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Executive Summary

In 2017, the Department of Energy funded a team at Clemson University and Argonne National
Laboratory to develop collaborative perception and anticipative/predictive vehicle guidance schemes for
Connected and Automated Vehicles (CAVs) and to quantify the energy saving potential of this technology
in large scale traffic microsimulations at different levels of technology penetration and also experimentally.
The project goal was demonstrating up to a 10% energy saving potential from different aspects of the
implementation with a focus on reducing unnecessary braking events by anticipatory speed and lane
selection. A high-level overview of the project is shown below:
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The team has developed novel optimization-based control algorithms for more efficient car-
following and lane selection. The algorithms run robustly in a commercial traffic microsimulation
environment and also in two instrumented CAVs on a test track, one fully electric and one with a gasoline
engine. The vehicles are modified to drive autonomously on a test track and communicate wirelessly to
other simulated vehicles and roadside units.

The team has developed and run large scale traffic microsimulations in PTV VISSIM where custom
programmed CAVs drive anticipatively to reduce braking and their energy consumption. When following
a human driven vehicle, CAVs adjust their distance based on perceived aggressiveness of the preceding
vehicle. When following another CAV, they receive the imminent intentions of their preceding vehicles
over the next 10-20 seconds via vehicle-to-vehicle connectivity. The energy efficiencies of the fleet for
conventional, electric, and hybrid vehicles has been examined in high fidelity simulations. It was found that
automated vehicles with gasoline engines perform at a 10% - 20% higher energy efficiency over human
drivers. Automated vehicles that are hybrid or fully electric performed at a 3% - 9% higher energy efficiency
over human drivers. These results were achieved without compromising traffic compactness. Additionally,
due to secondary effects of smoothing traffic flow, energy benefits also apply to human-driven vehicles that



follow automated ones. Such simulated humans were found to drive up to 10% more energy-efficiently
than they did in the baseline all-human scenario.

When in addition to car following, lane change maneuvers are optimally decided, the
microsimulations show up to 30% energy efficiency benefit at high penetration of CAVs without increasing
travel time. Moreover, when two-way collaboration and coordination between CAVs was enabled further
efficiency was observed. Impact of communication latency and data loss was also investigated in this
project.

Most of the project outcomes have been evaluated experimentally. An important contribution of
the project is the proposed Vehicle-in-the-Loop (VIL) testing environment in which experimental CAVs
driven on a track interact with surrounding virtual vehicles in real-time. The VIL setup allows the scenarios
to be more aggressive because any collision would be with a virtual car that causes no damage or injury.

In the experimental phase, the team explored the energy savings when following city and highway
drive cycles, as well as in emergent virtual traffic created from microsimulations. An advanced
optimization-based guidance algorithm handles high level velocity planning and benefits from
communicated intentions of a preceding CAV or estimated probable motion of a preceding human driven
vehicle. A combination of classical feedback control and data-driven nonlinear feedforward control of
pedals achieve acceleration tracking at the low level. The controllers are implemented in Robot Operating
System (ROS), communication could utilize commercial 4G/5G cellular, and energy is measured via
calibrated OBD-II port readings. Up to 8-23% improved energy economy was experimentally recorded
over several test days on the test track. The reported improvements are with respect to realistically calibrated
human driver car-following and without sacrificing following distance.



This material is based upon work supported by the U.S. Department of Energy’s Office of Energy
Efficiency and Renewable Energy (EERE) under the Award Number DE- EE0008232.”
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1. Introduction

This project introduced novel anticipative car following and lane selection schemes for Connected and
Automated Vehicles (CAVs). Our control schemes benefited from prediction of human driver behavior,
information exchange between CAVs, and sometimes from collaboration to save energy, reduce braking
events, and harmonize traffic. The energy savings was first demonstrated by traffic micro-simulations and
then via a novel Vehicle-In-the-Loop (VIL) experimental testbed.

II.  Accomplishments

a. What are the major goals and objectives of this project?

The main objectives of this project are as follows:

- Incorporate the extended perception schemes that fuse V2X information with those of on-board
sensing by each CAV. This is used to construct the current state of surrounding traffic.

- Combine kinematic motion modeling and historical traffic data to create probabilistic
prediction models for surrounding vehicles, traffic rules, customs, signals and signs.

- Formulate a vehicle guidance scheme that allows the CAVs to plan their energy optimal and
safe future motion plan using the information detailed above.

From the verification point of view, this project follows the approaches listed below:

- To test the effectiveness of the proposed motion prediction scheme, we use high frequency
historical and real-time data from Tiger Commute buses.

- To verify the energy efficiency benefit of the proposed vehicle guidance scheme, we use traffic
microsimulations.

- To verify the energy efficiency benefit of the proposed vehicle guidance scheme in a near real-
world condition, we use test vehicles in a novel vehicle-in-the-loop (VIL) co-simulation
environment.

Figure 1 below shows the breakdown of the project into three tasks of: Task 1) Developing Anticipative
Vehicle Guidance Algorithms, Task 2) Traffic Microsimulations, and Task 3) Experimental testing via VIL
platform. Table I lists the milestones descriptions, and the percentage of completion for each milestone.
This Table is populated based on the Statement of Project Objectives (SOPO).
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Figure 1: The project breakdown into three tasks.

Table I: The milestones summary based on SOPO and percentage of completion

Milestone Description Status
Budget Period 1 (BP-1)
Milestone 1.1.1 Perception, Estimation and Complet.e 1ntegr?1 tlop of a@gonthms for
I . . anticipating longitudinal position and lane o
Prediction of Motion of Surrounding . . ; 100%
Vehicles of a neighboring . vehicle over a 5-
10 second future horizon.
o .
Milestone 1.1.2 Perception, Estimation and Der.nf)nst.rate >50./°. success rate 1n
- . . anticipating the position of a target vehicle o
Prediction of Motion of Surrounding| ... . . 100%
. within a 10-meter radius of its actual
Vehicles .. .
position, 5 seconds in advance
Milestone 2.1.1 Algorithm Design and | Complete coding customized anticipation
Custom Code Generation for PTV VISSIM | and predictive guidance functions for the 100%

Traffic Microsimulation

VISSIM microsimulation testbed.




Use simplified energy consumption models

simulations for multi-lane scenarios

additional average efficiency gain resulting
from collaborative driving.

Milestone 2.1.2  Preliminary micro- | to demonstrate >5% average efficiency 100%
simulation. gain in mixed traffic for CAV penetration °
>30%.
Milestone 3.1.1 One experimental CAV in Complete Veh101§ 1nstrurnenta‘F10n, te.st— N
s track communication setup, and integration 100%
Vehicle-in-the-Loop Testbed . . . . .
with micro simulation environment.
Budget Period 2 (BP-2)
Use high-fidelity powertrain models of
Milestone  2.2.1  Detailed  Energy | heterogeneous vehicles to demonstrate >5% 100%
Consumption Evaluation (10%) average efficiency gain in mixed °
traffic for CAV penetration >30% (60%).
. o .
Milestone 2.3.1 Collaborative Guidance De;nonstrate an addljuonal >% efficiency N
. . . . gain due to collaboration among a group of 100%
gain via Traffic Microsimulation .
collaborative CAVs.
Demonstrate at least >5% energy efficiency
Milestone 3.1.2 Experimental vehicle with | gain for the experimental vehicle as a result 100%
Anticipative guidance of  proposed anticipative  guidance °
algorithm.
Demonstrate stable co-simulation of 2
Milestone 3.2.1 Two experimental CAVs in | experimental vehicles and <10 virtual 100%
Vehicle-in-the-Loop Testbed vehicles and document >5% average energy °
efficiency gain for the entire fleet
Demonstrate stable co-simulation during
Milestone 3.3.1 Vehicle-in-the-Loop | lane change operation and document >5% 509%*
0

* All the low-level control functions are implemented on the car and were tested on the test track. The high-level
algorithms are all in mature shape and tested in microsimulations. Only test track verification of lane change remains
and is expected to be done over a few days once we are able to test. We had to halt our planned testing after March 7
due to Covid-19 shutdown/considerations. We have completed all other test track testing on car following scenarios
as presented in this report. We plan to complete 2 days of testing once we can go back to the test track even though it

will be after project close-out.




b. What was accomplished under these goals?

The following subsections describe briefly the accomplishments related to the milestones listed in Table 1.

1) Surrounding Vehicle Prediction (Milestones 1.1.1, 1.1.2)
This project requires CAVs to operate in the presence of two types of obstacles. In the first and simpler
case, a surrounding vehicle may also be a CAV. Such vehicles can communicate their future intentions,
which the ego CAV then uses as preview. On the other hand, mixed traffic will include surrounding vehicles
that are not connected. In this case, the ego CAV must predict the surrounding vehicle’s motion. This
section deals with that prediction task.

A few techniques were developed for predicting surrounding vehicle motion. Data-driven probability
models were used as input to earlier car following controllers. To prove real-world feasibility, a Markov
model was implemented and evaluated on GPS data from the Tiger Commute bus system. Implementation
issues were encountered when adapting the system from MATLAB to C++, leading to the adoption of
simpler kinematics-based approaches. A stochastic form of this latter method enabled the chance constraints
that are discussed in Section 1-c.

a. Frequentist Probability Models for Car Following

Prediction models for car following focused on the preceding vehicle. CAVs are assumed to use radar and
camera sensors capable of detecting the preceding vehicle’s (PV’s) speed and brake light state. Past
measurements were used to form and update a transition matrix containing the probability that a PV will
accelerate or brake with a certain intensity at a given future time, given its current speed and brake light
state. This algorithm was evaluated in drive cycle simulations where an open-loop vehicle followed the
EPA USO06 cycle, a second simulated human driver followed that leader, and the CAV predicted that second
vehicle’s future motion by learning online. The probability model predicted the simulated PV’s position
within 5 m, 92% of the time, 8 s in advance [6].

b. Predicting Real Bus Motion Using Markov Chains

To evaluate the feasibility of meeting the project’s target under real-world conditions, probability models
were evaluated using GPS data from the Tiger Commute bus system. In this study, a Markovian probability
model was developed that consumed the bus’s position, direction, current speed, and change in speed along
with time of day to predict the bus’s speed over the next step. That speed was then used to compute the
bus’s future position. Figure 2 shows the model’s performance. The dotted lines mark the milestone target
of 50% success at predicting position within 10 m. The model was to deliver this performance when
predicting up to 10 s, or 2 steps, ahead. Since the 1-step-ahead curve passes above and to the left of the
dotted lines’ intersection, the milestone target was achieved.
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Figure 2: Prediction model performance in the Tiger Commute dataset.

¢. Kinematic Techniques Including Probability Distributions
The algorithms in (a) and (b) required higher-dimensional matrices that were not amenable to C++
implementation. Therefore, a simpler approach was desirable for VISSIM and Vehicle-in-the-Loop (VIL)
implementation. In car following, constant acceleration was assumed until the vehicle reached either zero
or maximum speed. Then, the preceding vehicle was assumed to proceed at constant speed. This prediction
technique is stated more formally in [7] and Quarterly Report 10.

A kinematic approach was also applied for lane change algorithms. While constant velocity prediction was
used in general, constant acceleration was used for vehicles just downstream of a stopping point and
constant braking was used for vehicle just upstream of a stopping point. Laterally, surrounding vehicles
were predicted to move with constant speed until they reached the next lane centerline, then proceed along
that lane.

If the preceding vehicle’s constant acceleration is assumed to be randomly chosen from a distribution, this
approach can be used to derive the surrounding vehicle’s future position distribution. In this project, the
surrounding vehicles’ accelerations were assumed normally distributed, resulting in normally distributed
positions. By inverting the cumulative distribution function of position, a buffer distance is computed in
order to avoid collisions with a specified probability. The inverse cumulative distribution function and
specified probabilities are shown in Figure 3, where the linear probability was used in the controller for less
conservative performance. Reference [8] (open access) evaluates this chance constraint scheme in a rare,
hazardous scenario.
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Figure 3: Inverse cumulative distribution function, with constant and linearly decaying safe probabilities
overlaid. Figure adapted from [8] (open access)
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2) MPC for Car-Following (Milestone 2.1.2)
Section 1 explained that surrounding CAVs can share their future motion plans and that CAVs can predict
unconnected surrounding vehicles’ future motion. This section will review how such preview was used in
car following control. Model predictive control was chosen to take advantage of the control plant’s
relatively straightforward physics and the availability of preview while accounting for mechanical and
safety constraints. This section will briefly describe the car following algorithms and present key simulation
results.

a. Base Algorithm

The model predictive controller solves a quadratic program (QP) to find the best sequence of control inputs
for minimizing the ego CAV’s squared acceleration over a finite prediction horizon of 16 s to 22 s,
depending on the type of ego and PV. The commercial solver Gurobi [9] was used to solve the QP, although
other commercial and open-source QP solvers are available. Constraints prevent excessive speed,
acceleration or braking in excess of mechanical limits, and collisions. A novel application of the Big M
method in mathematical programming enabled the controller to operate on heavy diesel trucks with highly
non-convex operating spaces. When the PV was unconnected, its trajectory under worst-case braking was
used in the constraints to guarantee collision avoidance, although a less conservative approach was adopted
later. Reference [6] describes these contributions in greater detail and Quarterly Report 10 provides the
convex version of the optimal control problem.

b. MATLAB Simulation Results

Toward Milestone 2.1.2, the MPC car following algorithm was simulated in 8-vehicle strings of closed-
loop agents led by one open-loop vehicle that followed the EPA US06 cycle. Vehicles were pseudo-
randomly selected to be either connected and automated or unconnected and driven by simulated humans.
Their hardware was similarly selected to be either a passenger car or Class 8 truck. 2224 simulation runs
were executed to obtain the results shown in Figure 4. Fuel economy was assessed using a Clemson static
map-based powertrain model and later verified with Autonomie. Energy results in these early simulations
were on track with Milestone 2.1.2, although the benefit was reduced in the presence of heavy vehicles that
introduced their own smoothing effect. String space utilization is defined as the average distance from the
lead vehicle’s front bumper to the trailing vehicle’s rear bumper. Conservatism in the worst-case constraints
when CAVs followed unconnected vehicles caused the string to lengthen when only a few CAVs were
added, but near 100% CAV concentration the strings became shorter than human-like ones. This result
guided the later introduction of chance constraints to improve traffic throughput.

11
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Figure 4: String fuel economy and space utilization in the MATLAB drive cycle simulations. Figure
adapted from [6].

3) Mixed Integer Programming Lane Decision Algorithm (Milestone 2.1.2)
In real-world environments, vehicles can sometimes pass one another to avoid disturbances, thereby saving
energy. This section will describe the algorithms developed during this project for optimizing future lane
change plans jointly with longitudinal acceleration.

a. Base Algorithm
Lane change optimization presents several challenges that were addressed as part of this project. Especially
in the presence of human drivers, the automatic controller should feature lane discipline, or the explicit rule
of driving inside distinct lanes except during brief lane switching events. It must also tackle the problem
of non-convex drivable regions; a CAV can either drive in front of or behind an obstacle, for example. This
renders a simple maximum position constraint like the one used in car following insufficient for lane change
optimization.

A typical lane change process is linearly approximated such that the time response of lateral position to a
step change in lane command is 2" order. The disjunction of driving upstream or downstream of an in-lane
obstacle is handled using the Big M method, and binary indicator variables deactivate collision avoidance
constraints when the CAV is outside the obstacle’s lane. Reference [8] (open access) provides the multilane
model in state-space form along with the position constraints.

Under these constraints, an objective is minimized to promote efficient and timely driving. Laterally, the
objective minimizes tracking error relative to a fixed lane reference. The basic 2-lane implementation in
[10] also penalized a weighted sum of squared acceleration and squared speed tracking error with a constant
speed reference. As in car following, future intentions are shared between CAVs. Figure 5 shows an
example trajectory where this controller plans to pass two obstacles.

12



—Ego
....... Ego Edge

0 2 4 6 8 10
Time [s]

Lane Position
N

Figure 5: An optimal plan to pass two obstacles, shown in red. Figure adapted from [10].

Early MATLAB simulations in [10] involved a group of 4 CAVs passing a slow-moving obstacle.
Compared to a rule-based algorithm that changed lanes in reaction to a slowdown, the anticipative algorithm
reduced fuel consumption by 8.4% and travel time by 6.2%. Moreover, this improvement accounted for
80% of excess fuel relative to constant-speed operation as shown in Fig, 6.
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Figure 6: Travel time and fuel consumption performance of the MPC-only multi-lane guidance algorithm.
Figure adapted from [10].

b. Hierarchical Architecture

A drawback of the pure-MPC design in Section 3-a is that the longitudinal part of the objective is not
optimal for a whole trip or even a whole road link. Together with the expansion to roads with an arbitrary
number of lanes, a supervisory planner was added to mitigate MPC’s short-sightedness. Using Pontryagin’s
Minimum Principle, the parabolic velocity trajectory was analytically determined to minimize the square
of acceleration over trip. In electric vehicles, it also minimizes cumulative energy consumption [11]. After
solving for the parabola’s parameters from each step’s unique boundary conditions, the resulting state
trajectory is passed to the MPC as a reference. The MPC objective is then modified by penalizing deviation
from that reference. This hierarchical scheme is documented in detail in [12]. A sample group of MPC
solutions are shown in the upper plot of Figure 7, where the lower plot compares the green vehicle’s
acceleration command to its long-term reference. In this scenario, all vehicles are CAVs and so the
surrounding vehicle’s future trajectories become constraints.

13
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Figure 7: Optimal trajectories of several CAVs in a merging situation (above) and the green CAV's
acceleration plan for the same time horizon (below). Figure adapted from [12].

c¢. Collision Avoidance in Mixed Traffic
In heterogeneous traffic where CAVs interact with unconnected vehicles, surrounding vehicle motion is
predicted as described in Section 1-c. The chance constraint design was evaluated in the exceptionally
hazardous scenario shown in Figure 8, where the CAV is shown in orange and its following vehicle does
not detect it. Several variants of the design were compared in [8] (open access).
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Figure 8: The scenario used to evaluate the chance constraints for unconnected surrounding traffic. The
CAV is in orange and unconnected vehicles are in gray.

The chance-constrained controller was further evaluated for energy consumption in an arterial scenario with
12 vehicles. Either 0, 4, 8, or all 12 of them were CAVs and the others were controlled by a combination
of a multi-lane rule based lane change algorithm and the Intelligent Driver Model [13]. When travel time
was held constant, energy consumption steadily improved as shown in Figure 9 for a 16% benefit at 100%
CAV concentration.

Performance in Mixed Multi-lane Traffic
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0 *— ——
5 0 20 40 60 80 100
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Figure 9: Energy improvements from optimal multi-lane guidance in a mixed traffic, arterial scenario.
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4) Improving reliability of connected and automated vehicle (CAV) in urban/sub-urban
environments (Milestone 2.1.1)

a. Communication loss in connected vehicles

In urban/suburban vehicular networks, significant radio signal attenuation might occur due to the distance,
multipath signal fading, and shadowing, as distance between transmitter and receiver vehicles can vary and
signals may move through obstacles, such as buildings, trees, long and tall vehicles (e.g., truck).
Communication models that fail to consider realistic road topologies and obstacles may lead to inconsistent
results.

For computing the path loss at the receiver, we use the following generalized equation for receive power
Pr,(d) at the receiver,

Ppy(d) = Pry + G — X PL(d) (1)

where, Pr,(d) is the calculated received power of receiver Rx, for distance d from transmitter Tx; G is the
antenna gain. PL(d) contains the path loss components of large-scale path loss and fading, and of
deterministic obstacle shadowing, or of stochastic fast fading.

The value of the path loss component PL(d) varies from one path loss model to another. We have studied
a number of path loss models for measuring the path loss effect in semi-urban vehicular traffic. We found
that different loss models have different impact on the network- and application-level reliabilites. In
particular, the Random loss model has the lowest impact, Friis-Nakagami and long distance have the
medium impact, and LOS/OLOS/NLOS (Line-of-sight/Obstructed-LOS/Non-LOS) model has the highest
impact on the reliability performance. For instance, the network- and application-level reliabilities for
LOS/OLOS/NLOS model are 30% and 60% for a moderate Tx-Rx distance. These are not satisfactory for
safety-critical applications.

Hence, the research question is how to improve both the network- and application-level reliabilities under
a realistic path loss setting. To improve the reliability performance, we propose a feedbackless relaying
mechanism which improves the reliability by 35% for LOS/OLOS/NLOS model and by 60% for a number
of other studied loss models.

b. Proposed feedbackless relaying technique for improving reliability

For improving the PDR and T-window reliability, we have proposed a relaying mechanism on top of IEEE
802.11p. With the help of a couple of relay vehicles, the overall network performance improves
significantly.

In our proposed relaying approach, the selection of a relay vehicle is done autonomously by the system. As
there is no acknowledgement packet in DSRC based 802.11p, there is neither an RTS (Request to
Send)/CTS (Clear to Send) packet nor an RTB (Request to Broadcast)/CTB (Clear to Broadcast) packet to
send. But in our approach, the relay vehicle selection is done by a simple feedbackless yet effective method
as discussed below.

15
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All the connected vehicles are assumed to follow the rules of IEEE 802.11p transmission rules (Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA)). However, for relay vehicle selection, we
adopt a simple yet effective intelligent defer mechanism on the top of CSMA/CA. When a vehicle receives
a BSM in its direction of motion, it will not forward the BSM immediately; rather, it waits for a
ForwardDeferTime. ForwardDeferTime count down starts following a SIFS (Short Inter-frame Space) and
it is done independently by each vehicle. While a sending vehicle V; sends a packet, the ForwardDeferTime
of a receiving vehicle V; inside the communication range R of V; is computed by,

(R—axdi,j)

DT;; = lMaxDeferCount X X SlotTimeJ 2)

where 0 < @ < 1is a tuning parameter to give different defer times to vehicles by giving weight to d; ;.
We set a at 0.5. d; ; is the Minimum Euclidean Distance between V; and V;, which is computed by d; ; =

\/ ((xl- - xj)2 + (yl- - yj)z) , where (x;,v;) and (xj,yj) are the location coordinates of V; and V;,

respectively. MaxDeferCount is the maximum number of deferred SlotTimes (Typically 20 SlotTimes). A
SlotTime is the duration of one slot, which is typically 9 us. Eq. (2) is computed autonomously by each
vehicle. With this computation, the furthest vehicle from the transmitting vehicle will get the shortest defer
time, and the closest vehicle will get the longest defer time.

A vehicle V;, after waiting for DT; ; time, turns around and senses the channel. If it finds the channel is free,
it will set the RelayFlagBit, add the RelayVehicleID on the received BSM packet and rebroadcast after a
SIFS time (which is typically 16 ps). On the contrary, if the vehicle finds the channel is busy, which means
there is another vehicle further away that is responsible for relaying. Hence, it will discard its
ForwardDeferTime and returns to the normal Tx/Rx mode. If a vehicle receives a BSM with
RelayFlagBit bit set, it will not rebroadcast. In this way, we prevent from rebroadcasting the same packet
multiple times.

16



If a message collision happens (two nodes get the same ForwardDeferTime, which is very unlikely), the
collision is resolved by a random backoff procedure. The backoff period is chosen randomly from the range

of [0, @]. Note that, in this procedure, only the vehicles whose messages collided will participate. The

DTyin s computed by,

(R—axR) ]
DTyin = [MaxDeferCount X B E— X SlotTime
DTpin = IMaxDeferCount X (1 — a) X SlotTime| 3)

In the backoff stage, if the channel is sensed idle for SlotTime time period, the counter is decreased by one.
The counter will be frozen if the channel is sensed busy. The counter will be resumed once the channel is
sensed idle continuously for a SIFS time period. Finally, the packet will be sent as soon as the counter
reaches zero. If the collision cannot be resolved by maximum RET,,,, (< 7) times, the relay node selection
is discarded with fallback to the normal periodic 802.11p based broadcast. The relay attempts start again at
the next broadcast period. Figure 10 shows the sketch of the above described relaying procedure, and Figure
11 shows the modified SAE J2735 DSRC BSM frame part I for relaying, where two additional fields,
RelayVehiclelD and RelayFlagBit are inserted.

For relay node selection in the intersection case, the ForwardDeferTime computation (Eq. (2)) will be
updated by the following,

R .
DT;. = lMaxDeferCount X Raxdiy) X SlotTime 4)
where, d; . is the Minimum Euclidean Distance between vehicle V; and the intersection-center (¢). In Eq.
(4), the vehicle closest to the intersection-center will get the minimum defer time and eventually will be
selected as a relay node. The collision resolution backoff time (DT, (Eq. 3)) will also be updated
accordingly.

c. Simulation setup

An integrated simulator is developed for the traffic and network micro simulation. The vehicular modeling
is done using the microscopic traffic simulator PTV VISSIM, and network simulation is performed using
ns-3. Table 1 shows the explicit parameters used for VISSIM and ns-3 simulations. Other than the explicit
parameters, simulation is conducted under the simulators' default settings.

External Driver
Model (.DLL) %
-

@ Virtual machine
ubuntu

Figure 13: VISSIM simulation test network with CU-ICAR

Figure 12: Integrated micro simulator. i
neighborhood.
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Table 1. ns-3 simulation settings.

Figure 12 shows the integrated simulator, which ns-3 Value

consists of PTV VISSIM for traffic simulation, ns- Parameter

3 for discrete-event network simulation, and

MTALAB. MATLAB scripting is used for setting Number of 100

up traffic parameters in VISSIM through VISSIM vehicles

COM (Compgner}t ObJ:ect Model) and setting real- BSM size 200 bytes

time communication with ns-3 and VISSIM through

TCP/IP socket. The external car following and lane BSM rate 10 Hz

changing could be implemented in external driver

model (EDM) through DLL (Dynamic Linked Frequency 5.9 GHz

Library). Channel 10 MHz

The VISSIM COM (Component Object Model) Bandwidth

interface through MATLAB scripting is used to Channel 802.11p OCB

initiate the desired test track network in VISSIM access

and send and receive traffic parameters/data in

VISSIM-MATLAB interface. Through the TCP/IP Data rate 6 Mbps

socket ABI (Application P.rograrnmin.g Interface) TXP 23 dB

VISSIM is connected with the discrete-event

network simulator ns-3 via MATLAB. Every Encoding OFDM

simulation second (each 100 msec), MATLAB - .

sends VISSIM vehicles' position information to ns- Mobility Waypoint

3. Ns-3 uses waypoint-mobility-model to create and model ] MObi.liFy (YISSIM

track the vehicle's position and speed. A number of vehicle position in every

propagation loss models are used to realize the simulation sec)

communication loss among simulated vehicles. :

Based on the perceived loss, the feedback for Re<.:e.:1\{er e
. sensitivity

suggested car following parameters can be sent to

VISSIM through MATLAB, which could be Propagation Constant Speed

realized by the simulated vehicles in VISSIM. The delay model Propagation

VISSIM test network is set with 1.3 km stretch CU-

ICAR neighborhood traffic road, consisting one Propagation Abstract,

roundabout, one car parking, and two intersections. loss model ~ Random, Long distance,

The VISSIM test traffic network is shown in Figure
13.

d. Performance Analysis

Friis-Nakagami loss
models

In this section, we study the impact of different loss models on the network-level and application-level
performance metrics of connected vehicles in urban/sub-urban area. We study the performance of
LOS/OLOS/NLOS loss model as a representative of empirical loss models and the Friis-Nakagami as a
representative of joint deterministic and stochastic fading models.
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1) Impact on PDR and T-window reliability

Figure 14 exhibits the PDR and the T-window reliability performance under different loss models and no-
loss model with different T-window values for varying Tx-Rx communication ranges. As expected, no-loss

Reliability with T-window =0.3 5 Reliability with T-window = 15

I L OS/0LOSINLOS (wihout relaying)
> ] LOS/OLOS/NLOS ing)
ﬁ (] Fris-Nakgam (wihout relayi

Fris-Nakgam (we?
™

0.9 = Nodless (without relaying)
- No-loss (with relaying)
—&— Friis-Nakagami (without relaying)|
- <>~ Friis-Nakagami (with relaying)
—e— LOS/OLOS (without relaying)
© - LOS/OLOS (with relaying)

Application-level reliability

Packet Delivery Ratio (PDR)
&
1

s

1000 . el =
0 160 260 360 4(’)0 560 660 760 860 9[‘)0 10‘00 1100 < 2 B S 2 ?
Tx-Rx Communicaion Range (m) Tx-Rx Communicaion Range (m) X
Tx-Rx Communication Range (m) ! Path loss models. Path loss models
(a) Packet delivery ratio (PDR). (b) Reliability with T-window=0.3 sec. (c) Reliability with T-window=1 sec.

model has the highest PDR and reliability with different values of T-window (Figure 14(a)). PDR only
starts dropping from 100% when the Tx-Rx communication distance becomes higher than 600 m. The
reliability value depends on the T-window value. A higher T-window value results in a higher reliability.
When the Tx-Rx communication range equals 1000 m, the reliabilities of the no-loss model are 85%, 90%
and 95% for T-window values equal to respectively, 0.3 sec, 0.5 sec, and 1 sec. However, PDRs and
reliabilities are significantly lower with the Friis-Nakgami and LOS/OLOS/NLOS models under the
increasing Tx-Rx communication ranges. With the moderate communication distance (300 m), PDRs of
Friis-Nakagami and LOS/OLOS/NLOS models are around 50% and 30%, respectively.

Figure 14: PDR and the T-window reliability performance under different loss models.

The Friis-Nakgami model has moderate reliability, which is, over 70% with higher T-window values and
around 60% with T-window=0.3 sec. The LOS/OLOS/NLOS model has the lowest reliability. With T-
window=1 sec, the reliability range is 70-80%, whereas, for T-window=0.5 sec and T-window=0.3 sec,
these ranges are 55-65% and 40-55%, respectively. Hence, with a realistic loss model (such as
LOS/OLOS/NLOS), for delay sensitive applications (lower T-window value), reliability is just over 50%
for the communication ranges 100-600 m, which is definitely not a satisfactory performance.

Figure 15 shows the PDR and reliability improvement through the proposed relaying technique. Figure
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Figure 15: PDR and reliability improvement through relaying.

15(a) shows that with the help of relaying, all the studied loss models improve PDR significantly.
Depending on the loss model and the Tx-Rx communication distance, these improvements vary from 30%
to over 90%. While with the relaying technique, PDR improvement ranges from 30% to 40% for
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LOS/OLOS/NLOS model under different Tx-Rx communication distance, this improvement is over 50%-
90% for the Friis-Nakagami model.

For the reliability improvement, Figure 15(b) shows that with T-window equal to 0.3 sec, with the help of
relaying, the Friis-Nakagami model achieves almost 100% reliability while the LOS/OLOS/NLOS model
achieves around 70% reliability. This improvement is around 35% from their no-relaying reliability value.
Nevertheless, with T-window=1 sec, LOS/OLOS/NLOS model also achieves almost 100% reliability even
for the Tx-Rx communication distance over 800 m (Figure 15(c)).

2) Impact on latency
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Figure 16: Latency for per received/expected packet. (a) Per received packet latency. (b) Expected per
packet latency.

Figure 16 shows the performance in terms of both per received packet and expected per packet latencies.
Figure 16(a) shows the per received packet latency with and without relaying. Definitely, relaying increases
the latency for both the path loss models. Without relaying, per received packet latency (PRPL) is as low
as 2 msec. With relaying, PRPL is at most 10 msec. However, interestingly, with relaying, PRPL of Friis-
Nakagami model is higher than that of LOS/OLOS/NLOS model. This is because Friis-Nakagami has more
received packets (Figure 15(a)) than LOS/OLOS/NLOS model. Some late arriving received packets may
contribute to higher average latency for Friis-Nakagami model, which could be explained considering the
other latency metric, expected per packet latency (EPPL) as shown in Figure 16(b). In the EPPL calculation
for a fair comparison between the path loss models, both the received packets and dropped packets have
been considered. Hence, if a loss model has more dropped packets, it adds to its EPPL latency. Note that
each dropped packet adds 100 msec latency in EPPL calculation (Packet generation interval is 100 msec).
Accordingly, Figure 16(b) shows that the LOS/OLOS/NLOS model has a higher EPPL than Friis-Nakagami
model. Interestingly, it shows that relaying results in a lower EPPL than the case without relaying for both
loss models. This is because, relaying has two contradictory impacts on the EPPL. On the one hand relaying
improves PDR (Figure 15(a)), which reduces the number of dropped packets, hence it impacts positively
in reducing EPPL. On the other hand, relaying increases the PRPL for a received packet, which negatively
impacts on reducing the EPPL. Hence, it seems the overall EPPL depends on which factor dominates.
However, as a dropped packet contributes more latency (100 msec) than a received packet (which is less
than 10 msec) in the EPPL calculation, one can conclude that relaying has an overall positive influence for
reducing latency in EPPL calculation of a loss model. Nevertheless, the overall EPPL is less than 80 msec,
which is less than the packet generation time (100 msec).
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4) PTYV Vissim Traffic Car-Following Microsimulations (Milestone 2.2.1)

The car-following automated algorithm was accessed by conducting microsimulations in emergent traffic
environments as created by VISSIM. This was done by creating a single-lane highway in VISSIM — based
on a 4.0 km stretch of road near Greenville, SC, whereby the human-modeled drivers were tuned to replicate
empirically measured time headways. Randomly mixed fleets of human-modeled and automated traffic
were then initialized into the network and measured for energy and flow effects. Further details can be
found in Quarterly Reports 6, 8, and 9, as well as in [7].

To accurately estimate the energy impacts of the MPC control, the finalized VISSIM microsimulations
were processed in Autonomie, a state-of-the-art vehicle energy consumption model [19]. Vehicle models
in Autonomie are Simulink-based and forward-looking, with a driver actuating virtual pedals to follow a
drive cycle — speed as a function of time. An automated workflow was designed to load micro-simulation
results (speed traces) and run large-scale Autonomie simulations using parallel computing in matter of few
hours. The number of simulations can be scalable to 1 million.

Three powertrain configurations were used: conventional engine-powered vehicle (CV), electric vehicle
(EV) and hybrid-electric (HEV). The HEV is a one mode power-split hybrid, a configuration similar to the
one featured on the Toyota Prius. Each vehicle is of a midsize SUV class, and the component power and
mass were sized for each vehicle to meet similar performance requirements, such as 0-60 mph time or
ability to climb grades. In addition, the EV was sized to reach a 200 all-electric mile range. Efficiency and
power density assumptions are based on DOE technology assumptions for current (2019) vehicles [20].
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Figure 17: CV fuel consumption and fleet fuel efficiency improvements over the 0% CAV case at each input
vehicle volume/hour.

Each {Volume, Penetration rate} scenario was simulated with each vehicle type in a homogenous fleet
scenario (only one vehicle class and powertrain per scenario). Figure 17 shows the average energy
consumption and average energy saving results of for the CV, as a function of penetration and volume. The
average energy saving figure uses the energy consumption at 0% penetration for the same volume as a
reference.

Higher penetration rates of the MPC control brings greater energy savings for the entire fleet. For example,
50% and 100% penetration in the high-volume scenario yields resp. 15 and 27% energy savings compared
to the scenario with no MPC at all. It should also be noted that the savings are greater at higher volumes
for a given penetration. This is because greater speed oscillations and more braking events occur when there
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are more vehicles on the road, and as a result the baseline average energy consumption at high volume is
higher than at low.

Energy saving trends are similar for the EV and HEV, as shown in Figure 18, but the magnitude is lower.
The main reason behind this difference is regenerative braking: even in the most congested scenarios at 0%
penetration, little friction braking is done for both the BEV and the HEV, and a large share of the braking
energy is recovered by the battery instead, which it can then use for propulsion. In fact, much of the saving
potential of hybridization is already achieved at 0% penetration: the HEV already consumes between 25%
and 35% less fuel compared to the conventional at 0% penetration rates.
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Figure 18: Fleet fuel efficiency improvements over the 0% CAV case at each input vehicle

volume/hour for the EVs (left) and HEVs (right).

Finally, the effects of the automated vehicles on the surrounding traffic can be observed. We examine the
traffic smoothening capabilities of the car following controller. Cell density plots are shown in Figure 19,
in which shockwaves are depicted by high density regions of vehicles propagating backwards through the
network over time — in the 0% case, shockwaves are present, but in the 30% case the shockwaves are

dissipated.
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Figure 19: Cell density plots showing dense groups of vehicles in the network at 0%, 30% CAV
penetration. With the introduction of CAVs, shockwave effects were dissipated.
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5) Non-Linear Programming Lane Decision Algorithm (Milestone 2.1.1)
a. Framework Overview

A mixed-integer quadratic
programming approach to lane decision
algorithm was presented in Section 3.
Another student developed a nonlinear
programming approach that got
implemented in VISSIM
microsimulations and is ready to be
deployed on the experimental vehicles.
This section summarizes this alternative
formulation and implementation. ... » = on-board FOV measurement = two-way communication
Before discussing the control algorithm
and framework, we will introduce some
terminology and present a sample
traffic topology (20). The mixed traffic
consists of connected and automated vehicles (CAVs), as well as, human driven vehicles (HDVs). From
the perspective of a given CAV ¢; there are three different sets of vehicles, C; the set of all CAVs ¢, (p #

{) communicating with CAV ¢;, F; the set of all object vehicles (OV) ov, (both CAVs and HDVs) in the
field of view (FOV) of CAV c¢;, and &; = C; U F; the extended neighborhood of CAV c;.

Figure 20: Sample traffic topology, where C; = {c,, c3}, F1 =
{ovy, 0v3, ¢3, 003,04}, and &; = {0y, 0V3, 3, 0V;, 0V, €3}

The control framework consists of four @

components, the object vehicle state prediction 5

(OVSP) block, the reference speed assigner (RSA) {wp},,

block, the distributed model predictive control em=mmmd e e —m—————— -

(DMPC) block, and the lower level vehicle motion 1 CAVe v ! (HsA) :

dynamics block [4, 15, 16]. The control framework ! s?:ﬂ:;&:ﬁﬁ'ﬁf; I

is outlined in Figure 21 and described in the (OVSP) ' | — :

following paragraphs. ), Reference . |
Speed Assigner |geses- feaee s ]

At each time step, CAV c¢; obtains a set of (RSA) (RBSA) 2 11

measurements {Zq}?:i containing information about ] Jvas :

Distributed MPC ~ [7"TTTTT |
(DMPC)

Te

each ov, €F;, as well as a set of shared I
I
(za)y, :
I
I

information matrices {wp}c containing shared
i

information from each CAV ¢, €C; . This
information is used by the OVSP block to obtain the
set of state trajectories {xj} e containing a predicted

CAV ¢; — motion
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Figure 21: Block diagram of the optimal lane

state trajectory for each ov; € £;. To predict the selection NLP distributed MPC framework
state trajectories of HDVs decoupled longitudinal

and lateral linear prediction models and a Kalman filter are used [15, 16]. For CAVs, the information matrix
w,, shared by each CAV ¢, is assumed to contain the prior time step predicted plan, which is synchronized
with CAV ¢;’s current planning time step via the methods in [15, 16]. The predicted state trajectories are
then passed to the RSA block.

We implement two methods of reference speed assignment. The first method, rule-based speed assignment
(RBSA), utilizes the predicted state trajectories of OVs, the current measurement z; about CAV c;, the prior
time step predicted optimal state trajectory X;, and a set of rules to assign the reference speed v; of a given
lane [ in the set of lanes £ based on the speed of CAV ¢;’s immediate neighbors [4, 15]. The second method,
harmonization-based speed assignment (HSA), utilizes the estimated current speed of vehicles in F; and
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shared information to assign v;; based on the average speed of vehicles in the given lane [ [4, 16]. After

assigning a reference speed to each lane [, the RSA block (using either method) then assigns the vehicles

own desired speed vy ; = argmin(v;; — vg4,;), Where v, ; is the base desired velocity of CAV ¢; assigned
vy

by a higher level route planner.

The DMPC block then takes as input the predicted state trajectories of each ov; € &;, the set of lane
reference speeds {Ul,i} c and desired speeds v, ;, and the current measurement z; about CAV ¢; to optimize

a state trajectory over the prediction horizon. The cost function consists of four major components: the lane-
dependent cost weighs the costs for tracking each lane; the lane-independent cost penalizes deviations from
CAV ¢;’s egoistic objectives; the predictability cost penalizes deviations from the prior plan; and the input
cost promotes smooth and comfortable control decisions [4, 15, 16]. For our specific implementation, a
path intrinsic particle motion model is used for planning along with elliptical OV avoidance constraints.
For a complete overview of constraints please see [16] and [17]. The control inputs from the first time-step
are then passed to the lower level vehicle motion dynamics block and applied, while the planning process
is repeated.

b. Results — Reference Speed Assigner Comparison

The simulated traffic network is
Lane bound

comprised of a 5000m long Roadway bound

straight three-lane link, with a . _ Lane centerline , _
single input node and single output Incoming vehicles \ \ Outgoing vehicles
node as shown in Figure 22. The 77— Lane 3
input node is located on the left 35— Lane 2
with the direction of travel to the 0— Lane 1
right. For the first 30m of the link, *not drawn to scale

vehicles are restricted from L—DI— No lane changes | Direction of Travel > |
changing lanes, in order to prevent 0 30 permitted 5000

a vehicle from moving directly

into the path of a neighboring Figure 22: VISSIM traffic network.

vehicle that has not yet entered the
network. The desired velocities of vehicles were distributed using the default speed distribution in VISSIM
with a mean of approximately 87 km/hr.

Simulations were run for 30 minutes of simulation time with CAV penetration rates from 0 to 100%
increasing in 10% increments and at low (Q; = 2000 veh/hr), medium (Q; = 4000 veh/hr), and high (Qy =
6000 veh/hr) traffic demands. The network starts the simulation empty, therefore, for evaluation purposes
we omit the time from the start of the simulation until the number of vehicles on the network reaches 90%
of the maximum observed number of vehicles on the network. We will refer to the remaining simulation
time as the evaluation duration. Human driven vehicles (HDVs) are assumed to follow the Wiedemann-99
psycho-spacing car-following model, and the default rule-based lane selection (RBLS) algorithm of
VISSIM, which was originally developed by Spurmann [18]. For all future discussions, the baseline
scenario will be 0% CAV penetration at the respective traffic demand with ALL vehicles being HDVs.

We define the percent reduction in fuel consumption FC% as follows [4, 16]:

FC(V—100<1 FC)
0= FC,)

where FC is the average fuel consumption rate for the given scenario, and FCj is the average fuel
consumption rate for the associated baseline scenario. As the average velocity from scenario to scenario
changes, we will also introduce the travel time adjusted percent reduction in fuel consumption AFC%:
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RFC — RFC,
AFC% = FC% — 100 (—)

FC,

where RFC and RFCj are the fuel consumption rates required to maintain a constant velocity at the
observed average velocity for the given scenario and the baseline scenario, respectively.

The percent reduction in fuel

35

consumption results for simulations =130 _
with CAVs utilizing either RBSA or S +RB?A A
HSA are presented in Figure 23 [4]. £ 8% —s—RBSAQ,,
It can be seen in Figure 23 that at § gzo R"T'S’\ Qu
low and medium traffic demand the 2 Z 5 +H?A N
fuel consumption performances of 2 3 0 +::’: Q
the NLP lane decision algorithm for e > QH
both the RBSA and HSA cases are B 5 == CARCH
comparable. On the other hand, at 0

0 20 40 60

CAYV Penetration (%)

80 100

low penetrations and high traffic
demand there is a significant

difference between the. RBSA case  Fjgure 23: Percent reduction in fuel consumption of the entire fleet
and the HSA case, with the HSA (CAVs and HDVs) compared to 0% CAV penetration at low,

method outperforming the RBSA  pedium, and high traffic demands, for both the RBSA and HSA
approach by around 6%. The fuel

consumption performance of the two approaches converges as the CAV penetration is increased, with both

approaches consuming fuel at a rate around 32% lower than the baseline scenario when adjusting for travel
time.

s Yalatal

10 Figure 24 presents the travel time
results, where the percent reduction

< | —e—RBSAQ, in travel time is calculated in a similar

E bt s |78 -RBSAQy manner to FC% [4]. At medium Q)
% E 0 e aa-e- RBSA Qy and high Qp traffic demands, the
33 —o—HSAQ HSA approach results in a significant
&£ F ¢ -HSAQy improvement over the RBSA
= HSA Q approach. At medium traffic demand
and penetrations over 70% CAVs, the

10 20 20 P <0 100 HSA approach is able to reduce travel

time significantly compared to the
baseline (1 to 4.5% reduction),
whereas the RBSA  approach
marginally increases the travel time
compared to the baseline (appx. -1%
reduction). At high traffic demand
and all CAV penetrations the HSA
approach is able to realize a 2 to 7% reduction in travel time compared to the baseline scenario, whereas
the RBSA approach results in a 1 to 9% degradation in travel time performance at penetrations below 90%.
At 90% CAV penetration and above the RBSA case is able to reduce the travel time by 1 to 5%. The HSA
case results in a 5% to 15% improvement in travel time reduction compared to the RBSA method at high
traffic demand.

CAYV Penetration (%)

Figure 24: Percent reduction in travel time of the entire fleet (CAVs
and HDVs) compared to 0% CAYV penetration at low, medium, and
high traffic demands for both the RBSA and HSA cases.

The difference in performance between the two methods is a result of the underlying goal of either RSA
method. The HSA attempts to track the average speed of neighboring traffic, while the RBSA attempts to
track the velocity extremes of neighboring vehicles. Due to the way the rules in the RBSA are designed,
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this results in tracking the lower extreme in dense traffic. Therefore, at low to moderate CAV penetrations
(10 to 60% CAVs), when HDVs cause a significant number of braking disturbances, this results in slower
moving traffic. However, RBSA CAVs do have smoother control actions than HDVs, therefore once a
critical CAV penetration is obtained (60% CAVs), the smoothing effect of CAVs is more prominent and
the travel time performance begins to improve.

¢. Results — Impacts of Optimal Lane Selection

In order to isolate what portion of these benefits are due to optimal lane selection, we compared the
proposed 2D maneuver planning non-linear program (NLP) based distributed MPC (DMPC) framework to
a longitudinal DMPC with VISSIMs internal rule-based lane selection (RBLS) for lateral control. To
clarify, the same basic formulation for both DMPCs is utilized, however, for the RBLS DMPC only the
desired acceleration (ay) is applied. For lateral control and lane selection, the RBLS DMPC CAYV applies
the desired lane angle (¥4) calculated by VISSIMs internal rule-based algorithm. Further, the reference
speed assigner was modified for the RBLS DMPC such that:

- {ﬂl if CAV c; occupies lane [ or a signal is obtained that CAV ¢; is changing to lane [
! € otherwise

)

where v, is the lane reference speed, fl; is the estimated average speed of traffic in lane [, and € is a small
number. As the primary differentiator between the two DMPC versions is the lane selection algorithm, we
will refer to the proposed DMPC version as optimal lane selection (OLS) DMPC, and the reference DMPC
with rule-based lane selection as RBLS DMPC.

We begin by analyzing the travel

time results presented in Figure =130 .
25 [16]. At low traffic demand S _'_RBLf Q
and all CAV penetrations, as well . § N R L% Qu
as, at medium traffic demand and 8 & 20 RBLSQy
low  to moderate CAV 35 E JPOOPE = ——OLS Q
penetrations (<75%), the RBLS E 5 10 T ¢ OLS Qy
and OLS DMPC versions match o OLS Qy
the travel time performance of the o op YT | Time Adjusted
baseline (0%) scenario. At high

CAV penetrations (>75%), both 0 20 40 60 80 100

DMPC versions reduce the CAYV Penetration (%)

average travel time of traffic, with

the OLS version marginally Figure 26: Percent reduction in fuel consumption of the entire fleet
outperforming the RBLS version. (CAVsand HDVs) compared to 0% CAYV penetration at low, medium,
At high traffic demand, the OLS and high traffic demands, for both the RBLS and OLS DMPC versions.
DMPC version significantly outperforms

the baseline and RBLS version at all CAV penetrations. Conversely, the RBLS framework only
outperforms the baseline at moderate to higher CAV penetrations (>25%). We will next investigate the fuel
consumption implications of the two DMPC versions. Figure 26 presents the FC% and AFC% for both
DMPC versions as a function of CAV penetration at the three traffic demands Q;, Qy, and Qy [16]. In
general, there is not a significant difference in the fuel consumption rate of the RBLS and OLS versions.
The largest observed difference is at a traffic demand of Qy and 25% CAYV penetration, where the OLS
DMPC version improves FC% by almost 3% more than the RBLS version and AFC% by almost 4%. As
penetration increases, at high traffic demand Qy, the performance of the two DMPC versions converges.
The reason the OLS DMPC does not improve FC% and AFC% significantly compared to the RBLS
DMPC, is that there is minimal room for improvement. In both cases, the goal of the controller is to track
reference speeds while minimizing accelerations, therefore, based on the reference speed assigner, the
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optimal solution without disturbances would result in the RFC. To illustrate this, we define ARFC%, the
percentage difference of the observed fuel consumption rate to the required fuel consumption rate, as:

Es “ FC — RFC
_2 : ARFC% = ————
=7 - FCy
”—u = 20 )
P50 | = We present the fuel consumption rate and
z £'s 104 ARFC% results for Qy as an example in
§4 90 Figure 27 [16]. This figure separates the
O 20 40 60 80 100 average fuel consumption into different
—s—FC; RBLS subsets of the wvehicle population,
FC: OLS specifically, the entire mixed fleet (both

- @ =RFC: RBLS CAVs and HDVs) in Figure 27(a), only
the HDV population in Figure 27(b), and

Average Fuel
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Figure 27: FC and ARFC% of (a) the entire fleet (CAVs and raqylts in a marginal reduction in fuel

HDVs) (b) human driven vehicles (HDVs), and (c) connected consumption of the entire mixed fleet
and automated vehicles (CAVs) at low, medium, and high (see Figure 27(a)) for the OLS
traffic demands, for both the RBLS and OLS DMPC versions.  framework compared to the RBLS

framework at CAV penetrations below
50%.

6. Collaborative Guidance (Milestone 2.3.1)

While the algorithms described in Sections 2 and 3 shared information between CAVs, they were fully
decentralized in their fleet solutions; that is, they consider the surrounding CAVs’ trajectories as fixed and
optimize their own objectives. In the collaborative guidance stipulated in Milestone 2.3.1, each vehicle
acts to improve the group’s objective via additional information exchange. Section 6-a reviews
collaboration in a single lane and Section 6-b deals with a different approach for multi-lane collaborative
guidance. In both cases, centralized optimization is used as a high-performing benchmark.

a. Collaborative Single Lane Guidance

The single-lane collaborative algorithm begins as a special case of the hierarchical system of Section 6-b.
It is thus an eco-driving controller rather than a car-following controller; its objective does not track a gap
relative to the PV but instead minimizes the energy consumed by the electric powertrain over the trip. First,
each CAV in the string computes its parabolic reference speed trajectory. This trajectory is then
communicated to neighboring vehicles. Finally, each vehicle solves a group optimization considering its
immediate neighbors and applies only its own control input. In this way, the CAVs attempt to reduce not
only their own energy consumption but also those of nearby vehicles. Reference [3] and Quarterly Report
9 describe this algorithm along with other approaches that were compared in MATLAB simulations.
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8-vehicle CAYV strings following a lead vehicle were simulated, where the leader adhered to the WLTC
High or Low cycle. The WLTC Low results are shown in Figure 28. The classical and reactive adaptive
cruise control (ACC) exhibited a tradeoff between total energy and string length depending on its time
headway setting. The position constrained shrinking horizon controller (PCSHC) used a constant
acceleration assumption for the PV to analytically determine the optimal control. While it smoothed the
first CAV’s trajectory, it was string unstable and consumed more energy over the string compared to the
hierarchical optimal control algorithms. DHC denotes the decentralized approach described in Section 6-
b, applied to a single lane. In Centralized Hierarchical Control (CHC) the receding horizon part of the
problem was solved as a single optimization for all agents, which followed that optimization’s result
exactly. Cooperative Hierarchical Control (CoHC) is the distributed approach discussed previously. It
delivered nearly as low energy consumption as CHC and resulted in the lowest string length of the
algorithms tested. In a single lane, the chief benefit of collaboration was in string length rather than energy
consumption. Reference [3] provides additional results, including those obtained using the WLTC High
cycle.

95 ®
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= °f
&85h
@ ° ® ACC =
o st 1.55 m PCSHC
= DHC
E 75 *  CoHC
X ¢ CHC
7 1 1 1 1 T T 1
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Figure 28: The string length and total EV energy consumption of several eco-driving algorithms in an 8-
vehicle, drive cycle-based MATLAB simulation.

b. Collaborative Multi-Lane Guidance

The optimization in multi-lane situations is more complex. Therefore, a different collaboration approach
was developed in [1] that only solves for a single CAV’s control move per optimal control problem.
Noticing that the decentralized algorithm’s group solution depends on the order in which the vehicles
compute their trajectories, the Prioritized algorithm dynamically seeks better orderings to improve the
group objective. Each CAV first solves a nominal problem in which all other CAVs are assumed to yield
to it. The norms of these problems’ gradients at optimality are then used to measure each CAV’s sensitivity
to additional collision avoidance constraints. More sensitive vehicles are then prioritized such that less-
sensitive agents yield to more sensitive ones. Centralized navigation was also implemented, although its
computation time would make it impractical for real time implementation.

The simulation scenario required 3 CAVs to navigate around an obstacle as shown in Figure 29. This
emphasizes the role of collaboration since the agents must adjust their speeds and resolve conflicts to reach
their goals. The distributed Prioritized controller reduced energy consumption by 6.7% relative to the
decentralized baseline, while the less practical centralized approach reduced energy use by 8.6% as shown
in Figure 30. Further research on this topic is needed to determine the extent to which these energy
improvements apply in other scenarios. It is likely that collaboration is especially critical in denser traffic
and bottlenecks like the one examined here.

28



MOBIL

Decentralized

Prioritized

Centralized

| | l

1
D 750

|
300 450 600
Energy (kJ)

0

150

900

Figure 30: Energy consumption improvement from distributed collaboration and centralized guidance.

7) Experimental Vehicle Instrumentation

To accomplish the goal of this project, the test vehicles required pedal and steering actuators to command
the vehicle autonomously, and low-level controllers to convert the motion commands from the high-level

controller to pedal and steering wheel operations.

7.1 Vehicle Instrumentation
Testing in this project consisted of one
electric vehicle (Nissan Leaf) and one
gasoline engine vehicle (Mazda CX-7). Both
vehicles were not equipped with automated
driving capabilities from the manufacturer,
so they were modified to execute the
commands from the high-level controller
autonomously. The modifications include
adding necessary sensors, actuators, and
designing  control  algorithms. The
relationship between the sensors, actuators
and controls in the low-level controller is
shown in Figure 31.

The pedal and steering wheel actuators were

specially designed. They share a similar

design for both vehicles. Figure 32 left shows
the structure of the pedal actuator. The actuator
was designed to only push either the accelerator
or brake pedal, and so features a release
mechanism which releases the engaged pedal
before actuation switches to the other. This is
accomplished through levers 2 and 3, which
have different rotation directions: lever 2 is
attached to the output shaft of electric motor 1,
whereas lever 3 is attached to another shaft that

Test Track
Map

Car Following

RTK-GPS
Controller

Low-Level |Pedal Motor Ka!man Steering Wheel| Low-Level
Speed Positio Filter Motor Position Steering
Controller Controller
Motor
Driver

Steering
Pedal J L
Encoder F Wheel *‘ Encoder
Motor
Motor

Figure 31: Structure of low-level controller.

Figure 32: Specially designed actuators for pedal
and steering wheel.
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is parallel to and connected to the motor shaft via gear drive 4. A lever can push down the corresponding
pedal by applying force on a small cylinder that is protruding from the side of the pedal, but the lever itself
is not rigidly fixed to the pedal. Thus, when lever 2 rotates down, the brake pedal is pressed, and the
accelerator pedal is released - and vice versa. Figure 32 right shows the structure of the steering wheel
actuator. The electric motors 5 drives the gear ring 6 that is mounted behind the steering wheel so that the
steering wheel can be rotated. The instrumented vehicles with the actuators and sensors are shown in Figure
33.

Figure 33: Instrumented test vehicles.

7.2 Low-Level Longitudinal Controller Design

Longitudinal control of the vehicle is achieved by directly controlling the brake and accelerator pedals.
However, the dynamics from pedals to vehicle motion is highly non-linear due to the existence of internal
combustion engine and transmission or batteries, and the calibration map of the engine, transmission or the
battery is not available from the factory. Those factors make the implementation of solely a traditional
controller or a data-driven artificial neural network (ANN) controller difficult. Thus, the two approaches
are fused to combine a data-driven feedforward controller with a classical PID feedback controller to solve
the speed and acceleration tracking problem.

A Pure Pursuit controller was implemented for the experimental vehicles to track the designated path of the
test track. The steering input Y to the vehicle is computed with the location of the target point [; and the
angle a between the vehicle's heading direction and the look-ahead direction

2Lsina
Y=k tan™! ( )
la
where [, is the look ahead distance given by
ld = ldmin + klv

where k; and ldmin are tunable gain and minimum look-ahead distance parameters.

7.3 Low-Level Longitudinal Controller Performance
Both experimental vehicles were calibrated to follow a short square-wave speed profile while driving on a
rough road with notable grade. A dynamic target generator was created based on the IDM, which calculates
desired speed and desired acceleration from the speed profile.

=)

Vg =V + aght
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Here, ay = +£2.0m/s? is the maximum acceleration, and v, is the target speed from the square-wave-
shaped profile. The PID controllers were tuned to reject the road disturbance without notable overshoot.
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Figure 34: Nissan Leaf speed profile tracking performance.
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Figure 35: Mazda CX-7 speed profile tracking performance.

The result is shown in Figures 34 and 35. The combined controller showed fast response and small tracking
error. The steady state speed tracking error was +0.06m/s for both vehicles. The acceleration tracking was

also accurate, where the performance envelope shows that the acceleration tracking was acceptable over
the entire domain of velocity.

The calibrated controllers on both vehicles were combined with a high-level IDM controller to test their
performance under a more comprehensive car following scenario. The physical vehicle followed a virtual
vehicle that tracked US06 drive cycle in this test. This test was conducted on the test track as introduced in
Section 9. The result is shown in Figures 36 and 37.

In the figures, the black solid curves show the speed and acceleration of the ego vehicle obtained from a
simulation. The simulation utilized a simple kinematic model to calculate the motion of the ego vehicle in
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Figure 36: Nissan Leaf car following performance.
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Figure 37: Mazda CX-7 car following performance.

ideal environment. Thus, the closer the actual curve is to the desired curve, the better performance the
controller can offer. The figures show that the actual speed and acceleration curves are almost overlapped
with the desired ones, which indicates a satisfactory controller performance. In this test, the average
absolute acceleration tracking error was smaller than 0.2 m/s? for both vehicles.

8) Vehicle-in-the-Loop Experiments (Milestones 3.1.1, 3.1.2, 3.2.1)

Vehicle-in-the-loop (VIL) is our proposed automated driving virtual simulation in which a physical vehicle
(ego) is embedded into a traffic scenario with the goal of evaluating performance of such cyber-physical
systems in a realistic manner without compromising safety. This aspect is one of the novel contributions of
the project that has broader impact in testing automated vehicles. Driver perspective is depicted in Figure
38. The vehicle positions are mapped directly to the simulation environment to embed it in simulation in
real-time by communicating its (x, y, v, 8) tuple. The results are summarized below, and more complete
details can be found in Quarterly Report 10, as well as [14].

To accommodate for safety considerations on the test track due to road geometry, speed limits and U-turns
were imposed. To impose in vehicle guidance, first recall particle kinematic equations of constant
acceleration,

acds =vdv —v® = vg + 2ac (s — s0) (11)

?"a Simulated Human
‘ Simulated CAV

, Physical CAV

Figure 38: Visualization of the vehicle-in-the-loop environment from the driver perspective in both
simulation and reality. The physical vehicle is embedded into a virtual environment and interacts with
virtual drivers.

where a.= —2.0m/s”is chosen as a comfortable deceleration to reach the U-turn velocity from straight-away
velocity. The quantity ds then describes the distance away from the U-turn speed limit ¥ needed to slow
down from straight-away speed limit ¥o.

—2 -2
_ U1~ %

Ss —
°T T2, (12)
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For the WIE and IDM controllers, switching control can then be applied when within ds as
u'=min{u, a.} (13)

where u is the control of the WIE or IDM continuous model, and u" is the control command to apply when
approaching the U-turns. This logic limits the control to only engage in the most conservative acceleration
that occurs due to either car-following or velocity maintenance.

For the MPC, a constraint limits maximum velocity for each optimization stage. This poses challenges
because the MPC optimization horizon is a function of time, whereas speed limit transitions are a function
of distance instead.

An approximation is made to convert the velocity constraint to a function of time using an estimate of the
ego’s speed trajectory. In this case, a constant velocity is assumed in the speed estimate (i) =v, i =0, ...,
N. The position estimate then follows as §(i+1) = §(7)+7(i)At,. Combining with Eqns. (11, 12), the following
can then be used to define the MPC moving velocity constraint with s;describing the current distance from
the speed limit.

Vo ;(Z) < 8§
v(i) = { /T2 + 2a. (0s — (51 — 3(i))) 3(i) < b5+ s
U1 5(i) > 0s + s (14)

Similar approaches can follow for the moving velocity constraint when approaching a higher velocity speed
zone.

A PTV VISSIM microsimulation environment was set up, which comprised of a single-lane circuit of 74
vehicles. The VISSIM human-driver model controlled all simulated vehicles, with the exception of the
MPC-C scenario, in which a string of 5 simulated CAVs plus the ego CAV were controlled by the MPC.
The EPA US06 and EPA UDDS drive cycles were also used to set the velocity profile of the PV, where the
velocity trajectories of the cycles were scaled down by 40% and 15%, respectively, because of the speed
limits at the test track (please see Figure 41).

Energy estimation was accomplished using calibrated mass-airflow and battery sensors for the combustion
engine Mazda and the electric vehicle Nissan.

The results for the VIL experiments with the 3 simulation variants are given for the two vehicles. Here, the
high-level controller types of Wiedemann 99 (WIE), Intelligent Driver Model (IDM), Unconnected MPC
(MPC-U), and Connected MPC (MPC-C) were examined for both their flow and energy impacts.

Table 2: Mazda-combustion microsimulated experi- Table 3: Nissan-electric microsimulated experi-

mental controller performance mental controller performance
WIE IDM MPC-U MPC-C WIE IDM MPC-U MPC-C
237 45~ 24’ 00” 23’ 34” 23749~ 237 40” 23’ 36”
Travel Time 24’01~ 1.1% 0% -1.9% Travel Time 23’49~ 0% -0.9% -1.9%
Avg. Headway [s] 347 5.73 332 2.75 Avg. Headway [s] 3.96 5.81 2.93 2.82
+65.1% -4.3% -20.7% +46.7% -26.0% -28.8%
Avg. Gap [m] 28 59 37 28 Avg. Gap [m] 27 62 31 32
+111% +32% +25% +130% +16% +21%
Max. Gap [m] 83 144 112 74 Max. Gap [m] 76 151 96 82
+73% +35% -11% +99% +26% +8%
Net Fuel [L] 2.556 2.174 2.241 1.978 Net Energy [kwh] 4.090 3.730 3.766 3.247
-15% -12% -24% -8.8% -7.9% -20.6%
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The MPC offered energy efficiency improvements over the WIE human-like driver for both vehicles. MPC-
U reduced energy usage by 12% and 8% for the Mazda and Nissan, whereas MPC-C reduced energy usage
by 23% and 21%. Additionally, it did not sacrifice realized time headway, unlike the IDM cruise controller.

Figures 39, 40 depict the position trajectories of each vehicle over time. One can observe stop-and-go
behavior by the ripples in the position trajectories, which is detrimental to the energy economy of the fleet
of vehicles. As opposed to the WIE scenario, the CAV string attenuated disturbances of the traffic and
subsequently smoothed the driving of the vehicles behind. It was found that the MPC-C scenario improved
fuel usage by 4.5% on average, the MPC-U scenario improved fuel usage by 0.4% on average, and the IDM
worsened their fuel usage by 0.9%. By this, automated vehicles and connectivity have the potential to
provide secondary benefits for improving the energy usage of neighboring traffic.

Likewise, for the US06, the MPC showed significantly improved energy economy over the WIE human-
like driver. Overall, the MPC improved the Mazda energy performance by 26% and 32% in the unconnected
and connected variants, while the MPC improved the Nissan energy performance by 17% and 25% for the
unconnected and connected variants.

Position[km]
Position[km]

1,300 1,400 1,500 1,200 1,300 1,400 1,500

Time[s]

Figure 39: WIE position trajectories over time for
the virtual human traffic (blue) and ego vehicle
(red) for lap 5.

Time[s]

Figure 40: MPC-C position trajectories over time
for the virtual human drivers (blue) and the MPC
connected string (red) for lap 5. The ego is the
backmost MPC vehicle.

The UDDS saw markedly improved energy economy as well. Overall, the MPC improved the Mazda energy
performance by 14% and 24% in the unconnected and connected variants, while the MPC improved the
Nissan energy performance by 25% and 34% in the unconnected and connected variants.
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(a) USO06 velocity profile

Figure 41:
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Table 3: Mazda-combustion: US06 controller

Table 4: Nissan-electric: US06 performance'

performance
WIE IDM MPC-U MPC-C WIE IDM MPC-U MPC-C
9°33” 9°20” 9°26” 8’39~ 8’38~ 8’39
Travel Time 920" 23% 0% +11% Travel Time 8397 0% 0% 0%
Avg. Headway [s] 245 6.23 2.64 2.66 Avg. Headway [s] 2.14 5.80 2.76 2.58
+154.3% +7.8% +8.6% +171.0% +29.0% +20.6%
Avg. Gap [m] 23 35 26 23 Avg. Gap [m] 24 38 28 25
+52% +13% 0% +58% +17% +4%
Max. Gap [m] 40 93 77 88 Max. Gap [m] 42 92 78 82
+133% +93% +120% +119% +86% +95%
Net Fuel [L] 1.006 0.840 0.746 0.684 Net Energy [kwh] 1.286 1.230 1.064 0.963
-17% -26% -32% -4% -17% -25%

Table 5: Mazda-combustion: UDDS controller

Table 6: Nissan-electric: UDDS controller

performance performance
WIE IDM MPC-U MPC-C WIE IDM MPC-U MPC-C
227 36” 22° 35~ 227 36” 22735 22° 34 22° 34
Travel Time 22733 +0.2% +0.1% +0.2% Travel Time 227337 +0.1% +0.1% +0.1%
Avg. Headway [s] 3.39 5.94 2.85 3.53 Avg. Headway [s] 422 4.39 2.51 3.15
+75.2% -15.9% +4.1% +4.0% -40.5% -25.4%
Avg. Gap [m] 16 22 16 20 Avg. Gap [m] 16 22 15 19
+38% 0% +25% +38% -6% -19%
Max. Gap [m] 46 99 83 70 Max. Gap [m] 43 111 85 79
+115% +80% +52% +158% +98% +84%
Net Fuel [L] 1.370 1.329 1.175 1.048 Net Energy [kwh] 1.855 1.639 1.389 1.221
-3% -14% -24% -12% -25% -34%

1 Nissan Electric modified US06 results were shortened to the first 520s due to loss of some OBD-II data.
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9) OBD-1I energy measurement methods (Milestones 3.1.1, 3.1.2, 3.2.1)

An i0S app was created to pair with the On-Board Diagnostics (OBD-II) port of the vehicles with 29-bit
ISO 15765-4 CAN protocol as in [21-22]. The implemented iOS app connects to commercial WiFi OBD-
II dongles supporting the ELM327 chip [26], as depicted in Figure 42 and 43(a). The app also collects the
i0S device’s locational/GPS and timestamp data so that OBD-II readings could be correlated with
simulation. Table 7 summarizes all this extra data. The collected data are available in a Comma Separated
Values file format for further off-line data analysis. All the OBD datasets are also aggregated based on Unix
timestamps. The app was extended to read the combustion engine Mazda CX7’s 11-bit CAN protocol, as
depicted in Figure 43(b), and the electric motor Nissan Leaf’s unstandardized protocol, as depicted in Figure
43(c).

ODBII Port

g
»

Data
N

ODBII WiFi
Reader

SmartPhone Data Analyst
(Implemented OBDII Data Logger App)

Figure 42: Functional architecture of the developed iOS OBD Logger App [21].

..... ATET = 10:59 AM 7 - No Service = 6:51PM @ 7 wm NoService T 6:36 PM CEEY ]

Settings Settings Settings "

(a) (b) (c)
Figure 43: (a) An ELM327-based WiFi OBD-II reader attached to our test vehicle. The user interface
showing real-time data of our test vehicles: (b) Mazda CX-7 2009 with gasoline engine, and (c) Nissan Leaf
2011 electric vehicle (REGEN denotes Regenerative Braking and ASSIST denotes Torque Assist mode).
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Table 7. The extra data collected from the sensors of the iOS device for both experimental CAVs.

Data Data Collection Sampling
Name Type and Unit Method Rate
Timestamp Continuous (UNIX)  iOS device sensor | Hz max
Vehicle Speed Continuous (kph) 108 device sensor 1 Hz max
Vehicle Orientation Continuous (degree) 10S device sensor | Hz max
Vehicle Position Continuous (°) 108 device sensor 1 Hz max
(GPS Latitude & Longitude)

Vehicle Altitude Continuous (m) 108 device sensor 1 Hz max

A custom procedure was programmed to increase the default data sampling frequency of the ELM chip. In
total, data was collected from the Mazda at a rate of 8hz, and data was collected from the Nissan at a rate
of 4hz. This was accomplished by i) Sending “Carrier Return” to ELM327 instead of re-sending the exact
previous command each time, ii) Programming the ELM327 not to wait 200 ms after each “Carrier Return”
command, and iii) Sending the number of lines that ELM should expect to receive; as a result, after receiving
the pre- defined number of lines, the ELM stops looking for new data. Figure 44 shows a typical ELM327
request and response.

I-I‘—Request initiated by the OBD Logger App

ELM327

VehiCle m— I

«— ST
Delay in response Default Wait time
(Nissan Leaf responds slower  (ELM waits additional 200 msec for
than Mazda CX7) more responses)

Figure 44: The default timing of ELM327’s request and response, adopted from [26].

9.1 Internal combustion engine vehicle
Table 8, lists the data logged for energy measurement purposes. Since fuel pumps are not available on-site,
fuel consumption of internal combustion engine vehicle (Mazda CX7) is estimated based on OBD-II data.
First, fuel flow rate was modeled as a function of available OBD-II signals and one data-driven parameter.
The fuel estimation model was then validated using fuel volume and flow data available from a flow meter
during a chassis dynamometer calibration test. Finally, the calibrated model was applied to OBD-II data
from the test track to record fuel consumption.

Table 8. Basic OBD Data collected for energy usage estimation (Internal combustion engine vehicle).

Data Data Collection Sampling
Name Type and Unit Method Rate

Fuel System Status Discrete (0 to 6) OBD port 8 Hz max
Commanded Equivalence Ratio ~ Continuous OBD port 8 Hz max
Mass Air-flow Continuous (g/s) OBD port 8 Hz max
Short Term Fuel Trim Continuous (%) OBD port 8 Hz max
Long Term Fuel Trim Continuous (%) OBD port 8 Hz max
Calculated Engine Load Value Continuous (%) OBD port 8 Hz max
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Fuel injector flow rate, pulse width, or a similar quantity was not available on the test vehicle, so fuel rate
was modeled using ECU-estimated mass airflow (MAF), commanded /4, and a derived MAF correction
curve. As background, the air-fuel ratio of a conventional gasoline engine is typically near stoichiometric
to promote stable combustion, high efficiency, and low emissions. However, a mildly rich A of 0.85 to 0.91
can increase maximum torque. Even richer mixtures are sometimes used to limit exhaust gas temperatures,
particularly in turbocharged applications. The test vehicle’s OBD-II data includes the ECU-commanded
air-fuel ratio in the form of A = my/myswhere ms and my denote the stoichiometric and actual mass fuel flow,
respectively. The fuel flow that the ECU commands is modeled as follows.

Mg

mE.} (ma )

my =
(17)
A stoichiometric air-fuel ratio AFR,= 14.1 was used for the 10% ethanol pump fuel that is commonly
available in the United States.

In Eqn. (17), E4is a correction factor to the ECU-estimated mass airflow. 4 is normally closed-loop
controlled to stoichiometric using an exhaust oxygen sensor. Long-term and short-term correction factors
called trims are applied to the fuel pulse width such that the desired 4 is delivered. These trims are denoted
LTFT and STFT, respectively. Errors in both airflow measurement and fuel system modeling contribute to
these fuel trims. Assuming that fuel system model deviation results from a change in effective orifice size,
Eqn. (18) assumes that the trim due to the fuel system is a constant er with respect to mass airflow.

+ LTFT + STFT

EA =1 (ol
100 (18)
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Figure 45: MAF correction factor and source fuel trim data.
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Figure 46: Comparison of OBD model-based fuel rate with and without MAF correction against fuel flow
measurements.

Transient gas exchange dynamics and measurement delays generally affect fuel trims and their time-
alignment with airflow estimates. Fuel trims are therefore scattered as a function of airflow, although trends
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do emerge over large datasets. So, E,is not used directly, but rather averaged into bins to calibrate £, -
where M is the number of samples in the bin.

_ 1 M
EA (m,U) = M Z EAmaj
=1 (19)

9.1.1 Calibration and Validation

Closed-loop data from track tests of various algorithms was combined into a calibration dataset for Ey.
Figure 45 shows the resulting correction, which is within 5% for all m,. The OBD-based fuel flow model
was validated in two ways: dynamically by comparison against measurements from a volume flow meter,
and cumulatively by comparison against a measured volume of fuel placed in the empty tank. This fuel was
also weighed to ensure accurate density. Figure 47 shows the flow meter calibration experiment, with an
AVL KMA Mobile flow meter connected between the fuel tank and the high pressure fuel pump of the
engine [23]. The SoMat eDAQ system [25] was used with the SoMat Test Control Environment software
to collect fuel data.

Three tests were performed, all of which began with an empty fuel tank before putting a certain amount of
fuel in the tank, as shown in Figure 48. For each test, the vehicle was run on a chassis dynamometer until
it ran out of fuel. Test 3, during which 3 US gallons of fuel was consumed, was used to calibrate er. Tests
1 and 2 were reserved for validation. Figure 46 demonstrates qualitative model performance in lower and
higher power samples from Test 1.

Table 9 lists the model’s accuracy in the three chassis dynamometer tests where total fuel volume was
directly measured. Test 2’s flow meter and volume-based cumulative fuel measurements differed by 8.0%,
exceeding the differences observed in the other tests and indicating a possible ground truth measurement
error in Test 2. Therefore, the proposed OBD-based technique was adopted by virtue of its close match to
the validation data in test 1 and acceptable match to the instantaneous fuel flow measurement in Figure 46.

Table 9: OBD model accuracy in cumulative fuel consumption

Test No. Meas. Fuel Vol. [L] Est. Fuel Vol. [L]
1 (validation) 3.79 3.79

2 (validation)  9.46 8.90

3 (calibration) 11.36 11.38

MazdaCX7
Test Vehicle

ey
p N <Y >

(OBD-Il Wi-Fi
Reader

~ ‘% \ ’ 5 Settings 1] ]
AVEKMAM obile 2= - User Interface of the OBD
Flow Meter Logger iOS App

Figure 47: The AVL KMA Mobile fuel measurement system and the OBD-based fuel rate estimator
connected to the combustion test vehicle
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Figure 48: The steps to calibrate and evaluate our OBD-based fuel rate estimations.

9.2 Battery electric vehicle
Unlike the combustion engine vehicle, the specification of the electric vehicle’s OBD data is not published

by the vehicle manufacturer - mainly because the electric car manufacturers have not established a standard
for messages exchanged from its CAN bus [28]. The existing smart phone applications for Nissan Leaf’s
OBD data collection, such as Leaf Spy [24], provide insufficient sample rates. Following the guidelines in
[28] and verifying the results with that of Leaf Spy [24], OBD-based measurements were collected for the
signed battery current, /, terminal voltage, V7, state-of-charge, SOC, and capacity via the custom i0S app.
Table 10, lists the data logged for energy measurement purposes.

Table 10. Basic OBD Data collected for energy usage estimation (Battery electric vehicle).

Data Data Collection Sampling
Name Type and Unit Method Rate

Battery Current Continuous (A) OBD port 4 Hz max
Battery Voltage Continuous (V) OBD port 4 Hz max
Battery State-of-Charge (SOC) Continuous (%) OBD port 4 Hz max
Battery Capacity Continuous (Ah) OBD port 4 Hz max

For the Li-ion battery of the Nissan Leaf, a lumped resistance R,is considered. As shown in [27], the open-
circuit voltage, Voc, is assumed to have a linear relationship with SOC in the mid-range of SOC levels when
considering fixed battery temperature (We assume that the ambient temperature is constant during our
tests). So, the resulting linear model is fit to the collected OBD data to give an estimated value of R,=0.1Q.
As the obtained resistive loss is negligible compared to the battery net energy, and each test consisted of
similar ambient temperatures, R, was assumed constant for all tests. Considering the resistive energy loss,
the battery net energy is then obtained by integrating over the entire test interval.

Eba,ttery = /tl (VT (t) I(t) + RSI2 (t)) dt (20)
M At o
~ Z (Vr(te—1)I(t—1) + Vi (ti) I (te) + RoI*(te—1) + RsI*(tr)) -
k=1

10) Simulation and control timing (Milestones 3.1.1, 3.2.1)
Timing mechanisms are defined in the server layer for precisely controlling the simulation environment to
run in real-time and broadcast updates on its status in regular intervals of 10hz, and are defined in the client
layer for broadcasting the ego vehicle’s status in regular intervals of 10hz - so that the vehicle can provide
feedback to the simulation for surrounding virtual traffic to react to. Because multiple computers are
involved, a Network Time Protocol (NTP) was introduced to synchronize the clocks and regularly measure
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communication delay [29]. In this case, as shown in Figure 49, the client polls the server for its clock time,
and makes an adjustment to its own clock by measuring a time-offset ¢, and round-trip delay Az,

(t1 —to) — (t2 — t3)
2 (22a)

At=(—1t)—(t—t) (22b)

t =

where #, #; are the client’s request and reception message timestamps, and ¢, ¢, are the server’s reception
and response message timestamps. Most recent round-trip delays are used by the client and server to
interpolate positional data from the ego vehicle and its preceding vehicle.

t t
NTP Data Flow - P Client
t,: timestamp of the client’s initial request (Autonomous Vehicle)
t,: timestamp of the reception on server side
t,: timestamp of the server’s reply Server
t;: timestamp of the reception on client side & t (VISSIM Simulation)

Figure 49: Network Time Protocol (NTP) implementation between the client and server layers of the
VIL architecture.

10.1 Simulation data exchange
A client-server architecture was designated between the ego vehicle and simulation computer so that
computational load could be split between multiple computers. Such a setup also has the advantage of
allowing co-simulation of multiple clients at once - suitable for future experiments.

In this case, exchange of key data between simulation and the ego vehicle was defined using a Google
Protocol Buffer (Protobuf) serialization to byte arrays and then broadcast through the User-Datagram
Protocol (UDP) socket communication [30]. UDP was chosen because of its low-latency data exchange and
is suitable in systems with lower chances of packet loss. Protocol buffers are a mechanism to serialize data.
We specify the structure of the data in a protocol buffer message format [31] which can be used to transfer
data between our instrumented vehicles and our simulation server regardless of their implementation
language. As claimed by Google and as evaluated in [32], the Protocol Buffer leads to fast data transfer
over the web comparing to eXtensible Markup Language or XML [33]. This is mainly because the Protocol
Buffer uses binary format to serialize structured data.

The data exchanged between the physical vehicle and the simulation server lies in four categories with their
data structure shown in Figure 50: 1) Subscription/Un-subscription Message: A physical vehicle subscribes
to the simulation server at the beginning of VIL simulations, or unsubscribes to end the simulation, 2)
V2Sim Message: A physical vehicle transmits its updates (X, y, v, 0) to the simulation server, 3) Sim2V
Message: the simulation server transmits information of the simulated vehicles surrounding the physical
vehicle, and 4) V2V Message: the simulated and physical vehicles exchange planned trajectories for
connected vehicle guidance (MPC-C).

Each message is preceded with a predefined preamble after being serialized by Google Protocol Buffers.
In order to reduce the bandwidth challenges imposed on the simulation side, we incorporate the vehicle-to-
vehicle (V2V) messaging into the Sim2V and V2Sim messages. The resulting bufter is only a few hundred
bytes in size. Please note that the preamble should not be serialized; otherwise, the receiver should decode
the received packet by trying all possible message types which can impose a huge performance penalty.
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Subscription/Unsubscription Message:

Preamble + | Identification (Un)Subscription Probe Data Error
#1 Flag Flag
Preamble byte Unsubscription = 0
= 0x16 Subscription = 1
Sim/Physical Flag Velocity (v)
Physical Vehicle ID Location (z, ¥)

Heading (6)
Brake On/Off
Timestamp (Unix)

V2Sim Message:

Preamble . . Error
4 + | Physical Vehicle ID | Probe Data Flag
Preamble byte OK=1

= 0x43 Error = 0
Velocity (v)
Location (z, y)
Heading (6)
Brake On/0ff
Timestamp (Unix)
Sim2V Message:
Preamble Error
43 + | Probe Data 1|--- [ Probe Data k Flag
Preamble byte
= 0xEC
Simulated Vehicle ID
Simulated Vehicle Type
Velocity (v)
Longitudinal Distance Away (dz)
Lateral Distance Away (dy)
Heading (6)
Brake On/0ff
Timestamp (Unix)
V2V Message:
Preamble Error

44 + |Physical Vehicle ID | Timestamp | MPC Message

Flag

Preamble byte
= 0x6B

Longitudinal Distance (s; | i=1,...,N)
Lateral Distance (I; | i=1,...,N)
Terminal Velocity (un)

Figure 50: Four different message types implemented for the VIL test environment (Protocol buffer
structured messages preceded with a preamble).
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c. What opportunities for training and professional development has the project
provided?

The project engaged two postdoctoral researchers, five Ph.D. Students, and one undergraduate student.
Through working on the project and regular meeting with PIs they were trained on algorithm development,
software development and simulation, and hardware implementation. Moreover, they got invaluable
experience in team work, communication, and presentation and project management.

The following awards have been won by the students.

1. Longxiang Guo wins 2020 CECAS College Outstanding Graduate Researcher Award for his
contribution to the team effort and in particular experimental testing of automated vehicles, 2020.

2. Best Paper Award, ASME Technical Committee on Automotive and Transportation Systems for
“Predictively Coordinated Vehicle Acceleration and Lane Selection Using Mixed Integer
Programming” by A. Dollar and A. Vahidi, 2019

3. Young Author Award, International Federation of Automatic Control for the paper “Chance
Constrained Automated Vehicles in Hazardous Merging Traffic,”, 2019

4. Advanced Vehicle Technologies Best Paper Award, ASME IDETC Conference, 2019

5. Austin Dollar selected as a recipient of a 2018-2019 STEM Chateaubriand Fellowship for eight-
month research in France on topics related to team’s collaboration, 2018.

6. The 2017 SAE Trevor O. Jones Outstanding Paper Award

d. How have the results been disseminated to communities of interest?

A number of papers have been published, presented at various conferences, and submitted for review
and are listed in the publication section. Additionally, an overview of the project methods and results have
been prepared in a presentation to be shared with a number of government, industry, and research partners.
An on-site demonstration was scheduled for March 24, 2020 with confirmed participants from GM, Ford,
BMW, Toyota, Cummins, Commsignia, PTV group, Allision Transmissions, ZF, Michelin, Southwest
Research Institute, Argonne National Lab, and Oakridge National Lab. An executive summary of the
project had been distributed which provided exposure for the project. Unfortunately, the demo had to be
canceled in mid-March due to the shut-down imposed by the 2020 Pandemic.

Encouraged by the results and with support of two technical experts from General Motors, has been
submitted to GM with the goal of continued experimental testing and extending some of the ideas developed
in this project to the industry.
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I11. Products

a.

Publications, conference papers, and presentations

- T. Ard, L. Guo, R. A. Dollar, A. Fayazi, N. Goulet, Y. Jia, B. Ayalew, and A. Vahidi. “Energy-
Efficient Automated Car-Following: Vehicle-in-the-Loop Field Results.” Transportation Research
Part C, in review, 2020.

- L. Guo and Y. Jia. “Combine Heuristic Al based Control with Analytic Model Formed Control for
Automated Vehicles.” In Review, IEEE Transactions on Vehicular Technology (2020).

- T. Ard, R. A. Dollar, D. Karbowski, Y. Zhang, and A. Vahidi. “Evaluating the Impact of Automated
Vehicles with Optimal Eco-Driving in High Fidelity Traffic Microsimulations.” , Transportation
Research Part C, 120, 2020.

- G. G. M. Nawaz Ali, Beshah Ayalew, Ardalan Vahidi, and Md. Noor-A-Rahim, “Feedbackless
Relaying for Enhancing Reliability of Connected Vehicles,” IEEE Transactions on Vehicular
Technology, 69, 4621 — 4634, 2020

- G. G. M. Nawaz Ali, Beshah Ayalew, Ardalan Vahidi, and Md. Noor-A-Rahim, “Analysis of
Reliabilities Under Different Path Loss Models in Urban/Sub-urban Vehicular Networks”, to appear,
Proceedings of IEEE 90th Vehicular Technology Conference (IEEE VTC-Fall’19), Honolulu, HI, 2019.

- Goulet, N. and Ayalew, B. “Coordinated Model Predictive Control on Multi-Lane Roads”. In
Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference (IDETC 2019). August 18-21, 2019. Anaheim, CA, USA.

-D. Yoon and B. Ayalew (2019) “D. Yoon and B. Ayalew (2019) “Hierarchical Vehicular Social Force
Control for Human-like Autonomous Driving,” Proceedings of the American Control Conference, July
10-12, Philadelphia, PA

- R. Dollar and A Vahidi, “Automated Driving with Variational Optimal Control and Mixed Integer
Programming,” in review, IEEE Transactions on Control Systems Technology, 2019.

- R. Dollar and A. Vahidi, “Chance Constrained Automated Vehicles in Hazardous Merging Traffic,”
in Proceedings of IFAC Conference on Advances in Automotive Control, Orleans, France, 2019. Won
IFAC’s Best Young Author Award.

- R. Austin Dollar, and Ardalan Vahidi. “Predictively Coordinated Vehicle Acceleration and Lane
Selection Using Mixed Integer Programming." in Proceedings of the ASME DSCC, 2018. Won
Automotive and Transportation Systems Technical Committee Best Paper Award.

- R. Austin Dollar, and Ardalan Vahidi. "Efficient and Collision-Free Anticipative Cruise Control in
Randomly Mixed Strings." IEEE Transactions on Intelligent Vehicles, 3, 439-452, 2018.
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- R. Austin Dollar, and Ardalan Vahidi. "Quantifying the impact of limited information and control
robustness on connected automated platoons." In Proceedings son IEEE Conference on Intelligent
Transportation Systems (ITSC), 2017.

- N. Goulet and B. Ayalew. "Impacts of Distributed Speed Harmonization and Optimal Maneuver Planning
on Multi-Lane Roads." To Appear, 2020 Conference on Control Technologies and Applications.

- R. A. Dollar, A. Sciarretta, and A. Vahidi. “Multi-Agent Control of Lane-Switching Automated Vehicles
for Energy Efficiency.” Presented, American Control Conference, 2020.

- R. A. Dollar, A. Sciarretta, and A. Vahidi. “Information and Collaboration Levels in Vehicular Strings:
A Comparative Study.” Presented, IFAC World Congress, 2020.

- N. Goulet and B. Ayalew. “Distributed Maneuver Planning with Connected and Automated Vehicles for
Boosting Traffic Efficiency.” Submitted and in review, IEEE Transactions on Intelligent Transportation
Systems.
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Presentations:

- A. Vahidi, “Energy and Flow Effects of Optimal Automated Driving in Mixed Traffic”, online, New
York University, Abu Dhabi, November 8, 2020.

- A. Vahidi, “Vehicle-in-Loop Experiments of Optimal Automated Driving in Mixed Traffic” PTV
Group North America, Virtual Webinar, October 15, 2020.

- A. Vahidi, “Efficient Driving Leveraging Cellular Connectivity,” virtual, Qualcomm, San Diego, CA,
September 28, 2020.

- A. Vahidi, “Anticipative Guidance of Connected and Autonomous Cars for Energy Efficiency,”
Workshop on Emerging Control of Vehicular Traffic for Improving Sustainability and Energy
Efficiency, Society of Instrument and Control Engineers (SICE) Annual Conference, Chiang Mai,
Thailand, September 23, 2020.

- A. Vahidi, “Eco Driving with Connected and Automated Vehicles”, Department of Mechanical and
Industrial Engineering, University of Ilinois at Chicago, January 28, 2020.

- A. Vahidi, “Eco Driving with Connected and Automated Vehicles”, Workshop on Connected and
Automated Vehicles for Energy Efficiency and Environment Impact, I[FP Energies Nouvelles, Rueil-
Malmaison, France, September 30, 2019.

- A. Vahidi, “Anticipative Guidance of Connected and Autonomous Cars for Energy Efficiency”
IDETC-CIE, Anaheim, CA, August 2019.

- A. Vahidi, “Opportunities for Efficient Driving with CAVs and Their Network-wide Impact” NSF
Workshop on Control for Networked Transportation Systems, Philadelphia, PA, July 8-9, 2019.

- A.Vahidi, “Eco-driving with Connected and Automated Vehicles: Algorithms and Experiments” 3rd
IAVSD Workshop on Dynamics of Road Vehicles: Connected and Automated Vehicles, University of
Michigan, Ann Arbor, April 28, 2019.

- A. Vahidi, “Eco-Driving with Connected and Automated Vehicles”, ASME DSCC, Workshop on
Connected and Automated Vehicles, Atlanta, GA, September 30, 2018.

- A. Vahidi, “Anticipative Guidance of Connected and Autonomous Cars for Energy Efficiency,”
Research and Innovation Center, Ford Motor Company, May 17, 2018.

- Y. Jia, “Human Intervention Detection on a Retrofit Steering Actuation System in Autonomous
Vehicles,” Keynote in Connect2Car at SAE World Congress Experience (WCX), Detroit, MI, April 12,
2018.

- A. Vahidi, “Optimal Coordination of Connected and Autonomous Cars in Smart Cities”, University of
California, Berkeley, November 3, 2017 (please see [7]).

- A. Vahidi, “Optimal Coordination of Connected and Autonomous Cars in Smart Cities”, New York
University, Abu Dhabi, November 19, 2017.
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b.

C.

Relevant Indirect Products:

- X. Wang, L. Guo and Y. Jia, "Online Sensing of Human Steering Intervention Torque for
Autonomous Driving Actuation Systems, " IEEE Sensors Journal, vol. 18, no. 8, pp. 3444-
3453,2018

- X. Wang, L. Guo and Y. Jia, “Human Intervention Detection on a Retrofit Steering
Actuation System in Autonomous Vehicles,” SAE World Congress, 2018. Won SAE
Trevor O. Jones Outstanding Paper Award.

- A. Vahidi and A. Sciarretta, “Energy Saving Potentials of Connected and Automated
Vehicles,” Transportation Research Part C, 95, 822-843, 2018.

- J. Han, A. Vahidi and A. Sciarretta, “Fundamentals of Energy Efficient Driving for
Combustion Engine and Electric Vehicles: An Optimal Control Perspective,” accepted,
Automatica, 2018.

- Q. Wang, B. Ayalew and T. Weiskircher “Predictive Maneuver Planning for an
Autonomous Vehicle in Public Highway Traffic,” in review, IEEE Transactions on
Intelligent Transportation Systems (2018).

- Q. Wang and B. Ayalew (2017), “Probabilistic Constraint Tightening for Predictive
Guidance of an Autonomous Vehicle in Multi-Vehicle Traffic”, in review, IEEE
Transactions in Robotics.

- A. Hunde and B. Ayalew (2018), “Automated Multi-Target Tracking in Public Traffic in
the Presence of Data Association Uncertainties” Accepted for publication, Proceedings of
the American Control Conference, June 27-29, Milwaukee, WI.

- D. Gundana, R. A. Dollar and A. Vahidi, “To Merge Early or Late: Analysis of Traffic
Flow and Energy Impact in a Reduced Lane Scenario.” To be presented, Intelligent
Transportation Systems (ITSC), 2018 IEEE 21st International Conference on, 2018.

-A. Hunde, B. Ayalew and Q. Wang (2019) “Automated Multi-Object Tracking for
Autonomous Vehicle Control in Dynamically Changing Traffic,” Proceedings of the
American Control Conference, July 10-12, Philadelphia, PA (in review).

Websites or other Internet sites

Video of autonomous Nissan Leaf: https://www.youtube.com/watch?v=ekcnKJGLm7w

Video of autonomous Mazda CX-7: https://www.youtube.com/watch?v=LMsJKHJ72R0

Technologies or techniques

ITIC received valuable input to improve their smart mobility testbed through V2X capabilities which
allow both car manufacturers as well as suppliers to test AV scenarios in mixed reality configurations
emulating real world traffic conditions. That capabilities can be used in the future to classify and potentially
certify smart mobility testbed through consortiums such as SAE/IEEE-supported International Alliance for

Mobility Testing and Standardization (IAMTS).
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d.

Inventions, patent applications, and/or licenses

Nothing to report in this quarterly report.

—

Other products

Automotive News, “'Ghost' AV research may put the brakes on stop-and-go traffic”, June 18, 2020.
ASEE’s First Bell, “Clemson Researchers Develop Technology To Help Autonomous-Driving
Vehicles Save Energy,” June 18, 2020

Clemson News, “‘Ghost’ vehicle research shows energy savings in self-driving cars”, June 17,
2020.

Government Report by NSTC and US DOT, "Ensuring American Leadership in Automated
Vehicle Technologies - Automated Vehicles 4.0," January 2020.

Upstate Business Journal, “How automotive testing in Greenville could impact tomorrow’s
roadways” (September 2019)

Upstate Business Journal, “How Clemson researchers plan to boost energy efficiency with
connected, automated vehicle technology” (August 2017)

Greenville News, “Clemson awarded $1.16M to research use of connected, automated vehicle
technology to boost energy efficiency” (July 2017)
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IV.  Participants and Collaborating Organizations

a. What individuals have worked on the project?

1) Name: Prof. Ardalan Vahidi

Project Role:
Researcher Identifier:
Total number of months:
Contribution to Project:

State, and country of residence:

PI (Clemson University)

NA

30

Prof. Vahidi is the lead investigator and has been responsible
for the administration of the research grant. He has also been
directly supervising his graduate students.

SC, USA

2) Name:

Project Role:
Researcher Identifier:
Total number of months:
Contribution to Project:

State, and country of residence:

Dr. Yunyi Jia

Co-PI

NA

30

Dr. Jia has been leading a team responsible for vehicle
instrumentation and design of the autonomous driving
controls.

SC, USA

3) Name:

Project Role:
Researcher Identifier:
Total number of months:
Contribution to Project:

State, and country of residence:

Dr. Beshah Ayalew

Co-PI (Clemson University)
https://orcid.org/0000-0002-3759-3271

30

Dr. Ayalew has been working on developing the lane
selection scheme as part of our predictive autonomous
vehicle guidance scheme.

SC, USA

4) Name:

Project Role:
Researcher Identifier:
Total number of months:
Contribution to Project:

State, and country of residence:

Mr. Dominik Karbowski

Co-PI (Argonne National Laboratory-ANL)

NA

30

Mr. Karbowski has been working on estimating energy
efficiency using ANL’s detailed powertrain simulation tool
Autonomie.

IL, USA

49



5)

Name:
Project Role:

Researcher Identifier:
Total number of months:
Contribution to Project:

State, and country of residence:

Prof. Joachim G. Taiber

Sub-contractor (International Transportation Innovation
Center-ITIC)

NA

30

Prof. Taiber, as the CTO of ITIC, has been managing the
communication network design and implementation and the
interfaces to the IT backend at the ITIC testbed facility.

SC, USA

6) Name: Dr. Ali Reza Fayazi
Project Role: Post-doctoral fellow (Clemson University)
Researcher Identifier: https://orcid.org/0000-0002-8560-2873
Total number of months: 30
Contribution to Project: Dr. Fayazi has been monitoring the project progress, and
setting up project management tools. He has also been
working on goals related to the vehicle-in-the-loop
simulation environment.
State, and country of residence: ~ SC, USA
7) Name: Dr. G. G. Md. Nawaz Ali
Project Role: Post-doctoral fellow (Clemson University)
Researcher Identifier: https://orcid.org/0000-0001-5861-0475
Total number of months: 21
Contribution to Project: Dr. Nawaz worked on vehicular simulation and V2X
communication with VISSIM, MATLAB and ns-3
environments.
State, and country of residence: ~ SC, USA
8) Name: R. Austin Dollar
Project Role: PhD Student (Clemson University)
Researcher Identifier: NA
Total number of months: 30
Contribution to Project: Mr. Dollar has been developing the anticipative vehicle
guidance algorithms. He is working under supervision of
Prof. Vahidi.
State, and country of residence: ~ SC, USA
9) Name: Tyler Ard
Project Role: PhD Student (Clemson University)
Researcher Identifier: NA
Total number of months: 30

Contribution to Project:

State, and country of residence:

Mr. Ard has been working on the goals related to the traffic
microsimulation and vehicle-in-the-loop experimental
platforms. He is working under supervision of Prof. Vahidi.
SC, USA
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10) Name:
Project Role:
Researcher Identifier:
Total number of months:
Contribution to Project:

Longxiang Guo

PhD Student (Clemson University)

NA

29

Mr. Guo is working on the goals related to wvehicle
instrumentation and improving the design of the
autonomous driving controls. He is working under
supervision of Dr. Jia.

State, and country of residence:  SC, USA
11) Name: Nathan Goulet
Project Role: PhD Student (Clemson University)
Researcher Identifier: NA
Total number of months: 28

Contribution to Project:

State, and country of residence:

Mr. Goulet is working on the goals related to the anticipative
lane change maneuver algorithm. He is working under
supervision of Dr. Ayalew.

SC, USA

Figure 51: The project team during the 2018 annual visit by DOE program managers.
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b. Has there been a change in the active other support of the PD/PI(s) or
senior/key personnel since the last reporting period?

No.

c. What other organizations have been involved as partners?

Clemson University worked with the following organizations as partners on this project:

- Argonne National Laboratory to integrate the vehicle guidance algorithms with Autonomie,
Argonne’s detailed vehicle energy utilization simulation software.

- PTV Group: to incorporate the proposed algorithms in PTV Group’s traffic micro-simulation
tool (VISSIM).

- International Transportation Innovation Center (ITIC): to provide the experimentation platform
for evaluating the proposed technical approach with novel co-simulations of traffic and
physical connected and automated vehicles on a cyber-physical test track.

d. Have other collaborators or contacts been involved?

Collaborative guidance research was co-supervised by P.I. Ardalan Vahidi and Dr. Antonio Sciarretta
of IFP Energies nouvelles.
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V.

Impact
What is the impact of the project? How has it contributed?

The project has contributed to the state of art of energy efficient driving by developing
advanced vehicle guidance algorithms that save energy while preserving safety and traffic compactness.
If the project’s proposed and experimentally verified methods are adopted in new vehicles and in
particular automated vehicles, there can be significant reduction in energy consumption and greenhouse
emissions. These savings can materialize immediately upon implementation, mostly via software, and
with minimal additional hardware investments. More details are described below.

a. What was the impact on the development of the principal discipline(s) of the project?

The algorithms developed under this project are expected to be adopted by other researchers
and practitioners in the field of energy efficient driving and automated driving. We have taken the
algorithms beyond academic research by showcasing their positive energy impact in field tests
without compromising safety, traffic flow, and travel time. The methods have the potential for real-
time implementation. And they can be deployed in mixed traffic where human-driven vehicles are
present. The DOE funding enabled us to perfect the algorithms beyond what is normally shown in
academic papers and advance the field of eco-driving.

As stated elsewhere, the vehicle-in-the-loop testing technology can potentially impact
vehicle certification and testing and in particular testing of automated vehicles.

b. What was the impact on other disciplines?
Our algorithms and testing algorithms are likely to make an impact on automated vehicle
development and certification.

c. What was the impact on the development of human resources?

Four PhD students completed major parts of their dissertation research based on their
contributions to this project. The project has been an excellent scientific, technical, and project
management opportunity for these students. The students have received considerable visibility via
conference presentation and in the news media. When they join the industry or academic work force,
they carry the valuable experience of having worked on a sizable team project with ambitious
outcomes that they have achieved.

Two postdoctoral fellows worked on this project. One has joined academia as an assistant
professor and the other has joined a Silicon Valley startup working on automated driving and ride
sharing.

One undergraduate student (and a minority) participated in early stages of the project and
published a peer-reviewed conference paper which is unusual for an undergraduate student. He is
now a Ph.D. student at Cornell University.

The project has also provided the PIs the opportunity to advance their knowledge in the
novel field of automated driving; this knowledge can be imparted in their classes to wider students
and contribute to advancement of their future research.

d. What was the impact on teaching and educational experiences?

The PI has recently co-authored and published a book on energy efficient driving of
connected and automated vehicles with international reach and includes some of the results of this
project. The findings of the project provide excellent and sensible motivating examples for our
undergraduate and graduate classes. The students relate to cars, get excited by automation, and care
about energy impact. Showing even a video of the test track experiments along with basic underlying
technical concepts, goes a long way in our classes to get the students excited and motivated to pursue
careers or graduate education in line with the goals of this DOE VTO project.
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The findings of the project have been presented in several invited talks nationally and
internationally and as a result many experts in the field have seen different stages of the project
findings via these talks. Examples are workshops on connected and automated vehicles in Atlanta
(2018), The University of Michigan (2019) IFP, France (2019), and an NSF sponsored workshop on
connected transportation systems held in 2019 in Philadelphia.

e. What was the impact on physical, institutional, and information resources that form
infrastructure?

Testing in this project consisted of one electric vehicle (Nissan Leaf) and one gasoline
engine vehicle (Mazda CX-7). These vehicles were not equipped with automated driving capabilities
from the manufacturer, so they were modified to execute the commands from the high-level
controller autonomously. The modifications include adding necessary sensors, actuators, and
designing control algorithms. These vehicles are now available for educational and research
purposes. The vehicles were tested at ITIC test track in Greenville, South Carolina. A Vehicle-in-
the-loop platform has been built that allows testing these vehicles while surrounded by virtual
vehicles reducing or eliminating collision risk. This mostly-software-based VIL platform provides
many future possibilities for testing automated vehicles. Moreover DSRC equipment has been
deployed and programmed for V2V communication that extends testing capabilities at ITIC.

f. What was the impact on technology transfer?

The Vehicle-In-Loop testing platform that we have developed has a clear potential for
technology transfer as it could reduce the cost and risk of connected and automated vehilces testing
and certification. Several companies have expressed interest in the concept. We have submitted a
research proposal to General Motors that proposed to utilize VIL experiments. The PI is working
with Cummins on another DOE funded project (on truck platooning) that may use our VIL
architecture. Researcher at Argonne National Lab are also interested in utilizing our VIL platform.
The test track operator, ITIC, received valuable input to improve their smart mobility testbed through
V2X capabilities which allow both car manufacturers as well as suppliers to test AV scenarios in
mixed reality configurations emulating real world traffic conditions. That capabilities can be used
in the future to classify and potentially certify smart mobility testbed through consortiums such as
SAE/IEEE-supported International Alliance for Mobility Testing and Standardization (IAMTS).

Our published eco-driving algorithms can be prime candidates for adoption by industry as
they have been successful in proof-of-concept experimental demos.

g. What was the impact on society beyond science and technology?

Our research advances the state-of-art in self-driving cars and also connected vehicle
technologies. Our proposed algorithms, if implemented, can reduce energy consumption and green
house emissions significantly (8-23% if widely deployed) which has direct positive environmental
and societal impact.

h. What percentage of the award’s budget was spent in foreign country(ies)?
Only one conference paper was presented in Europe. The expenditure was only conference
registration and lodging. The student presenter was already on a fellowship residency in Europe so
there were no foreign travel expenses.

VI.  Changes

The last task is not complete due to 2020 pandemic shutdowns that prevented us from conducting test
track experiments after March 7, 2020. All the low-level control functions are implemented on the car and
were tested on the test track before March 7. The high-level algorithms are all in mature shape and tested
in microsimulations. Only test track verification of lane change remains and is expected to be done over a
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few days once we are able to test. We have completed all other test track testing on car following scenarios
as presented in this report. We plan to complete 2 days of testing once we can go back to the test track after
project close-out so we can write the paper we intend to write on the topic.

VII.

VIII.

IX.

Special Reporting Requirements

NA.

Budgetary Information
The quantitative budget information is submitted separately in the Federal Financial Report.

Project Outcomes

Novel car-following and lane selection algorithms that can save energy in presence of
human driven vehicles and without compromising road capacity and travel time. Proven
performance in large scale microsimulations, high fidelity fuel economy evaluations, and
road experiments with gasoline and electric vehicles.

Demonstrated capabilities of our proposed Vehicle-In-the-Loop (VIL) experimental
platform that enables testing CAVs in challenging traffic scenarios while eliminating risk
of collision or injury. Full integration of VIL with a commercial traffic microsimulation
software, with robust software and V2V communication architecture. Potential for wider
use and impact in automated vehicle industry.

Showcased the real-time implementation of sophisticated optimization-based control
algorithms on experimental vehicles driving at highway speeds that limits the reaction
times.

Perfected sensing, localization, and low-level pedal and steering control algorithms for
precise execution of eco-driving maneuvers. Approach can be extended to other automated
vehicle development and research activities.

Characterized realistic hurdles such as influence of packet drops and communication delays
via simulation and in experiments.
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