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Introductory Info

Evacuation Procedures:

• Exits are located…

• Restrooms out back

Classification:

• Absolutely no classified discussions

• If you have a concern, let us know

• Some material may be OUO, it will be marked 
as such
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Summary for 
Finite Element Method

Begin with:

• Variational (weak) form of IBVP

and end with:

• Computational method for one-dimensional, steady 
heat conduction equation

Additional References: 
E. B. Becker, G. F. Carey & J. T. Oden, 
“Finite Elements, An Introduction, Volume I,” Prentice-Hall, Englewood       

Cliffs, NJ (1981)
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Questions for Finite Element Method I: 

• What is a finite element method?

• What are shape functions, trial functions, test 
functions and weight functions?

• What is the form of the typical discrete equations for 
a heat conduction problem ?
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Variational Form – Heat Conduction

Recall the weighted integral form for the steady heat 
conduction equation

where     is a suitable weighting function. When 
integrated by parts (divergence theorem) this 
becomes a weak or variational form
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Solution Methods for 
Variational Forms (1)

We are going to use the MWR/variational form to 
solve the boundary value problem. Following the 
usual procedure, assume a functional form for the 
temperature

Different methods are produced depending on the 
choice of weighting function and the integral form.

Collocation, subdomain, Galerkin and least squares 
are the common choices as you have seen from the 
previous examples.
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Solution Methods for 
Variational Forms (2)

What are the drawbacks to these methods of solution for 
general heat conduction (boundary value) problems?

For general multi-dimensional applications, the correct 
choice of the approximating function proves to be very 
difficult. For a successful solution

• The approximating (trial) function should be 
computationally convenient, i.e., easy to integrate and 
differentiate

• The trial function should be reasonably “close” to the 
true solution

• The approximation should converge to the true solution
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Solution Methods for
Variational Forms (3)

To make the variational form generally useful, we 
need to be able to easily select approximating (trial) 
functions that are simple to manipulate and compute 
with on complex domains. 

Trial functions that can be defined piecewise on 
subregions of the domain provide the answer to the 
above problem. This type of function approximation is 
the essence of the finite element method.
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Finite Element Method

There are several ways to develop the ideas and 
equations for a finite element method.

Many texts, especially in solid mechanics, begin by 
subdividing the domain into elements and developing the 
equations for an individual element. This is the so-called 
direct stiffness method and is historically motivated from 
the early aircraft structures applications. (Local Method)

We will begin with the Method of Weighted Residuals 
route and a more global approach that avoids some of the 
subtle technical questions of the direct stiffness method. 
(Global Method)
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One-Dimensional Conduction (1)

Consider a one-dimensional domain, with the variational 
form for steady conduction

Subdivide the domain    to     into     (non-overlapping) 
intervals and define a temperature approximation

This still looks like our previous MWR method, except 
that the       functions will be defined to be nonzero 
only on the individual subdomains (local support). 
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One-Dimensional Conduction (2)

Finite Element Mesh:

The      intervals are labeled as elements and the      
points joining the elements are labeled nodes. The 
spatial coordinates for the nodes are      and      is the 
element length,                     . The element lengths are 
not necessarily uniform.
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One-Dimensional Conduction (3)

The trial function       must satisfy certain criteria 

• The trial functions are defined piecewise, element-by-
element  with local support  (Convenience)

• The trial functions must be complete and sufficiently 
smooth (Completeness)

• The trial functions are interpolative – the      in the 
approximation are the values of     at the nodes  
(Compatibility)
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One-Dimensional Conduction (4)

A particularly simple (and admissible) set of shape (trial) 
functions for the domain can be written as 

The derivatives of the shape (trial) functions are
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One-Dimensional Conduction (5)

Trial Functions:

Trial Function Derivatives:
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One-Dimensional Conduction (6)

To complete the one-dimensional weak form, a 
weighting (test) function must be selected. For 2nd

order, elliptic problems the optimal choice of weighting 
is a Galerkin method where        

and     are arbitrary coefficients and      are the 
previously defined piecewise functions. 

The specified test and trial (shape) functions are then 
inserted into the variational or weak form to produce a 
useful set of equations.
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One-Dimensional Conduction (7)

With the assumed shape (trial and test) functions, the 
variational equation becomes

The flux boundary conditions have been ignored at the 
ends of the domain; only essential boundary conditions 
will be used in this example
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One-Dimensional Conduction (8)

Note that the     and     are independent of     and the      
summations may be moved outside the integrals  

The      were arbitrary constants and the above equation 
is really a set of equations for the      coefficients. We 
can rewrite the above in a more familiar form
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One-Dimensional Conduction (9)

with

The entries in the diffusion matrix       and the source 
vector       can be computed directly from the definitions 
of      and simple integrals over the domain.
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One-Dimensional Conduction (10)

What would you expect the equation for the coefficients    
to look like for the case of the linear “hat” functions?

Working through the integrals for a node produces the 
equation for the       node

If a uniform subdivision (equal elements) is assumed, 
the nodal equation becomes a standard centered 
difference relation 
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One-Dimensional Conduction (9)

The matrix form for the assembled set of equations is

which can be solved for the coefficients  when      is given 
and appropriate boundary conditions are specified.
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FEM Solution (1)

As an example, assume that     has a constant value of 2 
on each element and that          for the previous one-
dimensional problem. Also, let the temperature at              
be set to 1 and the temperature at                  be set to 2 
with a uniform 4 element mesh. The matrix problem is 
then
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FEM Solution (2)

The matrix problem can be solved by elimination to 
produce the coefficients

which are the temperatures at the nodes.
3 415.5 / 8 ; 16 / 8c c 

0 1 28 / 8 ; 11.5 / 8 ; 14 / 8c c c  

1c

2c

4c
3c

x

T

1

2



ESP300: Finite Element Method I

FEM Solution (3)

The FEM solution to the one-dimensional problem 
produces a piecewise continuous function for the 
temperature

This can be evaluated at any point     in the domain.  A 
comparison with the analytic solution at the nodes 
produces

x/L :            0         ¼          ½           ¾           1

FE Temp:  8/8     8.5/8     10/8     12.5/8     16/8

Analytic :   8/8     8.5/8     10/8     12.5/8     16/8
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x
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FEM Solution (4)

Likewise, the heat flux can be evaluated at any point in 
the domain using the derivative of the shape functions

As the derivative is constant on the subdomains 
(elements), it is usual to determine the flux at the 
midpoint (centroid) of the element

x/L :               1/8            3/8           5/8          7/8

FE Flux:     -14/8     -10/8     -6/8     -2/8     

Analytic :    -14/8     -10/8     -6/8     -2/8
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d dd d ddT
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Finite Element Matrices (1)

Return to the form of the general matrix problem. Each 
entry in the global stiffness matrix and load vector is 
computed from

where the sums on    and    are implied and run over 
the number of nodes. The integral over the domain can 
be written as a series of integrals because the 
integration process is additive.
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Finite Element Matrices (2)

For our one-dimensional,     element problem

and similarly for the load vector
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Finite Element Matrices (3)

Because the shape and weight functions are defined 
piecewise on each element, the individual element 
matrices and vectors can be constructed separately. 
For example, element    in our mesh, with coordinates   
to      has the following element diffusion matrix and 
source vector

where

e ix
1ix 

1

2

2

ie e e

i

ck h k h hQ
K c F

ck h k h hQ

     
          

1i ih x x 



ESP300: Finite Element Method I

Finite Element Matrices 

Important characteristics of global element matrices

• The global matrix (nodal equations) can be assembled 
from element level matrices and load vectors

• The global matrix is sparse (lots of zeros) due to the 
local support of the shape functions

• The global matrix is symmetric, which is to be 
expected since the diffusion operator is symmetric

• Note the possible arbitrary spatial variations of    and     
which are handled automatically by the method 

k Q
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Shape Functions (1) 

The use of the actual spatial coordinates to define the 
element integrals is rather inconvenient. The element 
stiffness and load vector computations are repetitive 
and depend only on the shape function definition and 
limits of integration. We can take the first step in 
developing a “generic” element definition by normalizing 
the shape functions as

where 1 and 2 refer to the local node numbers in the 
one-dimensional element,     is the coordinate along the 
element (limits 0 to 1) and                     is the length 
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Shape Functions (2)

Further, using vector notation

and the derivatives
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Element Matrix 

Using the vector notation and the normalized shape 
functions the element matrix and load vector can be 
defined

After evaluation, these forms will give the same 
element matrix as before.
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Answers for FEM for 1D Conduction

• A finite element method is a weighted residual 
formulation of an IBVP where the weighting and trial 
functions are defined piecewise on subdomains.

• For FEM applications, shape (trial, approximating, etc) 
functions and weight (test) functions are simple, 
interpolating functions defined on subdomains 
(elements) with specific requirements on completeness 
and compatibility.

• The FEM equations for steady heat conduction form a 
matrix of algebraic relations that is sparse, banded and 
symmetric 
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Homework #2

• Re-do the four  element problem with a specified heat 
flux     at           and a heat transfer coefficient      and 
reference temperature       at           .

• Derive the matrix problem 

• Solve the matrix problem for the case of          ,             
and  

• Compare the solution with the analytic solution
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