— gy ' FEM Solution (3)
4 v

solution to the one-dimensional problem
produces a piecewise continuous function for the
temperature

T(x)=y,cy Y, +y,c, ty.c +y C,

This can be evaluated at any point x in the domain. A
comparison with the analytic solution at the nodes (x;,)

produces

X/L : 0 Ya 2 Ya 1
FE Temp: 8/8 8.5/8 10/8 12.5/8 16/8
Analytic: 8/8 8.5/8 10/8 12.5/8 16/8
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FEM Solution (4)

:}'

Likewise, the heat flux can be evaluated at any point in
the domain using the derivative of the shape functions
q(x):_kd_T:_d"’O Co_dl/fl 01 _ady, c, _dys o dy,

dx dx dx dx dx dx

As the derivative is constant on the subdomains
(elements), it is usual to determine the flux at the

midpoint (centroid) of the element

C, c,

x/L : 1/8 3/8 5/8 7/8
FE Flux: -14/8 -10/8 -6/8 -2/8
Analytic: -14/8 -10/8 -6/8 -2/8
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- 'Finite Element Matrices (1)

eturn to the form of the general matrix problem. Each

entry in the global stiffness matrix and load vector is
computed from

L L
dy.  dy.
K. = “k—=d F=|w, d.

where the sums on  and j are implied and run over
the number of nodes. The integral over the domain can
be written as a series of integrals because the
integration process is additive.
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g 'Finite Element Matrices (2)

or our one-dimensional, N element problem

d dy, Yy dy,
K, ZKe jd"’lk Viger [Mp Wi gy v [ Moy Wiy,
dx dx  dx dx  dx

X XN-1

and S|m|IarIy for the Ioad vector

XN-1

1 Wl. l//i+l 1

element i +1
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V

| 'Finite Element Matrices (3)

“:ecause the shape and weight functions are defined

piecewise on each element, the individual element
matrices and vectors can be constructed separately.
For example, element e in our mesh, with coordinates X,
to x.,,has the following element diffusion matrix and
source vector

e e _ k/h _k/h il e hQ/2
“ e ligr)

where h=x_, —x,

l
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- ' Finite Element Matrices

#rta.nt characteristics of global element matrices

* The global matrix (nodal equations) can be assembled
from element level matrices and load vectors

» The global matrix is sparse (lots of zeros) due to the
local support of the shape functions

» The global matrix is symmetric, which is to be
expected since the diffusion operator is symmetric

- Note the possible arbitrary spatial variations of £ and {J
which are handled automatically by the method
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' Shape Functions (1)

se of the actual spatial coordinates to define the
element integrals is rather inconvenient. The element
stiffness and load vector computations are repetitive
and depend only on the shape function definition and
limits of integration. We can take the first step in
developing a “generic” element definition by normalizing
the shape functions as

1/11(5):1_5/17 ) l/fz(é)zé/h

where 1 and 2 refer to the local node numbers in the
one-dimensional element, ¢ is the coordinate along the
element (limits 0 to 1) and /# = x,, —x, is the length
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V

Shape Functions (2)

%using vector notation
_Wl_l_é/h : —Ple={1- i
T e o

and the derivatives

fdlljl\
d —1/h B
d_‘P:< S - / ; dT:d‘I’ c={—1/h, l/h} C,
dé |dy, 1/h ds  dg C
d
|45 YV, v,
element e —
local node numbers
1 2
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Vi | ' Element Matrix

Using the vector notation and the normalized shape
functions the element matrix and load vector can be
defined

K- j aad —dz F- jTQ(&)dé

After evaluation, these forms will give the same
element matrix as before.
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ers for FEM for 1D Conduction

=

* A finite element method is a weighted residual
formulation of an IBVP where the weighting and trial
functions are defined piecewise on subdomains.

« For FEM applications, shape (trial, approximating, etc)
functions and weight (test) functions are simple,
interpolating functions defined on subdomains
(elements) with specific requirements on completeness
and compatibility.

 The FEM equations for steady heat conduction form a
matrix of algebraic relations that is sparse, banded and
symmetric
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Vi ' Homework #2

* Re-do the four element problem with a specified heat
flux g at x =0 and a heat transfer coefficient /. and
reference temperature 7, at x = L.

 Derive the matrix problem

» Solve the matrix problem for the case of ¢ =2, 7. =10
and T, =2

« Compare the solution with the analytic solution
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