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Outline

• Micro-combustor theory
– Micro-flame vs. catalytic combustion 

– Calorimeter and fixture components

• Design and fabrication

– Analyte ionization and electrometer detection

• Analyte signatures
– Calorimeter discrimination of analytes

– Synchronized electrometer and calorimeter detection to reduce false positives

• Results
– Bias vs. Signal

– Flow vs. Signal an optimization study

• Conclusion
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Motivation

• Area’s of interest:
– Need for fast, sensitive detectors that aren’t 

sorption based

– Selectivity through arrays of cross-sensitive 
detectors and inherent selectivity in some array 
elements (e.g., FID)

– Low power, small for portability

• Impact: 
– Very large potential impact in hand-held detection 

for chem-bio, petrochemical, sulfur in fuels, 
pesticides…
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Micro-flame vs. Micro-combustor

• Conventional flames and 
high-temperature beads do 
not scale well for 
minaturization and 
portability
– Increased surface-area-to-

volume prohibits flames 

– Power consumption 
minimization is required

• Approach: use a low heat 
capacity, low conductance 
membrane
– 1 micron thick membrane, 10-6

J/K, 1.5 W/mK

– Thin film heater and sensor film 
(e.g.,10% - Pt/Alumina)

– 500°C in 20 msec, 300 mW

Describing Hot plate wiring
after usage. Current tracing 
is established.

Oxyhydrogen Flow

Measuring gas inlet

Pyrex base

I

Oxyhydrogen Flame - 2~3mm

Upper annular electrode
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Cross sectional
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Calorimeter signatures

• Measuring varying quantities of evolved heat

– Example:  Ethane combustion 
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20 ul of Ethane at ~ 450C 

Spray coated ~ 10% Pt/Alumina. Micro-
combustor burn in procedure removes
oxidation of alumina to revitalize optimal
calorimeter operation.

Ex: Heating
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Micro-FID Design

• Design Considerations

– Minimal volume to maximize analyte 
response during combustion.

– Heated to reduce water formation from 
combustion by-products.

– Commercial column used to reduce 
pressure pulse from injector valve.

– Proportionally mixed gas input – Air,H2
and N2 to optimize burn and signal.

– Collector bias is essential to maximize 
response.

S.S.collector electrode

Hot plate holder

Input/Exhaust
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Analyte Ionization
• Ion production from hydrocarbons in flames is primarily 

the result of chemi-ionization of CHO* :
» CH  +  O   CHO*   CHO+ +  e- . (1)

• The formylium ion, CHO+, reacts quickly with water
produced in the flame to produce hydroxonium ions
(H3O+), the primary charge carrying species responsible
for the ultimate FID response .

» CHO+ + H2O  H3O
+ + CO. (2)

Biased Collector Inlet – makeup gas 
& analyteExhaust

Biased hotplate
w/ backside coated 
catalyst

Carrier

Hydrogen

Air



7/4/2014 Solid State Chemical Sensing at High Temperatures 
IEEE Sensors 2005  - Irvine, CA.

8

Bias vs. Signal

• Ethane, methane and propane

Ethane, Methane and Propane vs. bias condition
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Dual mode operation
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Unstable burn conditions

Potential reasons:

1.) Lean/Rich/Lean fuel 
mixture.

2.) Causes pos./neg./pos.
response.

Functionality of calorimeter and electrometer usage for real time analysis.

Leading Edge

Sensor
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FID Response vs. Equivalence Ratio
Response vs. Equivalence Ratio
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Stoichometric:
~28% H2 = 1

Inflection point =  
~0.8 creating a 
positive and 
negative response 
to occur at a lean 
fuel mixture.

Increased N2 flow
5 sccm to 10 sccm

Signal Response
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Mechanism of ion production and collection

• Verified signal polarity with pico-amp meter source.
– 10 pA – 100pA equated to our signal levels.

• Surface vs. gas phase reaction point

– Point at which the flame becomes lifted off the catalyst surface.

• Influence of nitrogen on FID response

– FID response is insensitive to pure nitrogen flow

– Shifts inflection point and magnitude

• Gas phase electrochemistry
– No circuit interference with signal (not connected)

• Temperature effects
– Temp. of fuel/air flame is convoluted w/ ion signal 
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Conclusion
• A low power field portable micro-combustor has 

been demonstrated using single and dual mode 
detection for unique organic signatures.

• Ruled out interaction between calorimetric 
operation influencing electrometer signal.

• Flow rates influencing small volume gas phase 
combustion kinetics are still being investigated.

• Determining thermal/ionization activities on 
electrometer circuitry.

Sandia is a multiprogram laboratory operated by Sandia 
Corporation, a Locheed Martin Company, for the United States 
Department of Energy's Nation Nuclear Security Administration 
under Contract DE-AC04-94AL85000.
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Peak Fitting

Peak Fit for First Part of Randomized run for Peak 8
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• Raw Data filtering due to   background 
combustion noise.
• ~16% Loess smoothing function
• Baseline subtraction
• Gaussian Area calculation w/ FHWM
• ~97% R2

~ 1 (s)

2.2mV
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- Air
- H2
- N2

Future Micro-combuster/ionization 
System

Fixture

Collector

Exhaust Port Inlet Port

Backside 
Coated
Hot-Plate

Micro-GC 
Column

Injector

2.) Packed vs.
Non- Packed

1.) Coated vs.
Non-coated



7/4/2014 Solid State Chemical Sensing at High Temperatures 
IEEE Sensors 2005  - Irvine, CA.

16

Additional Considerations

• Similarities to commercial FID’s.
– Analyte signal magnitude and repeatability

• Liquid vs. Headspace
– The conversion of liquid to vapor opposed 

to entering at a vapor phase.

• Carrier vs. Non-carrier gas injection.
– No flame to stabilize due to catalyst.

– Elevated Hot-plate temperatures can cause 
combustion and collection of Analyte.  H2?
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Silicon substrate
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Calorimeter response vs. Equivalence Ratio

Calorimetry vs. Equivalence Ratio
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Calculation:

H2 flow*( 2.016)

Air flow*(28.84)
*(34.3)
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Calorimeter Detection
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