
1. Parallel ParaView

One of the main purposes of ParaView is to allow users to create visualizations of large data 
sets that reside on parallel systems without first collecting the data to a single machine. This 
chapter describes the concepts behind the parallelism in ParaView. Then three different 
modes of running ParaView in parallel are discussed: distributed stand-alone mode, 
client/server mode, and client/data server/render server mode. The remainder of the chapter 
describes ParaView’s parallel rendering features (i.e., distributed rendering, offscreen
rendering, and tiled displays).

1.1. Parallel Structure

ParaView has three main logical components: client, data server, and render server. The client 
is responsible for the user interface of the application. ParaView’s general-purpose client was 
written to be flexible and can be customized using XML specifications. The client can also be 
replaced with a completely new GUI as required by application specifications.

The data server is primarily constructed from VTK readers, source, and filters. It is 
responsible for reading and processing data sets to create final geometric models needed for 
rendering. VTK partitioning, ghost levels, and synchronous parallel filters are responsible for 
handling data parallelism on the data server. Each data server process has an identical VTK 
pipeline, and each process is told which partition of the data it should load.

The render server is responsible for rendering the final geometry. Like the data server, the 
render server can run in parallel and creates identical visualization pipelines (only the 
rendering portion of the pipeline) on all of its processes. Having the ability to run the render 
server separately from the data server allows the optimal division of labor between computing 

SAND2005-7832P



platforms. Most large computing clusters are primarily used for batch simulations and do not 
have hardware rendering resources. Since it is not desirable to move large data files to a 
separate visualization system, the data server can run on the same cluster that ran the original 
simulation. The render server can be run on a separate visualization cluster that has hardware 
rendering resources.

It is possible to run the render server with fewer processes than the data server, but never 
more. Visualization clusters typically have fewer nodes than batch simulation clusters, and 
processed geometry is usually significantly smaller than the original simulation dump. 
ParaView repartitions the geometric models on the data server before they are sent to the 
render server.

The client is a single-process program that connects to and communicates with both servers 
via the server manager. Since it is useful to control the ParaView visualization system from a 
desktop workstation, the client can be run on a separate machine from the servers. ParaView 
has the option of using parallel rendering on the render server or rendering directly on the 
client workstation. ParaView automatically chooses a rendering strategy to achieve the best 
rendering performance. Although small models may be collected on the client, ParaView’s
distributed rendering works well for models of all sizes.

ParaView can be run in many different configurations. In the simplest case the client, data 
server, and render server all run on the same process. In the most extreme case they are run as 
three separate programs: the client as a single-process program, the data server and render 
server as MPI multi-process programs. MPI is used to send messages between processes on a 
server, and socket connections are used to send messages between separate servers and 
between the servers and the client.

Running ParaView as a single-process application is simple. Simply run the paraview
executable from the command line (or double-click the ParaView icon on Windows).

./paraview

The other configurations for running ParaView will be discussed in the remaining sections of 
this chapter.

1.2. Distributed Stand-Alone Mode

Although ParaView is designed from the ground up to be a parallel application, by default 
ParaView is built without parallel support. This is because there are so many different 
versions of MPI, the library ParaView uses for parallel communication. To use ParaView’s 
parallel features, you must first compile ParaView with MPI support as described in chapter 
XX.



When ParaView is compiled with MPI, the paraview executable can be run in parallel, 
putting ParaView in its distributed stand-alone mode. In this case, the data server nodes and 
the render server nodes share the same processes. The client will execute on node 0 of the 
MPI group, which is also shared by node 0 of the data server and node 0 of the render server.
The following will start ParaView in this mode with four processes. (The example is using the 
MPICH distribution of MPI; starting an executable with your MPI distribution may differ 
from the example shown.)

mpirun -np 4 ./paraview

A description of the four logical nodes of the above example follows.

 Node 0: data server node 0, render server node 0, client
 Node 1: data server node 1, render server node 1
 Node 2: data server node 2, render server node 2
 Node 3: data server node 3, render server node 3

1.3. Client / Server Mode

There are many reasons for ParaView to use multiple computers during a single ParaView 
session. One of the simplest examples is when the data is on a remote computer (or group of 
computers) and the user wants to visualize the data on a local desktop machine. Instead of 
copying the data to the local workstation, a ParaView server can be run on the remote 
computer(s), and a ParaView client can be run on the local workstation. The two programs 
communicate to create a single ParaView session. The server loads and processes the data, 
and the client creates and displays the graphical user interface that allows the user to interact 
with the data. In this mode both the data server and render server share the same processes, 
and the client is completely separate.

By default, the ParaView client actively connects to the ParaView server through a socket 
connection, so the server has to be started first. The server is a separate executable called 
pvserver. The client is started by running the pvclient executable and supplying the 
appropriate command-line arguments as shown below.

./pvserver

./pvclient --server-host=server_host

For the client, the command-line argument --server-host (or -sh) is used to specify 
where the server is running. (The default value of server-host is localhost.) If the 
--server-port option is used on the client command-line, it specifies which port will be 
used for the socket connection between the client and the server. (The default is 11111.) For 



obvious reasons, if the --server-port option is given to one executable, it must be given 
to both.

If the computer running the server will be behind a firewall, it is useful to have the server 
connect to the client instead of the client connecting to the server. The command-line option 
--reverse-connection (or -rc) is used on both the client and server command lines. 

When the connection between the client and the server is reversed, the client executable 
(pvclient) must be started first, and the --client-host argument (if used) is specified 
on the server command line to indicate to the server how to connect to the client. The --
server-port option has the same name and meaning for both the forward and reverse 
connections.

./pvclient --reverse-connection

./pvserver --reverse-connection --client-host=client_host

The server can also be run as an MPI program with multiple processes, but the client should 
always be run as a single process. Instructions for starting a program with MPI are 
implementation- and system-dependent, so contact your system administrator for information 
about starting an application with MPI.

When ParaView is run in client/server mode, all data processing occurs on the server. This 
includes generation of the polygonal representation of the full data set and decimated LOD 
models. However, rendering can occur on either the server or the client depending on which is 
most efficient. In many cases, the polygonal representation of the data set is much smaller 
than the original data set. (In an extreme case, a simple outline may be used to represent a 
very large structured mesh.) In these cases, it may be better to send the polygonal 
representation to the client for rendering. If the client workstation has high-performance 
rendering hardware, even large data sets can be interactively rendered on the client.

The second option is to have each node of the server render its geometry and send the 
resulting images to the client for display. Since there is a penalty per rendered frame for 
compositing images and sending the image across the network, it may not make sense to 
render on the server when the data set’s geometry is very small. However, ParaView’s image 
compositing and delivery is very fast and there are many options to ensure interactive 
rendering. It is therefore often better to render data remotely on the server even when the data 
is only moderately large.

1.4. Render Server

The render server allows you to have a separate group of machines (i.e., apart from the data 
server and the client) to perform rendering. This means that you can select specialized 
rendering machines to do the parallel rendering rather than relying on the data server 



machines, which may have limited or no rendering capabilities. In ParaView, the number of 
machines (N) composing the render server must be no more than the number (M) composing 
the data server. There are two sets of connections that must be made for ParaView to run in 
render-server mode. The first connection set is between the client and the first node of each of 
the data and render servers. The second connection set is between the nodes of the render 
server and the first N nodes of the data server. The first connection set is initially established 
either from the servers to the client or vice versa. The second is started by either the data 
server or the render server. Once all of these connections are established, they are bi-
directional. The diagram in Figure 1 depicts the connections established when ParaView is 
running in render server mode. Each double-ended arrow indicates a bi-directional connection 
from one machine to another. In all the diagrams in this section, the render server nodes are 
denoted by RS 0, RS 1, …, RS N. The data server nodes are similarly denoted by DS 0, DS 1, 
…, DS N, …, DS M.

Figure 1. Connections required in render server mode

The establishment of connections between client and servers can either be forward (from 
client to servers) or reverse (from servers back to client). Likewise, the connections between 
render servers and data servers can be either from data server to render server or from render 
server to data server. The main reason for reversing the direction of any of the initial 
connections is that from behind a firewall a machine is able to initiate a connection to a 
machine outside the firewall, but not vice versa. If the data server was behind a firewall, the 
servers should initiate the connection with the client, and the data server nodes should connect 
to the render server nodes. If the render server is behind a firewall, still the servers should 
connect to the client, but now the render server nodes should initiate the connections with the 
nodes of the data server.

Client

RS 0

RS 1

RS N

DS 0

DS 1

DS N

DS M



In the remaining diagrams in this section, each arrow indicates the direction in which the 
connection is initially established. Double-ended arrows indicate bi-directional connections 
that have already been established. In the example command lines, optional arguments are 
enclosed in []’s. The rest of this section will be devoted to discussing the two connections 
required for running ParaView in render server mode.

Connection1: Connecting the client and servers
The first connection that must be established is between the client and the first node of both 
the data and render servers. By default, the client initiates the connection to each server, as 
shown in Figure 2. In this case, both the data server and the render server must be running 
before the client is started.

./pvdataserver [--data-server-port=data_server_port]

./pvrenderserver [--render-server-port=render_server_port]

./pvclient --client-render-server --data-server-

host=data_server_host0 --render-server-host=render_server_host0 

[--data-server-port=data_server_port] [--render-server-

port=render_server_port]

Figure 2. Starting ParaView in render-server mode using standard connections.

This is similar to running ParaView in client/server mode, but with the addition of a render 
server. The command lines for starting the client and the servers in this manner are also given 
in Figure 2. On the command line for the client, you will typically want to specify the data 
server host (node 0 of the data server) and the render server host (node 0 of the render server) 
because the default for both of these is localhost. Either of these can be specified as a 

machine name or as an IP address. You can also specify which ports to use in connecting the 
client to the render server and the data server, but it is best to use the default port numbers 
unless you must specify a specific port to open on a firewall. The data server port (for the 
connection between the client and the data server) is specified on the command line for the 
data server and the client using the --data-server-port option. (The default is 
11111.) The port specified on both the client and data server command lines must match, so 

if you use this option, specify the port on both command lines. To set up a similar connection 
for the render server, use the --render-server-port command-line option when 
starting the client and the render server. (This defaults to 22221.) The port specified on both 

Client

RS 0 DS 0



the client and the render server command lines must also match, so if this option is used it 
must be specified both on the render server and client command lines. In the rest of the 
examples in this section, the --data-server-port and --render-server-port
options will be omitted because they do not usually need to be specified.

In the above command lines, abbreviations can be used for certain command-line arguments. 
These abbreviations will be used in the rest of the example command lines in this section. 
(Some of the abbreviations listed here will be introduced later in this chapter. There are no 
abbreviations for --port, --render-port, and --render-node-port.)

 --client-render-server -crs

 --data-server-host -dsh

 --render-server-host -rsh

 –-reverse-connection -rc

 –-connect-data-to-render -d2r

 –-connect-render-to-data -r2d

The connection between the client and the servers can also be initiated by the servers. In this 
case, the client must be started before both servers (similar to reversing the connection in 
client-server mode). The diagram indicating the initial connections is shown in Figure 3.

./pvclient -crs -rc

./pvrenderserver -ch=client -rc

./pvdataserver -ch=client -rc

Figure 3. Reversing the connections between the servers and the client.

To do this, you must add --reverse-connection (or -rc) to the command lines for the 
data server, render server, and client. Also --client-host (or -ch) should appear on the 
data server and render server command lines; in both cases, the value of this command-line 
argument should be either the machine name or IP address of the client.

For the remainder of this chapter, -rc will be used instead of --reverse-connection

when the connection between the client and the servers is to be reversed.

Client

RS 0 DS 0



Connection 2: Connecting the render and data servers
Before the connection between the servers can be established, there must first be a connection 
from each server to the client, as described in the previous section. Once the connection to the 
client has been made, one server can access the necessary information to connect to the other 
server. It retrieves this information from the waiting server via the client. This information is 
then used to establish a connection between the nodes of the render server and the first N 
nodes of the data server.

In the default case, each node of the data server connects to a corresponding node of the 
render server, as shown in Figure 4. The information that the data server needs per node of the 
render server is a machine name and a port number. The machine names are specified in 
ParaView’s XML configuration file that is passed to the each executable (pvdataserver, 
pvrenderserver, and pvclient) on the command line. The format of the XML configuration file 
is described in appendix XX. By default, the port number per machine is randomly generated. 
If you instead wish to specify a single port number to use in connecting to each node of the 
render server, include the render-node-port argument in the XML configuration file. 
ParaView does not allow you to specify a different port per machine.

./pvdataserver config.pvx

./pvrenderserver config.pvx [--render-node-

port=render_node_port]

./pvclient config.pvx -crs -dsh=data_server_host0 -

rsh=render_server_host0

Client

RS 0

RS 1

RS N

DS 0

DS 1

DS N

DS M

Machine list



Figure 4. Initializing the connection from the data server to the render server.

If you wish to explicitly indicate that the data server will be connecting to the render server, 
add the --connect-data-to-render (or -d2r) option to the client command line. 
However, since this is the default behavior, using this command-line argument is not 
necessary. The command lines shown in Figure 4 indicate a standard connection between the 
client and the servers.

The direction of the initial connection between the nodes of the two servers may also be 
reversed (i.e., the render server nodes connect to those of the data server) as shown in Figure 
5. Typically when this connection is reversed, the direction of the connection between the 
client and the servers is also reversed (e.g., if the render server is behind a firewall). This 
means that the render server will retrieve the machine names and ports from the data server 
via the client. This information will then be used to establish a connection from the nodes of 
the render server to the first N nodes of the data server. The XML configuration file should 
list the machine names of the first N nodes of the data server; if used, the render-node-
port option should be specified there as well.

./pvclient config.pvx -crs -rc -r2d

./pvdataserver config.pvx -rc -ch=client

./pvrenderserver config.pvx -rc -ch=client

Figure 5. Reversing the connection between the servers and client, and connect the 
render server to the data server.

Client

RS 0

RS 1

RS N

DS 0

DS 1

DS N

DS M

Machine file



The command-line option for changing the direction of the connection between the servers is 
--connect-render-to-data (or -r2d); it is specified on the client command line. In 
the command lines shown in Figure 5, the direction of connection is reversed both between 
the client and the servers and between the nodes of the data and render servers.

1.5. Parallel Rendering / Compositing

When ParaView is run in parallel, either in stand-alone mode or in client/server (or client/data 
server/render server) mode, the final image in the display area has contributions from multiple 
processes. If the data is small enough, the geometry can be collected to one process for 
rendering. Usually it is more efficient to leave the geometry distributed and employ 
ParaView’s parallel rendering in which images from each rendering process are collected and 
composited to form a single image for displaying in the display area of the user interface. In 
parallel, there are additional controls on the General tab of the 3D View Properties property 
sheet for specifying how rendering should occur. In client/server mode, the LOD Parameters

portion of the General tab appears as shown in Figure 6.

Figure 6. Parallel LOD parameters

LOD threshold, LOD resolution, and Outline Threshold: These options control the 
geometric levels of detail. They have the same meaning in parallel as they do in serial 
rendering mode. A detailed description of their meanings can be found in chapter XX.



Composite: This slider determines how large the data set must be in order for parallel 
rendering with image compositing and delivery to be used (as opposed to collecting the 
geometry). The value of this slider is measured in megabytes. The size of the entire data set 
must consume more than the specified amount of memory for compositing of images to occur. 
If the check box beside the Composite slider is unmarked, then compositing will not happen; 
the geometry will always be collected. This is only a reasonable option when you can be sure
the data set you are using is very small. In general, it is safer to move the slider to the right 
than to uncheck the box.

When compositing is turned on, ParaView uses IceT to perform image compositing. IceT is a 
parallel rendering library that takes multiple images containing partial geometry and combines 
them into a single image. IceT employs several image compositing algorithms, all of which 
are designed to work well on a distributed memory machine. Examples of two such image 
compositing algorithms are demonstrated in Figure 7 and Figure 8. IceT will automatically 
choose a compositing algorithm based on the current workload and computing resources.

Figure 7. Tree compositing on four processes.



Figure 8. Binary swap on four processes.

Enable Ordered Compositing: By default, depth information is used to composite images 
together. As part of its normal operation, graphics hardware keeps a depth buffer containing 
the relative depth of each pixel from the camera. For compositing, this depth buffer is 
retrieved and used to choose which pixel is closest to the camera.

Choosing the closest pixel color is fine when the original geometry is opaque, but when the 
original geometry comprises transparent polygons or volumes, this compositing operation 
produces incorrect results. For proper compositing of translucent geometry, the colors must be 
blended in front to back order. When the Enable Ordered Compositing flag is on, IceT will 
composite the images in front-to-back order.



In general, a collection of polygons or polyhedra has no true front-to-back order. To ensure a 
proper visibility order, ParaView will redistribute the data when Enable Ordered 

Compositing is on. The distribution remains fixed during interaction, but may need to be 
recomputed whenever a change to one of ParaView’s filters occurs. So although ordered 
compositing works equally well with opaque and translucent geometry, redistribution, a 
potentially lengthy operation, must occur whenever the geometry changes.

Subsample Rate: The time it takes to composite and deliver images is directly proportional 
to the size of the images. The overhead of parallel rendering can be reduced by simply 
reducing the size of the images. ParaView has the ability to subsample images before they are 
composited and inflate them after they have been composited. The Subsample Rate slider 
specifies how much images are subsampled. This is measured in pixels, and the subsampling 
is the same in both the horizontal and vertical directions. Thus a subsample rate of 2 will 
result in an image that is ¼ the size of the original image. The image is scaled to full size 
before it is displayed on the user interface, so the higher the subsample rate, the more 
obviously pixilated the image will be during interaction as demonstrated in Figure 9. When 
the user is not interacting with the data, no subsampling will be used. If you want 
subsampling to always be off, unmark the check box beside the Subsample Rate slider.

No Subsampling Subsample Rate: 2 pixels Subsample Rate: 8 pixels

Figure 9. The effect of subsampling on image quality.

Squirt Compression: When ParaView is run in client/server mode, ParaView uses image 
compression to optimize the image transfer. The compression is an encoding algorithm 
optimized for images called SQUIRT (developed at Sandia National Laboratories). 

SQUIRT uses simple run length encoding for its compression. A run length image encoder 
will find sequences of pixels that are all the same color and encode them as a single run length 
(the count of pixels repeated) and the color value. ParaView represents colors as 24-bit 
values, but SQUIRT will optionally apply a bit mask to the colors before comparing them. 
Although information is lost when this mask is applied, the sizes of the run lengths are 
increased and the compression gets better. The bit masks used by SQUIRT are carefully 
chosen to match the color sensitivity of the human visual system. A 19-bit mask employed by 



SQUIRT greatly improves compression with little or no noticeable image artifacts. Reducing 
the number of bits further can improve compression even more, but can lead to more 
noticeable color banding artifacts as shown in Figure 10. 

24-bit mask 19-bit mask 10-bit mask

Figure 10. Artifacts caused by SQUIRT compression. As the bit mask used gets smaller, 
the artifacts become noticeable.

The Squirt Compression slider determines the bit mask used during interactive rendering (i.e., 
rendering that occurs while the user is changing the camera position or otherwise interacting 
with the data). During still rendering (when the user is not interacting with the data), lossless 
compression is always used. The check box to the left of the Squirt Compression slider 
toggles whether the SQUIRT compression algorithm is used at all.

1.6. Offscreen Rendering

When running ParaView in a parallel mode, it may be helpful for the rendering on the remote 
processes to be done offscreen. For example, other windows may be displayed on the node(s) 
where you are rendering; if these windows cover part of the rendering window, they may be 
captured as part of the display results from that node. A similar situation could occur if more 
than one process is on a given machine, and the processes share a display. Also in some cases 
the remote rendering nodes are not directly connected to a display.

In order for offscreen rendering to work in ParaView, you must use the --use-
offscreen-rendering command-line option on the client, or set the PV_OFFSCREEN
environment variable to 1. If you have a Unix-based cluster and you do not have an xhost 
available, you must also compile ParaView with Mesa support (for software rendering) and 
with the OSMESA library.



1.7. Tiled Display

If you have a 2D grid of display devices on which you wish to show visualization results, you 
should run ParaView in tiled display mode. Because the ParaView application window should 
appear on a separate monitor from the tiled display, you must be running in either 
client/server mode or client/data server/render server mode to use ParaView’s tiled display 
capabilities. The tiled display command-line argument may be included in the command line 
for the client, server, or data server. To put ParaView in tiled display mode, you must specify 
the x- and y-dimensions of the tiled display using --tile-dimensions-x (or -tdx) and 
--tile-dimensions-y (or -tdy), respectively. The x- and y-dimensions default to 0. If 
you set only one of them to a positive value on the command line, the other will be set to 1. 
The example below will create a 3 x 2 tiled display.

./pvserver -tdx=3 -tdy=2

./pvclient

Tiled displays may be used similarly in client/data server/render server mode, as shown 
below.

./pvdataserver -tdx=3 -tdy=2

./pvrenderserver

./pvclient -crs

In tiled display mode, there must be at least as many server or render server nodes as tiles. 
The IceT library, which ParaView uses for its image compositing, has custom compositing 
algorithms that work on tile displays. Although compositing images for large tiled displays is 
a compute intensive process, IceT reduces the overall amount of work by employing custom 
compositing strategies and removing empty tiles from the computation as demonstrated in 
Figure 11. If the number of nodes is greater than the number of tiles, then the image 
compositing work will be divided amongst all the processes in the render server. In general, 
rendering to a tile display will perform significantly better if there are many more nodes in the 
cluster than tiles in the display it drives. It also greatly helps if the image data is spatially 

decomposed. Spatially decomposed data is broken into pieces that are contained in small 
regions of space, and are therefore rendered to smaller areas of the screen. Spatially 
decomposed data will allow IceT to reduce the amount of image compositing work required. 
Running the D3 filter will make the geometry spatially decomposed. See section XX.X for 
more information on running the D3 filter.



Figure 11. Compositing images for 8 processes on a 4 tile display.

Unlike other parallel rendering modes, composited images are not delivered to the client. 
Instead, image compositing is reserved for generating images on the tile display, and the 
desktop is responsible for rendering its own images. To render images locally, a decimated 
version of the geometry is transferred to the desktop. However, when the data is very large, 
even a decimated version of the geometry can overwhelm the desktop. In this case, ParaView 
will replace the geometry on the desktop with a bounding box.

To control behavior for downloading the geometry to the desktop client, tile display mode 
adds a Client Collect option to the LOD Parameters (on the General tab of the 3D View 



Properties property sheet) as shown in Figure 12. The slider determines when geometry is 
collected on the client. When the geometry is less than the threshold, a decimated model is 
collected on the client. Otherwise, the geometry is replaced with a bounding box on the client 
(but the geometry is still visible on the tile display). If the check box is unchecked, then 
geometry will always be collected on the client. This can be a dangerous option if you have a 
large cluster. 

Figure 12. Options for collecting geometry on the client in tile display mode.

1.8. Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin 
Company, for the United States Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000.


