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Executive Summary 

In 2017, the Department of Energy funded a team at Clemson University and Argonne National 
Laboratory to develop collaborative perception and anticipative/predictive vehicle guidance schemes for 
Connected and Automated Vehicles (CAVs) and to quantify the energy saving potential of this technology 
in large scale traffic microsimulations at different levels of technology penetration and also experimentally.  
The project goal was demonstrating up to a 10% energy saving potential from different aspects of the 
implementation with a focus on reducing unnecessary braking events by anticipatory speed and lane 
selection. A high-level overview of the project is shown below: 

 

 

 

 

 

 

 

 

 

 

The team has developed novel optimization-based control algorithms for more efficient car-
following and lane selection. The algorithms run robustly in a commercial traffic microsimulation 
environment and also in two instrumented CAVs on a test track, one fully electric and one with a gasoline 
engine. The vehicles are modified to drive autonomously on a test track and communicate wirelessly to 
other simulated vehicles and roadside units. 

The team has developed and run large scale traffic microsimulations in PTV VISSIM where custom 
programmed CAVs drive anticipatively to reduce braking and their energy consumption. When following 
a human driven vehicle, CAVs adjust their distance based on perceived aggressiveness of the preceding 
vehicle. When following another CAV, they receive the imminent intentions of their preceding vehicles 
over the next 10-20 seconds via vehicle-to-vehicle connectivity. The energy efficiencies of the fleet for 
conventional, electric, and hybrid vehicles has been examined in high fidelity simulations. It was found that 
automated vehicles with gasoline engines perform at a 10% - 20% higher energy efficiency over human 
drivers. Automated vehicles that are hybrid or fully electric performed at a 3% - 9% higher energy efficiency 
over human drivers. These results were achieved without compromising traffic compactness. Additionally, 
due to secondary effects of smoothing traffic flow, energy benefits also apply to human-driven vehicles that 
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follow automated ones. Such simulated humans were found to drive up to 10% more energy-efficiently 
than they did in the baseline all-human scenario.  

When in addition to car following, lane change maneuvers are optimally decided, the 
microsimulations show up to 30% energy efficiency benefit at high penetration of CAVs without increasing 
travel time. Moreover, when two-way collaboration and coordination between CAVs was enabled further 
efficiency was observed. Impact of communication latency and data loss was also investigated in this 
project.  

Most of the project outcomes have been evaluated experimentally. An important contribution of 
the project is the proposed Vehicle-in-the-Loop (VIL) testing environment in which experimental CAVs 
driven on a track interact with surrounding virtual vehicles in real-time. The VIL setup allows the scenarios 
to be more aggressive because any collision would be with a virtual car that causes no damage or injury. 

In the experimental phase, the team explored the energy savings when following city and highway 
drive cycles, as well as in emergent virtual traffic created from microsimulations. An advanced 
optimization-based guidance algorithm handles high level velocity planning and benefits from 
communicated intentions of a preceding CAV or estimated probable motion of a preceding human driven 
vehicle. A combination of classical feedback control and data-driven nonlinear feedforward control of 
pedals achieve acceleration tracking at the low level. The controllers are implemented in Robot Operating 
System (ROS), communication could utilize commercial 4G/5G cellular, and energy is measured via 
calibrated OBD-II port readings. Up to 8-23% improved energy economy was experimentally recorded 
over several test days on the test track. The reported improvements are with respect to realistically calibrated 
human driver car-following and without sacrificing following distance. 
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I. Introduction 
 

This project introduced novel anticipative car following and lane selection schemes for Connected and 
Automated Vehicles (CAVs). Our control schemes benefited from prediction of human driver behavior, 
information exchange between CAVs, and sometimes from collaboration to save energy, reduce braking 
events, and harmonize traffic. The energy savings was first demonstrated by traffic micro-simulations and 
then via a novel Vehicle-In-the-Loop (VIL) experimental testbed. 

II. Accomplishments 
 

a. What are the major goals and objectives of this project? 

The main objectives of this project are as follows: 

- Incorporate the extended perception schemes that fuse V2X information with those of on-board 
sensing by each CAV. This is used to construct the current state of surrounding traffic. 

- Combine kinematic motion modeling and historical traffic data to create probabilistic 
prediction models for surrounding vehicles, traffic rules, customs, signals and signs. 

- Formulate a vehicle guidance scheme that allows the CAVs to plan their energy optimal and 
safe future motion plan using the information detailed above. 

From the verification point of view, this project follows the approaches listed below:  

- To test the effectiveness of the proposed motion prediction scheme, we use high frequency 
historical and real-time data from Tiger Commute buses. 

- To verify the energy efficiency benefit of the proposed vehicle guidance scheme, we use traffic 
microsimulations. 

- To verify the energy efficiency benefit of the proposed vehicle guidance scheme in a near real-
world condition, we use test vehicles in a novel vehicle-in-the-loop (VIL) co-simulation 
environment. 

Figure 1 below shows the breakdown of the project into three tasks of: Task 1) Developing Anticipative 
Vehicle Guidance Algorithms, Task 2) Traffic Microsimulations, and Task 3) Experimental testing via VIL 
platform. Table I lists the milestones descriptions, and the percentage of completion for each milestone. 
This Table is populated based on the Statement of Project Objectives (SOPO). 
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Table I: The milestones summary based on SOPO and percentage of completion  

Milestone Description Status 

Budget Period 1 (BP-1) 

Milestone 1.1.1  Perception, Estimation and 
Prediction of Motion of Surrounding 
Vehicles 

Complete integration of algorithms for 
anticipating longitudinal position and lane 
of a neighboring vehicle over a 5- 
10 second future horizon. 

100% 

Milestone 1.1.2  Perception, Estimation and 
Prediction of Motion of Surrounding 
Vehicles 

Demonstrate >50% success rate in 
anticipating the position of a target vehicle 
within a 10-meter radius of its actual 
position, 5 seconds in advance 

100% 

Milestone 2.1.1 Algorithm Design and 
Custom Code Generation for PTV VISSIM 
Traffic Microsimulation 

Complete coding customized anticipation 
and predictive guidance functions for the 
VISSIM microsimulation testbed. 

100% 

 

Figure 1: The project breakdown into three tasks. 
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Milestone 2.1.2 Preliminary micro-
simulation. 

Use simplified energy consumption models 
to demonstrate  >5% average efficiency 
gain in mixed traffic for CAV penetration 
>30%. 

 100% 

Milestone 3.1.1 One experimental CAV in 
Vehicle-in-the-Loop Testbed 

Complete vehicle instrumentation, test- 
track communication setup, and integration 
with micro simulation environment. 

100% 

Budget Period 2 (BP-2) 

Milestone 2.2.1 Detailed Energy 
Consumption Evaluation 

Use high-fidelity powertrain models of 
heterogeneous vehicles to demonstrate >5% 
(10%) average efficiency gain in mixed 
traffic for CAV penetration >30% (60%). 

100% 

Milestone 2.3.1 Collaborative Guidance 
gain via Traffic Microsimulation 

Demonstrate an additional 5% efficiency 
gain due to collaboration among a group of 
collaborative CAVs. 

100%  

Milestone 3.1.2 Experimental vehicle with 
Anticipative guidance  

Demonstrate at least >5% energy efficiency 
gain for the experimental vehicle as a result 
of proposed anticipative guidance 
algorithm. 

 100% 

Milestone 3.2.1 Two experimental CAVs in  
Vehicle-in-the-Loop Testbed 

Demonstrate stable co-simulation of 2 
experimental vehicles and <10 virtual 
vehicles and document >5% average energy 
efficiency gain for the entire fleet 

100% 

Milestone 3.3.1  Vehicle-in-the-Loop 
simulations for multi-lane scenarios 

Demonstrate stable co-simulation during 
lane change operation and document >5% 
additional average efficiency gain resulting 
from collaborative driving. 

50%* 

* All the low-level control functions are implemented on the car and were tested on the test track. The high-level 
algorithms are all in mature shape and tested in microsimulations. Only test track verification of lane change remains 
and is expected to be done over a few days once we are able to test. We had to halt our planned testing after March 7 
due to Covid-19 shutdown/considerations. We have completed all other test track testing on car following scenarios 
as presented in this report. We plan to complete 2 days of testing once we can go back to the test track even though it 
will be after project close-out.  

 

  



 9 

b. What was accomplished under these goals? 

The following subsections describe briefly the accomplishments related to the milestones listed in Table I. 

1) Surrounding Vehicle Prediction (Milestones 1.1.1, 1.1.2) 
This project requires CAVs to operate in the presence of two types of obstacles. In the first and simpler 
case, a surrounding vehicle may also be a CAV. Such vehicles can communicate their future intentions, 
which the ego CAV then uses as preview. On the other hand, mixed traffic will include surrounding vehicles 
that are not connected.  In this case, the ego CAV must predict the surrounding vehicle’s motion. This 
section deals with that prediction task. 

A few techniques were developed for predicting surrounding vehicle motion.  Data-driven probability 
models were used as input to earlier car following controllers. To prove real-world feasibility, a Markov 
model was implemented and evaluated on GPS data from the Tiger Commute bus system. Implementation 
issues were encountered when adapting the system from MATLAB to C++, leading to the adoption of 
simpler kinematics-based approaches. A stochastic form of this latter method enabled the chance constraints 
that are discussed in Section 1-c. 

a. Frequentist Probability Models for Car Following 
Prediction models for car following focused on the preceding vehicle. CAVs are assumed to use radar and 
camera sensors capable of detecting the preceding vehicle’s (PV’s) speed and brake light state. Past 
measurements were used to form and update a transition matrix containing the probability that a PV will 
accelerate or brake with a certain intensity at a given future time, given its current speed and brake light 
state. This algorithm was evaluated in drive cycle simulations where an open-loop vehicle followed the 
EPA US06 cycle, a second simulated human driver followed that leader, and the CAV predicted that second 
vehicle’s future motion by learning online. The probability model predicted the simulated PV’s position 
within 5 m, 92% of the time, 8 s in advance [6]. 
 

b. Predicting Real Bus Motion Using Markov Chains 
To evaluate the feasibility of meeting the project’s target under real-world conditions, probability models 
were evaluated using GPS data from the Tiger Commute bus system. In this study, a Markovian probability 
model was developed that consumed the bus’s position, direction, current speed, and change in speed along 
with time of day to predict the bus’s speed over the next step.  That speed was then used to compute the 
bus’s future position. Figure 2 shows the model’s performance. The dotted lines mark the milestone target 
of 50% success at predicting position within 10 m. The model was to deliver this performance when 
predicting up to 10 s, or 2 steps, ahead. Since the 1-step-ahead curve passes above and to the left of the 
dotted lines’ intersection, the milestone target was achieved. 
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Figure 2: Prediction model performance in the Tiger Commute dataset. 

c. Kinematic Techniques Including Probability Distributions 
The algorithms in (a) and (b) required higher-dimensional matrices that were not amenable to C++ 
implementation. Therefore, a simpler approach was desirable for VISSIM and Vehicle-in-the-Loop (VIL) 
implementation. In car following, constant acceleration was assumed until the vehicle reached either zero 
or maximum speed. Then, the preceding vehicle was assumed to proceed at constant speed.  This prediction 
technique is stated more formally in [7] and Quarterly Report 10. 
 
A kinematic approach was also applied for lane change algorithms.  While constant velocity prediction was 
used in general, constant acceleration was used for vehicles just downstream of a stopping point and 
constant braking was used for vehicle just upstream of a stopping point.  Laterally, surrounding vehicles 
were predicted to move with constant speed until they reached the next lane centerline, then proceed along 
that lane. 
 
If the preceding vehicle’s constant acceleration is assumed to be randomly chosen from a distribution, this 
approach can be used to derive the surrounding vehicle’s future position distribution. In this project, the 
surrounding vehicles’ accelerations were assumed normally distributed, resulting in normally distributed 
positions. By inverting the cumulative distribution function of position, a buffer distance is computed in 
order to avoid collisions with a specified probability.  The inverse cumulative distribution function and 
specified probabilities are shown in Figure 3, where the linear probability was used in the controller for less 
conservative performance.  Reference [8] (open access) evaluates this chance constraint scheme in a rare, 
hazardous scenario. 

 
Figure 3: Inverse cumulative distribution function, with constant and linearly decaying safe probabilities 
overlaid.  Figure adapted from [8] (open access) 
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2) MPC for Car-Following (Milestone 2.1.2) 
Section 1 explained that surrounding CAVs can share their future motion plans and that CAVs can predict 
unconnected surrounding vehicles’ future motion. This section will review how such preview was used in 
car following control. Model predictive control was chosen to take advantage of the control plant’s 
relatively straightforward physics and the availability of preview while accounting for mechanical and 
safety constraints. This section will briefly describe the car following algorithms and present key simulation 
results. 
 

a. Base Algorithm 
The model predictive controller solves a quadratic program (QP) to find the best sequence of control inputs 
for minimizing the ego CAV’s squared acceleration over a finite prediction horizon of 16 s to 22 s, 
depending on the type of ego and PV. The commercial solver Gurobi [9] was used to solve the QP, although 
other commercial and open-source QP solvers are available.  Constraints prevent excessive speed, 
acceleration or braking in excess of mechanical limits, and collisions.  A novel application of the Big M 
method in mathematical programming enabled the controller to operate on heavy diesel trucks with highly 
non-convex operating spaces. When the PV was unconnected, its trajectory under worst-case braking was 
used in the constraints to guarantee collision avoidance, although a less conservative approach was adopted 
later.  Reference [6] describes these contributions in greater detail and Quarterly Report 10 provides the 
convex version of the optimal control problem. 
 

b. MATLAB Simulation Results 
Toward Milestone 2.1.2, the MPC car following algorithm was simulated in 8-vehicle strings of closed-
loop agents led by one open-loop vehicle that followed the EPA US06 cycle.  Vehicles were pseudo-
randomly selected to be either connected and automated or unconnected and driven by simulated humans. 
Their hardware was similarly selected to be either a passenger car or Class 8 truck.  2224 simulation runs 
were executed to obtain the results shown in Figure 4.  Fuel economy was assessed using a Clemson static 
map-based powertrain model and later verified with Autonomie. Energy results in these early simulations 
were on track with Milestone 2.1.2, although the benefit was reduced in the presence of heavy vehicles that 
introduced their own smoothing effect. String space utilization is defined as the average distance from the 
lead vehicle’s front bumper to the trailing vehicle’s rear bumper. Conservatism in the worst-case constraints 
when CAVs followed unconnected vehicles caused the string to lengthen when only a few CAVs were 
added, but near 100% CAV concentration the strings became shorter than human-like ones. This result 
guided the later introduction of chance constraints to improve traffic throughput. 
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Figure 4:  String fuel economy and space utilization in the MATLAB drive cycle simulations.  Figure 
adapted from [6]. 

 
3) Mixed Integer Programming Lane Decision Algorithm (Milestone 2.1.2) 

In real-world environments, vehicles can sometimes pass one another to avoid disturbances, thereby saving 
energy. This section will describe the algorithms developed during this project for optimizing future lane 
change plans jointly with longitudinal acceleration. 
 

a. Base Algorithm 
Lane change optimization presents several challenges that were addressed as part of this project.  Especially 
in the presence of human drivers, the automatic controller should feature lane discipline, or the explicit rule 
of driving inside distinct lanes except during brief lane switching events.  It must also tackle the problem 
of non-convex drivable regions; a CAV can either drive in front of or behind an obstacle, for example. This 
renders a simple maximum position constraint like the one used in car following insufficient for lane change 
optimization. 
 
A typical lane change process is linearly approximated such that the time response of lateral position to a 
step change in lane command is 2nd order. The disjunction of driving upstream or downstream of an in-lane 
obstacle is handled using the Big M method, and binary indicator variables deactivate collision avoidance 
constraints when the CAV is outside the obstacle’s lane. Reference [8] (open access) provides the multilane 
model in state-space form along with the position constraints. 
 
Under these constraints, an objective is minimized to promote efficient and timely driving. Laterally, the 
objective minimizes tracking error relative to a fixed lane reference. The basic 2-lane implementation in 
[10] also penalized a weighted sum of squared acceleration and squared speed tracking error with a constant 
speed reference. As in car following, future intentions are shared between CAVs. Figure 5 shows an 
example trajectory where this controller plans to pass two obstacles. 
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Figure 5:  An optimal plan to pass two obstacles, shown in red.  Figure adapted from [10]. 

Early MATLAB simulations in [10] involved a group of 4 CAVs passing a slow-moving obstacle. 
Compared to a rule-based algorithm that changed lanes in reaction to a slowdown, the anticipative algorithm 
reduced fuel consumption by 8.4% and travel time by 6.2%. Moreover, this improvement accounted for 
80% of excess fuel relative to constant-speed operation as shown in Fig. 6. 

 

 

Figure 6:  Travel time and fuel consumption performance of the MPC-only multi-lane guidance algorithm.  
Figure adapted from [10]. 

b. Hierarchical Architecture 
A drawback of the pure-MPC design in Section 3-a is that the longitudinal part of the objective is not 
optimal for a whole trip or even a whole road link. Together with the expansion to roads with an arbitrary 
number of lanes, a supervisory planner was added to mitigate MPC’s short-sightedness. Using Pontryagin’s 
Minimum Principle, the parabolic velocity trajectory was analytically determined to minimize the square 
of acceleration over trip. In electric vehicles, it also minimizes cumulative energy consumption [11]. After 
solving for the parabola’s parameters from each step’s unique boundary conditions, the resulting state 
trajectory is passed to the MPC as a reference. The MPC objective is then modified by penalizing deviation 
from that reference. This hierarchical scheme is documented in detail in [12]. A sample group of MPC 
solutions are shown in the upper plot of Figure 7, where the lower plot compares the green vehicle’s 
acceleration command to its long-term reference. In this scenario, all vehicles are CAVs and so the 
surrounding vehicle’s future trajectories become constraints. 
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Figure 7: Optimal trajectories of several CAVs in a merging situation (above) and the green CAV's 
acceleration plan for the same time horizon (below).  Figure adapted from [12]. 

 
c. Collision Avoidance in Mixed Traffic 

In heterogeneous traffic where CAVs interact with unconnected vehicles, surrounding vehicle motion is 
predicted as described in Section 1-c. The chance constraint design was evaluated in the exceptionally 
hazardous scenario shown in Figure 8, where the CAV is shown in orange and its following vehicle does 
not detect it. Several variants of the design were compared in [8] (open access). 

 
Figure 8:  The scenario used to evaluate the chance constraints for unconnected surrounding traffic.  The 
CAV is in orange and unconnected vehicles are in gray. 

The chance-constrained controller was further evaluated for energy consumption in an arterial scenario with 
12 vehicles.  Either 0, 4, 8, or all 12 of them were CAVs and the others were controlled by a combination 
of a multi-lane rule based lane change algorithm and the Intelligent Driver Model [13].  When travel time 
was held constant, energy consumption steadily improved as shown in Figure 9 for a 16% benefit at 100% 
CAV concentration. 

 

 

Figure 9:  Energy improvements from optimal multi-lane guidance in a mixed traffic, arterial scenario. 
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4) Improving reliability of connected and automated vehicle (CAV) in urban/sub-urban 
environments (Milestone 2.1.1) 

a. Communication loss in connected vehicles  

In urban/suburban vehicular networks, significant radio signal attenuation might occur due to the distance, 
multipath signal fading, and shadowing, as distance between transmitter and receiver vehicles can vary and 
signals may move through obstacles, such as buildings, trees, long and tall vehicles (e.g., truck). 
Communication models that fail to consider realistic road topologies and obstacles may lead to inconsistent 
results. 

For computing the path loss at the receiver, we use the following generalized equation for receive power 
𝑃"#(𝑑) at the receiver, 

𝑃"#(𝑑) = 𝑃(# + 𝐺 − ∑	𝑃𝐿(𝑑)                (1) 

where, 𝑃"#(𝑑) is the calculated received power of receiver 𝑅𝑥, for distance 𝑑 from transmitter 𝑇𝑥; 𝐺 is the 
antenna gain. 𝑃𝐿(𝑑)  contains the path loss components of large-scale path loss and fading, and of 
deterministic obstacle shadowing, or of stochastic fast fading. 

The value of the path loss component 𝑃𝐿(𝑑) varies from one path loss model to another. We have studied 
a number of path loss models for measuring the path loss effect in semi-urban vehicular traffic. We found 
that different loss models have different impact on the network- and application-level reliabilites. In 
particular, the Random loss model has the lowest impact, Friis-Nakagami and long distance have the 
medium impact, and LOS/OLOS/NLOS (Line-of-sight/Obstructed-LOS/Non-LOS) model has the highest 
impact on the reliability performance. For instance, the network- and application-level reliabilities for 
LOS/OLOS/NLOS model are 30% and 60% for a moderate Tx-Rx distance. These are not satisfactory for 
safety-critical applications. 

Hence, the research question is how to improve both the network- and application-level reliabilities under 
a realistic path loss setting. To improve the reliability performance, we propose a feedbackless relaying 
mechanism which improves the reliability by 35% for LOS/OLOS/NLOS model and by 60% for a number 
of other studied loss models. 

b. Proposed feedbackless relaying technique for improving reliability  

For improving the PDR and T-window reliability, we have proposed a relaying mechanism on top of IEEE 
802.11p. With the help of a couple of relay vehicles, the overall network performance improves 
significantly.  

In our proposed relaying approach, the selection of a relay vehicle is done autonomously by the system. As 
there is no acknowledgement packet in DSRC based 802.11p, there is neither an RTS (Request to 
Send)/CTS (Clear to Send) packet nor an RTB (Request to Broadcast)/CTB (Clear to Broadcast) packet to 
send. But in our approach, the relay vehicle selection is done by a simple feedbackless yet effective method 
as discussed below. 
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Figure 10: The relaying procedure. 

 

Figure 11: Modified SAE J2735 DSRC BSM frame part I for relaying. 

All the connected vehicles are assumed to follow the rules of IEEE 802.11p transmission rules (Carrier 
Sense Multiple Access with Collision Avoidance (CSMA/CA)). However, for relay vehicle selection, we 
adopt a simple yet effective intelligent defer mechanism on the top of CSMA/CA. When a vehicle receives 
a BSM in its direction of motion, it will not forward the BSM immediately; rather, it waits for a 
ForwardDeferTime. ForwardDeferTime count down starts following a SIFS (Short Inter-frame Space) and 
it is done independently by each vehicle. While a sending vehicle	𝑉3 sends a packet, the ForwardDeferTime 
of a receiving vehicle 𝑉4 inside the communication range 𝑅 of 𝑉3 is computed by, 

𝐷𝑇3,4 = 7𝑀𝑎𝑥𝐷𝑒𝑓𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ×
C"DE×FG,HI

"
× 𝑆𝑙𝑜𝑡𝑇𝑖𝑚𝑒N                                           (2) 

where 0 < 𝛼 < 1 is a tuning parameter to give different defer times to vehicles by giving weight to 𝑑3,4. 
We set 𝛼 at 0.5. 𝑑3,4  is the Minimum Euclidean Distance between 𝑉3 and 𝑉4, which is computed by 𝑑3,4 =

STC𝑥3 − 𝑥4I
U + C𝑦3 − 𝑦4I

UW , where (𝑥3, 𝑦3)  and C𝑥4, 𝑦4I  are the location coordinates of 𝑉3  and 𝑉4 , 

respectively. MaxDeferCount is the maximum number of deferred SlotTimes (Typically 20 SlotTimes). A 
SlotTime is the duration of one slot, which is typically 9	𝜇𝑠. Eq. (2) is computed autonomously by each 
vehicle. With this computation, the furthest vehicle from the transmitting vehicle will get the shortest defer 
time, and the closest vehicle will get the longest defer time. 

A vehicle 𝑉4, after waiting for 𝐷𝑇3,4  time, turns around and senses the channel. If it finds the channel is free, 
it will set the RelayFlagBit, add the RelayVehicleID on the received BSM packet and rebroadcast after a 
SIFS time (which is typically 16	𝜇𝑠). On the contrary, if the vehicle finds the channel is busy, which means 
there is another vehicle further away that is responsible for relaying. Hence, it will discard its 
𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐷𝑒𝑓𝑒𝑟𝑇𝑖𝑚𝑒  and returns to the normal Tx/Rx mode. If a vehicle receives a BSM with 
RelayFlagBit bit set, it will not rebroadcast. In this way, we prevent from rebroadcasting the same packet 
multiple times. 
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If a message collision happens (two nodes get the same ForwardDeferTime, which is very unlikely), the 
collision is resolved by a random backoff procedure. The backoff period is chosen randomly from the range 
of [0, _(`ab

U
]. Note that, in this procedure, only the vehicles whose messages collided will participate. The 

𝐷𝑇d3e is computed by, 

 

𝐷𝑇d3e = f𝑀𝑎𝑥𝐷𝑒𝑓𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ×
(𝑅 − 𝛼 × 𝑅)

𝑅 × 𝑆𝑙𝑜𝑡𝑇𝑖𝑚𝑒g 

𝐷𝑇d3e = ⌊𝑀𝑎𝑥𝐷𝑒𝑓𝑒𝑟𝐶𝑜𝑢𝑛𝑡 × (1 − 𝛼) × 𝑆𝑙𝑜𝑡𝑇𝑖𝑚𝑒⌋                  (3) 

 

In the backoff stage, if the channel is sensed idle for SlotTime time period, the counter is decreased by one. 
The counter will be frozen if the channel is sensed busy. The counter will be resumed once the channel is 
sensed idle continuously for a SIFS time period. Finally, the packet will be sent as soon as the counter 
reaches zero. If the collision cannot be resolved by maximum 𝑅𝐸𝑇dk#	(< 7) times, the relay node selection 
is discarded with fallback to the normal periodic 802.11p based broadcast. The relay attempts start again at 
the next broadcast period. Figure 10 shows the sketch of the above described relaying procedure, and Figure 
11 shows the modified SAE J2735 DSRC BSM frame part I for relaying, where two additional fields, 
RelayVehicleID and RelayFlagBit are inserted. 

For relay node selection in the intersection case, the ForwardDeferTime computation (Eq. (2)) will be 
updated by the following, 

𝐷𝑇3,m = 7𝑀𝑎𝑥𝐷𝑒𝑓𝑒𝑟𝐶𝑜𝑢𝑛𝑡 × "
("DE×FG,n)

× 𝑆𝑙𝑜𝑡𝑇𝑖𝑚𝑒N                                           (4) 

where, 𝑑3,m is the Minimum Euclidean Distance between vehicle 𝑉3 and the intersection-center (𝑐). In Eq. 
(4), the vehicle closest to the intersection-center will get the minimum defer time and eventually will be 
selected as a relay node. The collision resolution backoff time (𝐷𝑇d3e    (Eq. 3)) will also be updated 
accordingly. 

c.  Simulation setup  

An integrated simulator is developed for the traffic and network micro simulation. The vehicular modeling 
is done using the microscopic traffic simulator PTV VISSIM, and network simulation is performed using 
ns-3. Table 1 shows the explicit parameters used for VISSIM and ns-3 simulations. Other than the explicit 
parameters, simulation is conducted under the simulators' default settings. 

 
 
 

 

 

 

Figure 12: Integrated micro simulator. Figure 13: VISSIM simulation test network with CU-ICAR 
neighborhood. 
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Table 1. ns-3 simulation settings. 

Figure 12 shows the integrated simulator, which 
consists of PTV VISSIM for traffic simulation, ns-
3 for discrete-event network simulation, and 
MTALAB. MATLAB scripting is used for setting 
up traffic parameters in VISSIM through VISSIM 
COM (Component Object Model) and setting real-
time communication with ns-3 and VISSIM through 
TCP/IP socket. The external car following and lane 
changing could be implemented in external driver 
model (EDM) through DLL (Dynamic Linked 
Library). 

 
The VISSIM COM (Component Object Model) 
interface through MATLAB scripting is used to 
initiate the desired test track network in VISSIM 
and send and receive traffic parameters/data in 
VISSIM-MATLAB interface. Through the TCP/IP 
socket API (Application Programming Interface) 
VISSIM is connected with the discrete-event 
network simulator ns-3 via MATLAB. Every 
simulation second (each 100 msec), MATLAB 
sends VISSIM vehicles' position information to ns-
3. Ns-3 uses waypoint-mobility-model to create and 
track the vehicle's position and speed. A number of 
propagation loss models are used to realize the 
communication loss among simulated vehicles. 
Based on the perceived loss, the feedback for 
suggested car following parameters can be sent to 
VISSIM through MATLAB, which could be 
realized by the simulated vehicles in VISSIM. The 
VISSIM test network is set with 1.3 km stretch CU-
ICAR neighborhood traffic road, consisting one 
roundabout, one car parking, and two intersections. 
The VISSIM test traffic network is shown in Figure 
13.  

 
d. Performance Analysis  

In this section, we study the impact of different loss models on the network-level and application-level 
performance metrics of connected vehicles in urban/sub-urban area. We study the performance of 
LOS/OLOS/NLOS loss model as a representative of empirical loss models and the Friis-Nakagami as a 
representative of joint deterministic and stochastic fading models. 

ns-3 
Parameter 

Value 

Number of 
vehicles 

100 

BSM size 200 bytes 

BSM rate 10 Hz 

Frequency 5.9 GHz 

Channel 
Bandwidth 

10 MHz 

Channel 
access 

802.11p OCB 

Data rate 6 Mbps 

TXP 23 dB 

Encoding OFDM 

Mobility 
model 

Waypoint 
Mobility (VISSIM 

vehicle position in every 
simulation sec) 

Receiver 
sensitivity 

-95 dBm 

Propagation 
delay model 

Constant Speed 
Propagation 

Propagation 
loss model 

Abstract, 
Random, Long distance, 

Friis-Nakagami loss 
models 
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1) Impact on PDR and T-window reliability 

Figure 14 exhibits the PDR and the T-window reliability performance under different loss models and no-
loss model with different T-window values for varying Tx-Rx communication ranges. As expected, no-loss 

model has the highest PDR and reliability with different values of T-window (Figure 14(a)). PDR only 
starts dropping from 100% when the Tx-Rx communication distance becomes higher than 600 m. The 
reliability value depends on the T-window value. A higher T-window value results in a higher reliability. 
When the Tx-Rx communication range equals 1000 m, the reliabilities of the no-loss model are 85%, 90% 
and 95% for T-window values equal to respectively, 0.3 sec, 0.5 sec, and 1 sec. However, PDRs and 
reliabilities are significantly lower with the Friis-Nakgami and LOS/OLOS/NLOS models under the 
increasing Tx-Rx communication ranges. With the moderate communication distance (300 m), PDRs of 
Friis-Nakagami and LOS/OLOS/NLOS models are around 50% and 30%, respectively. 

Figure 14: PDR and the T-window reliability performance under different loss models. 

The Friis-Nakgami model has moderate reliability, which is, over 70% with higher T-window values and 
around 60% with T-window=0.3 sec. The LOS/OLOS/NLOS model has the lowest reliability. With T-
window=1 sec, the reliability range is 70-80%, whereas, for T-window=0.5 sec and T-window=0.3 sec, 
these ranges are 55-65% and 40-55%, respectively. Hence, with a realistic loss model (such as 
LOS/OLOS/NLOS), for delay sensitive applications (lower T-window value), reliability is just over 50% 
for the communication ranges 100-600 m, which is definitely not a satisfactory performance. 

Figure 15 shows the PDR and reliability improvement through the proposed relaying technique. Figure 

15(a) shows that with the help of relaying, all the studied loss models improve PDR significantly. 
Depending on the loss model and the Tx-Rx communication distance, these improvements vary from 30% 
to over 90%. While with the relaying technique, PDR improvement ranges from 30% to 40% for 

Figure 15: PDR and reliability improvement through relaying. 
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LOS/OLOS/NLOS model under different Tx-Rx communication distance, this improvement is over 50%-
90% for the Friis-Nakagami model. 

For the reliability improvement, Figure 15(b) shows that with T-window equal to 0.3 sec, with the help of 
relaying, the Friis-Nakagami model achieves almost 100% reliability while the LOS/OLOS/NLOS model 
achieves around 70% reliability. This improvement is around 35% from their no-relaying reliability value. 
Nevertheless, with T-window=1 sec, LOS/OLOS/NLOS model also achieves almost 100% reliability even 
for the Tx-Rx communication distance over 800 m (Figure 15(c)). 

2) Impact on latency  

 

Figure 16: Latency for per received/expected packet. (a) Per received packet latency. (b) Expected per 
packet latency.  

Figure 16 shows the performance in terms of both per received packet and expected per packet latencies. 
Figure 16(a) shows the per received packet latency with and without relaying. Definitely, relaying increases 
the latency for both the path loss models. Without relaying, per received packet latency (PRPL) is as low 
as 2 msec.  With relaying, PRPL is at most 10 msec. However, interestingly, with relaying, PRPL of Friis-
Nakagami model is higher than that of LOS/OLOS/NLOS model. This is because Friis-Nakagami has more 
received packets (Figure 15(a)) than LOS/OLOS/NLOS model. Some late arriving received packets may 
contribute to higher average latency for Friis-Nakagami model, which could be explained considering the 
other latency metric, expected per packet latency (EPPL) as shown in Figure 16(b). In the EPPL calculation 
for a fair comparison between the path loss models, both the received packets and dropped packets have 
been considered. Hence, if a loss model has more dropped packets, it adds to its EPPL latency. Note that 
each dropped packet adds 100 msec latency in EPPL calculation (Packet generation interval is 100 msec). 
Accordingly, Figure 16(b) shows that the LOS/OLOS/NLOS model has a higher EPPL than Friis-Nakagami 
model. Interestingly, it shows that relaying results in a lower EPPL than the case without relaying for both 
loss models. This is because, relaying has two contradictory impacts on the EPPL. On the one hand relaying 
improves PDR (Figure 15(a)), which reduces the number of dropped packets, hence it impacts positively 
in reducing EPPL. On the other hand, relaying increases the PRPL for a received packet, which negatively 
impacts on reducing the EPPL. Hence, it seems the overall EPPL depends on which factor dominates. 
However, as a dropped packet contributes more latency (100 msec) than a received packet (which is less 
than 10 msec) in the EPPL calculation, one can conclude that relaying has an overall positive influence for 
reducing latency in EPPL calculation of a loss model. Nevertheless, the overall EPPL is less than 80 msec, 
which is less than the packet generation time (100 msec). 
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4) PTV Vissim Traffic Car-Following Microsimulations (Milestone 2.2.1) 

The car-following automated algorithm was accessed by conducting microsimulations in emergent traffic 
environments as created by VISSIM. This was done by creating a single-lane highway in VISSIM – based 
on a 4.0 km stretch of road near Greenville, SC, whereby the human-modeled drivers were tuned to replicate 
empirically measured time headways. Randomly mixed fleets of human-modeled and automated traffic 
were then initialized into the network and measured for energy and flow effects. Further details can be 
found in Quarterly Reports 6, 8, and 9, as well as in [7]. 

To accurately estimate the energy impacts of the MPC control, the finalized VISSIM microsimulations 
were processed in Autonomie, a state-of-the-art vehicle energy consumption model [19]. Vehicle models 
in Autonomie are Simulink-based and forward-looking, with a driver actuating virtual pedals to follow a 
drive cycle – speed as a function of time. An automated workflow was designed to load micro-simulation 
results (speed traces) and run large-scale Autonomie simulations using parallel computing in matter of few 
hours. The number of simulations can be scalable to 1 million. 

Three powertrain configurations were used: conventional engine-powered vehicle (CV), electric vehicle 
(EV) and hybrid-electric (HEV). The HEV is a one mode power-split hybrid, a configuration similar to the 
one featured on the Toyota Prius. Each vehicle is of a midsize SUV class, and the component power and 
mass were sized for each vehicle to meet similar performance requirements, such as 0-60 mph time or 
ability to climb grades. In addition, the EV was sized to reach a 200 all-electric mile range. Efficiency and 
power density assumptions are based on DOE technology assumptions for current (2019) vehicles [20]. 

Each {Volume, Penetration rate} scenario was simulated with each vehicle type in a homogenous fleet 
scenario (only one vehicle class and powertrain per scenario). Figure 17 shows the average energy 
consumption and average energy saving results of for the CV, as a function of penetration and volume. The 
average energy saving figure uses the energy consumption at 0% penetration for the same volume as a 
reference. 

Higher penetration rates of the MPC control brings greater energy savings for the entire fleet. For example, 
50% and 100% penetration in the high-volume scenario yields resp. 15 and 27% energy savings compared 
to the scenario with no MPC at all. It should also be noted that the savings are greater at higher volumes 
for a given penetration. This is because greater speed oscillations and more braking events occur when there 

Figure 17: CV fuel consumption and fleet fuel efficiency improvements over the 0% CAV case at each input 
vehicle volume/hour. 
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are more vehicles on the road, and as a result the baseline average energy consumption at high volume is 
higher than at low. 

Energy saving trends are similar for the EV and HEV, as shown in Figure 18, but the magnitude is lower. 
The main reason behind this difference is regenerative braking: even in the most congested scenarios at 0% 
penetration, little friction braking is done for both the BEV and the HEV, and a large share of the braking 
energy is recovered by the battery instead, which it can then use for propulsion. In fact, much of the saving 
potential of hybridization is already achieved at 0% penetration: the HEV already consumes between 25% 
and 35% less fuel compared to the conventional at 0% penetration rates. 

Finally, the effects of the automated vehicles on the surrounding traffic can be observed. We examine the 
traffic smoothening capabilities of the car following controller. Cell density plots are shown in Figure 19, 
in which shockwaves are depicted by high density regions of vehicles propagating backwards through the 
network over time – in the 0% case, shockwaves are present, but in the 30% case the shockwaves are 
dissipated.  

 

 

Figure 18:  Fleet fuel efficiency improvements over the 0% CAV case at each input vehicle 
volume/hour for the EVs (left) and HEVs (right). 

Figure 19: Cell density plots showing dense groups of vehicles in the network at 0%, 30% CAV 
penetration. With the introduction of CAVs, shockwave effects were dissipated. 
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5) Non-Linear Programming Lane Decision Algorithm (Milestone 2.1.1) 
a. Framework Overview 

A mixed-integer quadratic 
programming approach to lane decision 
algorithm was presented in Section 3. 
Another student developed a nonlinear 
programming approach that got 
implemented in VISSIM 
microsimulations and is ready to be 
deployed on the experimental vehicles. 
This section summarizes this alternative 
formulation and implementation. 
Before discussing the control algorithm 
and framework, we will introduce some 
terminology and present a sample 
traffic topology (20). The mixed traffic 
consists of connected and automated vehicles (CAVs), as well as, human driven vehicles (HDVs). From 
the perspective of a given CAV 𝑐3 there are three different sets of vehicles, 𝒞3 the set of all CAVs 𝑐q (𝑝 ≠
𝑖) communicating with CAV 𝑐3, ℱ3 the set of all object vehicles (OV) 𝑜𝑣v  (both CAVs and HDVs) in the 
field of view (FOV) of CAV 𝑐3, and ℰ3 = 𝒞3 ∪ ℱ3 the extended neighborhood of CAV 𝑐3. 

The control framework consists of four 
components, the object vehicle state prediction 
(OVSP) block, the reference speed assigner (RSA) 
block, the distributed model predictive control 
(DMPC) block, and the lower level vehicle motion 
dynamics block [4, 15, 16]. The control framework 
is outlined in Figure 21 and described in the 
following paragraphs. 

At each time step, CAV 𝑐3  obtains a set of 
measurements y𝑧v{ℱG containing information about 
each 𝑜𝑣v ∈ ℱ3 , as well as a set of shared 
information matrices y𝐰q{𝒞G  containing shared 
information from each CAV 𝑐q ∈ 𝒞3 . This 
information is used by the OVSP block to obtain the 
set of state trajectories y𝐱4{ℰG  containing a predicted 
state trajectory for each 𝑜𝑣4 ∈ ℰ3 . To predict the 
state trajectories of HDVs decoupled longitudinal 
and lateral linear prediction models and a Kalman filter are used [15, 16]. For CAVs, the information matrix 
𝐰q shared by each CAV 𝑐q is assumed to contain the prior time step predicted plan, which is synchronized 
with CAV 𝑐3’s current planning time step via the methods in [15, 16]. The predicted state trajectories are 
then passed to the RSA block. 

We implement two methods of reference speed assignment. The first method, rule-based speed assignment 
(RBSA), utilizes the predicted state trajectories of OVs, the current measurement 𝑧3 about CAV 𝑐3, the prior 
time step predicted optimal state trajectory 𝐱3, and a set of rules to assign the reference speed 𝑣� of a given 
lane 𝑙 in the set of lanes ℒ based on the speed of CAV 𝑐3’s immediate neighbors [4, 15]. The second method, 
harmonization-based speed assignment (HSA), utilizes the estimated current speed of vehicles in ℱ3 and 

 

Figure 21: Block diagram of the optimal lane 
selection NLP distributed MPC framework 

 
Figure 20: Sample traffic topology, where 𝒞� = {𝑐U, 𝑐�}, ℱ� =
{𝑜𝑣�, 𝑜𝑣�, 𝑐U, 𝑜𝑣U, 𝑜𝑣�}, and ℰ� = {𝑜𝑣�, 𝑜𝑣�, 𝑐U, 𝑜𝑣U, 𝑜𝑣�, 𝑐�}. 
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shared information to assign 𝑣�,3 based on the average speed of vehicles in the given lane 𝑙 [4, 16]. After 
assigning a reference speed to each lane 𝑙, the RSA block (using either method) then assigns the vehicles 
own desired speed 𝑣F,3 = argmin

��
(𝑣�,3 − 𝑣F�,3), where 𝑣F�,3 is the base desired velocity of CAV 𝑐3 assigned 

by a higher level route planner. 

The DMPC block then takes as input the predicted state trajectories of each 𝑜𝑣4 ∈ ℰ3 , the set of lane 
reference speeds y𝑣�,3{ℒ and desired speeds 𝐯F,3, and the current measurement 𝑧3 about CAV 𝑐3 to optimize 
a state trajectory over the prediction horizon. The cost function consists of four major components: the lane-
dependent cost weighs the costs for tracking each lane; the lane-independent cost penalizes deviations from 
CAV 𝑐3’s egoistic objectives; the predictability cost penalizes deviations from the prior plan; and the input 
cost promotes smooth and comfortable control decisions [4, 15, 16]. For our specific implementation, a 
path intrinsic particle motion model is used for planning along with elliptical OV avoidance constraints. 
For a complete overview of constraints please see [16] and [17]. The control inputs from the first time-step 
are then passed to the lower level vehicle motion dynamics block and applied, while the planning process 
is repeated. 

b. Results – Reference Speed Assigner Comparison 

The simulated traffic network is 
comprised of a 5000m long 
straight three-lane link, with a 
single input node and single output 
node as shown in Figure 22. The 
input node is located on the left 
with the direction of travel to the 
right. For the first 30m of the link, 
vehicles are restricted from 
changing lanes, in order to prevent 
a vehicle from moving directly 
into the path of a neighboring 
vehicle that has not yet entered the 
network. The desired velocities of vehicles were distributed using the default speed distribution in VISSIM 
with a mean of approximately 87 km/hr.  

Simulations were run for 30 minutes of simulation time with CAV penetration rates from 0 to 100% 
increasing in 10% increments and at low (𝑄� = 2000 veh/hr), medium (𝑄� = 4000 veh/hr), and high (𝑄� = 
6000 veh/hr) traffic demands. The network starts the simulation empty, therefore, for evaluation purposes 
we omit the time from the start of the simulation until the number of vehicles on the network reaches 90% 
of the maximum observed number of vehicles on the network. We will refer to the remaining simulation 
time as the evaluation duration. Human driven vehicles (HDVs) are assumed to follow the Wiedemann-99 
psycho-spacing car-following model, and the default rule-based lane selection (RBLS) algorithm of 
VISSIM, which was originally developed by Spurmann [18]. For all future discussions, the baseline 
scenario will be 0% CAV penetration at the respective traffic demand with ALL vehicles being HDVs. 

We define the percent reduction in fuel consumption 𝐹𝐶% as follows [4, 16]: 

𝐹𝐶% = 100 �1 −
𝐹𝐶
𝐹𝐶�

�, 

where 𝐹𝐶  is the average fuel consumption rate for the given scenario, and 𝐹𝐶�  is the average fuel 
consumption rate for the associated baseline scenario. As the average velocity from scenario to scenario 
changes, we will also introduce the travel time adjusted percent reduction in fuel consumption 𝐴𝐹𝐶%: 

 
Figure 22: VISSIM traffic network. 
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𝐴𝐹𝐶% = 𝐹𝐶%− 100 �
𝑅𝐹𝐶 − 𝑅𝐹𝐶�

𝐹𝐶�
�, 

where 𝑅𝐹𝐶  and 	𝑅𝐹𝐶�  are the fuel consumption rates required to maintain a constant velocity at the 
observed average velocity for the given scenario and the baseline scenario, respectively. 

The percent reduction in fuel 
consumption results for simulations 
with CAVs utilizing either RBSA or 
HSA are presented in Figure 23 [4]. 
It can be seen in Figure 23 that at 
low and medium traffic demand the 
fuel consumption performances of 
the NLP lane decision algorithm for 
both the RBSA and HSA cases are 
comparable. On the other hand, at 
low penetrations and high traffic 
demand there is a significant 
difference between the RBSA case 
and the HSA case, with the HSA 
method outperforming the RBSA 
approach by around 6%. The fuel 
consumption performance of the two approaches converges as the CAV penetration is increased, with both 
approaches consuming fuel at a rate around 32% lower than the baseline scenario when adjusting for travel 
time. 

Figure 24 presents the travel time 
results, where the percent reduction 
in travel time is calculated in a similar 
manner to 𝐹𝐶% [4]. At medium 𝑄� 
and high 𝑄�  traffic demands, the 
HSA approach results in a significant 
improvement over the RBSA 
approach. At medium traffic demand 
and penetrations over 70% CAVs, the 
HSA approach is able to reduce travel 
time significantly compared to the 
baseline (1 to 4.5% reduction), 
whereas the RBSA approach 
marginally increases the travel time 
compared to the baseline (appx. -1% 
reduction). At high traffic demand 
and all CAV penetrations the HSA 

approach is able to realize a 2 to 7% reduction in travel time compared to the baseline scenario, whereas 
the RBSA approach results in a 1 to 9% degradation in travel time performance at penetrations below 90%. 
At 90% CAV penetration and above the RBSA case is able to reduce the travel time by 1 to 5%. The HSA 
case results in a 5% to 15% improvement in travel time reduction compared to the RBSA method at high 
traffic demand.  

The difference in performance between the two methods is a result of the underlying goal of either RSA 
method. The HSA attempts to track the average speed of neighboring traffic, while the RBSA attempts to 
track the velocity extremes of neighboring vehicles. Due to the way the rules in the RBSA are designed, 

 

Figure 23: Percent reduction in fuel consumption of the entire fleet 
(CAVs and HDVs) compared to 0% CAV penetration at low, 
medium, and high traffic demands, for both the RBSA and HSA 
cases. 

 

 

Figure 24: Percent reduction in travel time of the entire fleet (CAVs 
and HDVs) compared to 0% CAV penetration at low, medium, and 
high traffic demands for both the RBSA and HSA cases. 
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this results in tracking the lower extreme in dense traffic. Therefore, at low to moderate CAV penetrations 
(10 to 60% CAVs), when HDVs cause a significant number of braking disturbances, this results in slower 
moving traffic. However, RBSA CAVs do have smoother control actions than HDVs, therefore once a 
critical CAV penetration is obtained (60% CAVs), the smoothing effect of CAVs is more prominent and 
the travel time performance begins to improve. 

c. Results – Impacts of Optimal Lane Selection 

In order to isolate what portion of these benefits are due to optimal lane selection, we compared the 
proposed 2D maneuver planning non-linear program (NLP) based distributed MPC (DMPC) framework to 
a longitudinal DMPC with VISSIMs internal rule-based lane selection (RBLS) for lateral control. To 
clarify, the same basic formulation for both DMPCs is utilized, however, for the RBLS DMPC only the 
desired acceleration (𝑎F) is applied. For lateral control and lane selection, the RBLS DMPC CAV applies 
the desired lane angle (𝜓F) calculated by VISSIMs internal rule-based algorithm. Further, the reference 
speed assigner was modified for the RBLS DMPC such that: 

𝑣� = �𝜇̂� if	CAV	𝑐3	occupies	lane	𝑙	or	a	signal	is	obtained	that	CAV	𝑐3	is	changing	to	lane	𝑙
𝜖 otherwise ,  

where 𝑣� is the lane reference speed, 𝜇̂� is the estimated average speed of traffic in lane 𝑙, and 𝜖 is a small 
number. As the primary differentiator between the two DMPC versions is the lane selection algorithm, we 
will refer to the proposed DMPC version as optimal lane selection (OLS) DMPC, and the reference DMPC 
with rule-based lane selection as RBLS DMPC. 

We begin by analyzing the travel 
time results presented in Figure 
25 [16]. At low traffic demand 
and all CAV penetrations, as well 
as, at medium traffic demand and 
low to moderate CAV 
penetrations (<75%), the RBLS 
and OLS DMPC versions match 
the travel time performance of the 
baseline (0%) scenario. At high 
CAV penetrations (>75%), both 
DMPC versions reduce the 
average travel time of traffic, with 
the OLS version marginally 
outperforming the RBLS version. 
At high traffic demand, the OLS 
DMPC version significantly outperforms 
the baseline and RBLS version at all CAV penetrations. Conversely, the RBLS framework only 
outperforms the baseline at moderate to higher CAV penetrations (≥25%). We will next investigate the fuel 
consumption implications of the two DMPC versions. Figure 26 presents the 𝐹𝐶% and 𝐴𝐹𝐶% for both 
DMPC versions as a function of CAV penetration at the three traffic demands 𝑄�, 𝑄�, and 𝑄� [16]. In 
general, there is not a significant difference in the fuel consumption rate of the RBLS and OLS versions. 
The largest observed difference is at a traffic demand of 𝑄� and 25% CAV penetration, where the OLS 
DMPC version improves 𝐹𝐶% by almost 3% more than the RBLS version and 𝐴𝐹𝐶% by almost 4%. As 
penetration increases, at high traffic demand 𝑄�, the performance of the two DMPC versions converges. 
The reason the OLS DMPC does not improve 𝐹𝐶%  and 𝐴𝐹𝐶%  significantly compared to the RBLS 
DMPC, is that there is minimal room for improvement. In both cases, the goal of the controller is to track 
reference speeds while minimizing accelerations, therefore, based on the reference speed assigner, the 

 

Figure 25: Average travel time of the entire fleet (CAVs and 
HDVs) at low, medium, and high traffic demands, for both the 
RBLS and OLS DMPC versions. 

 

Figure 26: Percent reduction in fuel consumption of the entire fleet 
(CAVs and HDVs) compared to 0% CAV penetration at low, medium, 
and high traffic demands, for both the RBLS and OLS DMPC versions. 
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optimal solution without disturbances would result in the 𝑅𝐹𝐶. To illustrate this, we define Δ𝑅𝐹𝐶%, the 
percentage difference of the observed fuel consumption rate to the required fuel consumption rate, as: 

Δ𝑅𝐹𝐶% =
𝐹𝐶 − 𝑅𝐹𝐶

𝐹𝐶�
 

We present the fuel consumption rate and 
Δ𝑅𝐹𝐶% results for 𝑄� as an example in 
Figure 27 [16]. This figure separates the 
average fuel consumption into different 
subsets of the vehicle population, 
specifically, the entire mixed fleet (both 
CAVs and HDVs) in Figure 27(a), only 
the HDV population in Figure 27(b), and 
only the CAV population in Figure 27(c). 
When referencing the CAV population in 
Figure 27(c), it can be seen that for both 
DMPC versions there is a negligible 
difference between RFC and FC above 
50% CAV penetration. At CAV 
penetrations below 50%, the RBLS 
version actually results in marginally 
reduced 𝐹𝐶  for CAVs than the OLS 
framework. However, as seen in Figure 
27(b), the OLS version results in a 
reduction in fuel consumption of HDVs, 
which make up the majority of traffic, 
compared to the RBLS version. This 
results in a marginal reduction in fuel 
consumption of the entire mixed fleet 
(see Figure 27(a)) for the OLS 
framework compared to the RBLS 
framework at CAV penetrations below 

50%. 

6. Collaborative Guidance (Milestone 2.3.1) 
While the algorithms described in Sections 2 and 3 shared information between CAVs, they were fully 
decentralized in their fleet solutions; that is, they consider the surrounding CAVs’ trajectories as fixed and 
optimize their own objectives.  In the collaborative guidance stipulated in Milestone 2.3.1, each vehicle 
acts to improve the group’s objective via additional information exchange.  Section 6-a reviews 
collaboration in a single lane and Section 6-b deals with a different approach for multi-lane collaborative 
guidance.  In both cases, centralized optimization is used as a high-performing benchmark. 

 
a. Collaborative Single Lane Guidance 

The single-lane collaborative algorithm begins as a special case of the hierarchical system of Section 6-b.  
It is thus an eco-driving controller rather than a car-following controller; its objective does not track a gap 
relative to the PV but instead minimizes the energy consumed by the electric powertrain over the trip.  First, 
each CAV in the string computes its parabolic reference speed trajectory.  This trajectory is then 
communicated to neighboring vehicles.  Finally, each vehicle solves a group optimization considering its 
immediate neighbors and applies only its own control input.  In this way, the CAVs attempt to reduce not 
only their own energy consumption but also those of nearby vehicles.  Reference [3] and Quarterly Report 
9 describe this algorithm along with other approaches that were compared in MATLAB simulations. 

 

Figure 27: 𝐹𝐶 and 𝛥𝑅𝐹𝐶% of (a) the entire fleet (CAVs and 
HDVs) (b) human driven vehicles (HDVs), and (c) connected 
and automated vehicles (CAVs) at low, medium, and high 
traffic demands, for both the RBLS and OLS DMPC versions. 
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8-vehicle CAV strings following a lead vehicle were simulated, where the leader adhered to the WLTC 
High or Low cycle.  The WLTC Low results are shown in Figure 28.  The classical and reactive adaptive 
cruise control (ACC) exhibited a tradeoff between total energy and string length depending on its time 
headway setting.  The position constrained shrinking horizon controller (PCSHC) used a constant 
acceleration assumption for the PV to analytically determine the optimal control.  While it smoothed the 
first CAV’s trajectory, it was string unstable and consumed more energy over the string compared to the 
hierarchical optimal control algorithms.  DHC denotes the decentralized approach described in Section 6-
b, applied to a single lane.  In Centralized Hierarchical Control (CHC) the receding horizon part of the 
problem was solved as a single optimization for all agents, which followed that optimization’s result 
exactly.  Cooperative Hierarchical Control (CoHC) is the distributed approach discussed previously.  It 
delivered nearly as low energy consumption as CHC and resulted in the lowest string length of the 
algorithms tested.  In a single lane, the chief benefit of collaboration was in string length rather than energy 
consumption.  Reference [3] provides additional results, including those obtained using the WLTC High 
cycle. 
  

 

Figure 28:  The string length and total EV energy consumption of several eco-driving algorithms in an 8-
vehicle, drive cycle-based MATLAB simulation. 

b. Collaborative Multi-Lane Guidance 
The optimization in multi-lane situations is more complex.  Therefore, a different collaboration approach 
was developed in [1] that only solves for a single CAV’s control move per optimal control problem.  
Noticing that the decentralized algorithm’s group solution depends on the order in which the vehicles 
compute their trajectories, the Prioritized algorithm dynamically seeks better orderings to improve the 
group objective.  Each CAV first solves a nominal problem in which all other CAVs are assumed to yield 
to it.  The norms of these problems’ gradients at optimality are then used to measure each CAV’s sensitivity 
to additional collision avoidance constraints.  More sensitive vehicles are then prioritized such that less-
sensitive agents yield to more sensitive ones.  Centralized navigation was also implemented, although its 
computation time would make it impractical for real time implementation. 
 
The simulation scenario required 3 CAVs to navigate around an obstacle as shown in Figure 29.  This 
emphasizes the role of collaboration since the agents must adjust their speeds and resolve conflicts to reach 
their goals.  The distributed Prioritized controller reduced energy consumption by 6.7% relative to the 
decentralized baseline, while the less practical centralized approach reduced energy use by 8.6% as shown 
in Figure 30.  Further research on this topic is needed to determine the extent to which these energy 
improvements apply in other scenarios.  It is likely that collaboration is especially critical in denser traffic 
and bottlenecks like the one examined here. 
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Figure 29:  The scenario used to evaluate the collaborative multi-lane algorithm. 

 

Figure 30: Energy consumption improvement from distributed collaboration and centralized guidance. 

7) Experimental Vehicle Instrumentation 

To accomplish the goal of this project, the test vehicles required pedal and steering actuators to command 
the vehicle autonomously, and low-level controllers to convert the motion commands from the high-level 
controller to pedal and steering wheel operations.  

7.1 Vehicle Instrumentation 
Testing in this project consisted of one 
electric vehicle (Nissan Leaf) and one 
gasoline engine vehicle (Mazda CX-7). Both 
vehicles were not equipped with automated 
driving capabilities from the manufacturer, 
so they were modified to execute the 
commands from the high-level controller 
autonomously. The modifications include 
adding necessary sensors, actuators, and 
designing control algorithms. The 
relationship between the sensors, actuators 
and controls in the low-level controller is 
shown in Figure 31.  

The pedal and steering wheel actuators were 
specially designed. They share a similar 
design for both vehicles. Figure 32 left shows 
the structure of the pedal actuator. The actuator 
was designed to only push either the accelerator 
or brake pedal, and so features a release 
mechanism which releases the engaged pedal 
before actuation switches to the other. This is 
accomplished through levers 2 and 3, which 
have different rotation directions: lever 2 is 
attached to the output shaft of electric motor 1, 
whereas lever 3 is attached to another shaft that 

 

Figure 31: Structure of low-level controller. 

Figure 32: Specially designed actuators for pedal 
and steering wheel. 
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is parallel to and connected to the motor shaft via gear drive 4. A lever can push down the corresponding 
pedal by applying force on a small cylinder that is protruding from the side of the pedal, but the lever itself 
is not rigidly fixed to the pedal. Thus, when lever 2 rotates down, the brake pedal is pressed, and the 
accelerator pedal is released - and vice versa. Figure 32 right shows the structure of the steering wheel 
actuator. The electric motors 5 drives the gear ring 6 that is mounted behind the steering wheel so that the 
steering wheel can be rotated. The instrumented vehicles with the actuators and sensors are shown in Figure 
33.  

 

Figure 33: Instrumented test vehicles. 

7.2 Low-Level Longitudinal Controller Design 
Longitudinal control of the vehicle is achieved by directly controlling the brake and accelerator pedals. 
However, the dynamics from pedals to vehicle motion is highly non-linear due to the existence of internal 
combustion engine and transmission or batteries, and the calibration map of the engine, transmission or the 
battery is not available from the factory. Those factors make the implementation of solely a traditional 
controller or a data-driven artificial neural network (ANN) controller difficult. Thus, the two approaches 
are fused to combine a data-driven feedforward controller with a classical PID feedback controller to solve 
the speed and acceleration tracking problem. 

A Pure Pursuit controller was implemented for the experimental vehicles to track the designated path of the 
test track. The steering input 𝜓 to the vehicle is computed with the location of the target point 𝑙F and the 
angle 𝛼 between the vehicle's heading direction and the look-ahead direction 

𝜓 = 𝑘 ∙ 𝑡𝑎𝑛D� �
2𝐿𝑠𝑖𝑛𝛼
𝑙F

� 

where 𝑙F is the look ahead distance given by 

𝑙F = 𝑙Fd3e + 𝑘�𝑣 

where 𝑘� and 𝑙Fd3e are tunable gain and minimum look-ahead distance parameters.  

7.3 Low-Level Longitudinal Controller Performance 
Both experimental vehicles were calibrated to follow a short square-wave speed profile while driving on a 
rough road with notable grade. A dynamic target generator was created based on the IDM, which calculates 
desired speed and desired acceleration from the speed profile. 

𝑎F = 𝑎² ³1 − �
𝑣
𝑣²
�
�
´ 

𝑣F = 𝑣 + 𝑎F∆𝑡 
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Here, 𝑎² = ±2.0𝑚/𝑠U  is the maximum acceleration, and 𝑣²  is the target speed from the square-wave-
shaped profile. The PID controllers were tuned to reject the road disturbance without notable overshoot. 

 

Figure 34: Nissan Leaf speed profile tracking performance. 

 

Figure 35: Mazda CX-7 speed profile tracking performance.  

The result is shown in Figures 34 and 35. The combined controller showed fast response and small tracking 
error. The steady state speed tracking error was ±0.06𝑚/𝑠 for both vehicles. The acceleration tracking was 
also accurate, where the performance envelope shows that the acceleration tracking was acceptable over 
the entire domain of velocity.  

The calibrated controllers on both vehicles were combined with a high-level IDM controller to test their 
performance under a more comprehensive car following scenario. The physical vehicle followed a virtual 
vehicle that tracked US06 drive cycle in this test. This test was conducted on the test track as introduced in 
Section 9. The result is shown in Figures 36 and 37. 

In the figures, the black solid curves show the speed and acceleration of the ego vehicle obtained from a 
simulation. The simulation utilized a simple kinematic model to calculate the motion of the ego vehicle in 

 
Figure 36: Nissan Leaf car following performance. 
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ideal environment. Thus, the closer the actual curve is to the desired curve, the better performance the 
controller can offer. The figures show that the actual speed and acceleration curves are almost overlapped 
with the desired ones, which indicates a satisfactory controller performance. In this test, the average 
absolute acceleration tracking error was smaller than 0.2	𝑚/𝑠U for both vehicles. 

8) Vehicle-in-the-Loop Experiments (Milestones 3.1.1, 3.1.2, 3.2.1) 
Vehicle-in-the-loop (VIL) is our proposed automated driving virtual simulation in which a physical vehicle 
(ego) is embedded into a traffic scenario with the goal of evaluating performance of such cyber-physical 
systems in a realistic manner without compromising safety. This aspect is one of the novel contributions of 
the project that has broader impact in testing automated vehicles. Driver perspective is depicted in Figure 
38. The vehicle positions are mapped directly to the simulation environment to embed it in simulation in 
real-time by communicating its (x, y, v, θ) tuple. The results are summarized below, and more complete 
details can be found in Quarterly Report 10, as well as [14]. 
To accommodate for safety considerations on the test track due to road geometry, speed limits and U-turns 
were imposed. To impose in vehicle guidance, first recall particle kinematic equations of constant 
acceleration, 

 ) (11) 

where ac = −2.0m/s2 is chosen as a comfortable deceleration to reach the U-turn velocity from straight-away 
velocity. The quantity δs then describes the distance away from the U-turn speed limit 𝑣̅1 needed to slow 
down from straight-away speed limit 𝑣̅0. 

      (12) 

 

Figure 38: Visualization of the vehicle-in-the-loop environment from the driver perspective in both 
simulation and reality. The physical vehicle is embedded into a virtual environment and interacts with 
virtual drivers. 

 

 
Figure 37: Mazda CX-7 car following performance. 
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For the WIE and IDM controllers, switching control can then be applied when within δs as 

 u+ = min{u, ac} (13) 

where u is the control of the WIE or IDM continuous model, and u+ is the control command to apply when 
approaching the U-turns. This logic limits the control to only engage in the most conservative acceleration 
that occurs due to either car-following or velocity maintenance. 

For the MPC, a constraint limits maximum velocity for each optimization stage. This poses challenges 
because the MPC optimization horizon is a function of time, whereas speed limit transitions are a function 
of distance instead. 

An approximation is made to convert the velocity constraint to a function of time using an estimate of the 
ego’s speed trajectory. In this case, a constant velocity is assumed in the speed estimate 𝑣º(i) = v, i = 0, ..., 
N. The position estimate then follows as 𝑠̃(i+1) = 𝑠̃(i)+𝑣º(i)∆th. Combining with Eqns. (11, 12), the following 
can then be used to define the MPC moving velocity constraint with sl describing the current distance from 
the speed limit. 

  (14) 

Similar approaches can follow for the moving velocity constraint when approaching a higher velocity speed 
zone. 

A PTV VISSIM microsimulation environment was set up, which comprised of a single-lane circuit of 74 
vehicles. The VISSIM human-driver model controlled all simulated vehicles, with the exception of the 
MPC-C scenario, in which a string of 5 simulated CAVs plus the ego CAV were controlled by the MPC. 
The EPA US06 and EPA UDDS drive cycles were also used to set the velocity profile of the PV, where the 
velocity trajectories of the cycles were scaled down by 40% and 15%, respectively, because of the speed 
limits at the test track (please see Figure 41). 

Energy estimation was accomplished using calibrated mass-airflow and battery sensors for the combustion 
engine Mazda and the electric vehicle Nissan. 

The results for the VIL experiments with the 3 simulation variants are given for the two vehicles. Here, the 
high-level controller types of Wiedemann 99 (WIE), Intelligent Driver Model (IDM), Unconnected MPC 
(MPC-U), and Connected MPC (MPC-C) were examined for both their flow and energy impacts.  

Table 2: Mazda-combustion microsimulated experi-   Table 3: Nissan-electric microsimulated experi- 
mental controller performance           mental controller performance 

 
 WIE IDM MPC-U MPC-C 

Travel Time 24’ 01” 
23’ 45” 
-1.1% 

24’ 00” 
-0% 

23’ 34” 
-1.9% 

Avg. Headway [s] 3.47 5.73 
+65.1% 

3.32 
-4.3% 

2.75  
-20.7% 

Avg. Gap [m] 28 59  
+111% 

37 
+32% 

28  
+25% 

Max. Gap [m] 83 144  
+73% 

112  
+35% 

74  
-11% 

Net Fuel [L] 2.556 2.174  
-15% 

2.241 
-12% 

1.978 
-24% 

 

 
 WIE IDM MPC-U MPC-C 

Travel Time 23’ 49” 
23’ 49” 
-0% 

23’ 40” 
-0.9% 

23’ 36” 
-1.9% 

Avg. Headway [s] 3.96 5.81  
+46.7% 

2.93 
-26.0% 

2.82 
-28.8% 

Avg. Gap [m] 27 62  
+130% 

31 
+16% 

32 
+21% 

Max. Gap [m] 76 151  
+99% 

96 
+26% 

82  
+8% 

Net Energy [kwh] 4.090 3.730  
-8.8% 

3.766 
-7.9% 

3.247 
-20.6% 
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The MPC offered energy efficiency improvements over the WIE human-like driver for both vehicles. MPC-
U reduced energy usage by 12% and 8% for the Mazda and Nissan, whereas MPC-C reduced energy usage 
by 23% and 21%. Additionally, it did not sacrifice realized time headway, unlike the IDM cruise controller. 

Figures 39, 40 depict the position trajectories of each vehicle over time. One can observe stop-and-go 
behavior by the ripples in the position trajectories, which is detrimental to the energy economy of the fleet 
of vehicles. As opposed to the WIE scenario, the CAV string attenuated disturbances of the traffic and 
subsequently smoothed the driving of the vehicles behind. It was found that the MPC-C scenario improved 
fuel usage by 4.5% on average, the MPC-U scenario improved fuel usage by 0.4% on average, and the IDM 
worsened their fuel usage by 0.9%. By this, automated vehicles and connectivity have the potential to 
provide secondary benefits for improving the energy usage of neighboring traffic. 

Likewise, for the US06, the MPC showed significantly improved energy economy over the WIE human-
like driver. Overall, the MPC improved the Mazda energy performance by 26% and 32% in the unconnected 
and connected variants, while the MPC improved the Nissan energy performance by 17% and 25% for the 
unconnected and connected variants. 

 

Figure 39: WIE position trajectories over time for 
the virtual human traffic (blue) and ego vehicle 
(red) for lap 5. 

Figure 40: MPC-C position trajectories over time 
for the virtual human drivers (blue) and the MPC 
connected string (red) for lap 5. The ego is the 
backmost MPC vehicle. 

 

The UDDS saw markedly improved energy economy as well. Overall, the MPC improved the Mazda energy 
performance by 14% and 24% in the unconnected and connected variants, while the MPC improved the 
Nissan energy performance by 25% and 34% in the unconnected and connected variants. 

 

  (a) US06 velocity profile                                (b) UDDS velocity profile 

Figure 41: Modified EPA drive cycle experimental velocity profiles used for the PV. 

1 , 100 1 , 200 1 , 300 1 , 400 1 , 500 0 

1 

2 

3 

Time[s] 

Po
sit

io
n[

km
] 

1 , 100 1 , 200 1 , 300 1 , 400 1 , 500 0 

1 

2 

3 

Time[s] 

Po
sit

io
n[

km
] 



 35 

Table 3: Mazda-combustion: US06 controller                  Table 4: Nissan-electric: US06 performance1 
performance  

 
 WIE IDM MPC-U MPC-C 

Travel Time 9’ 20” 
9’ 33” 
+2.3% 

9’ 20” 
0% 

9’ 26” 
+1.1% 

Avg. Headway [s] 2.45 6.23 
+154.3% 

2.64  
+7.8% 

2.66 
+8.6% 

Avg. Gap [m] 23 35  
+52% 

26  
+13% 

23 
0% 

Max. Gap [m] 40 93  
+133% 

77  
+93% 

88 
+120% 

Net Fuel [L] 1.006 0.840  
-17% 

0.746 
-26% 

0.684 
-32% 

 

 
 WIE IDM MPC-U MPC-C 

Travel Time 8’ 39” 
8’ 39”  
0% 

8’ 38” 
0% 

8’ 39” 
0% 

Avg. Headway [s] 2.14 5.80 
+171.0% 

2.76 
+29.0% 

2.58 
+20.6% 

Avg. Gap [m] 24 38  
+58% 

28  
+17% 

25 
+4% 

Max. Gap [m] 42 92  
+119% 

78  
+86% 

82  
+95% 

Net Energy [kwh] 1.286 1.230  
-4% 

1.064 
-17% 

0.963 
-25% 

 

 

Table 5: Mazda-combustion: UDDS controller               Table 6: Nissan-electric: UDDS controller 
performance                                                                         performance 

 
 WIE IDM MPC-U MPC-C 

Travel Time 22’ 33” 
22’ 36” 
+0.2% 

22’ 35” 
+0.1% 

22’ 36” 
+0.2% 

Avg. Headway [s] 3.39 5.94 
+75.2% 

2.85 
-15.9% 

3.53 
+4.1% 

Avg. Gap [m] 16 22  
+38% 

16 
0% 

20  
+25% 

Max. Gap [m] 46 99  
+115% 

83  
+80% 

70  
+52% 

Net Fuel [L] 1.370 1.329  
-3% 

1.175 
-14% 

1.048 
-24% 

 

 
 WIE IDM MPC-U MPC-C 

Travel Time 22’ 33” 
22’ 35 
+0.1% 

22’ 34” 
+0.1% 

22’ 34” 
+0.1% 

Avg. Headway [s] 4.22 4.39  
+4.0% 

2.51 
-40.5% 

3.15 
-25.4% 

Avg. Gap [m] 16 22  
+38% 

15 
-6% 

19 
-19% 

Max. Gap [m] 43 111  
+158% 

85  
+98% 

79  
+84% 

Net Energy [kwh] 1.855 1.639  
-12% 

1.389 
-25% 

1.221 
-34% 

 

                                                             
1	Nissan	Electric	modified	US06	results	were	shortened	to	the	first	520s	due	to	loss	of	some	OBD-II	data.	
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9) OBD-II energy measurement methods (Milestones 3.1.1, 3.1.2, 3.2.1) 

An iOS app was created to pair with the On-Board Diagnostics (OBD-II) port of the vehicles with 29-bit 
ISO 15765-4 CAN protocol as in [21-22]. The implemented iOS app connects to commercial WiFi OBD-
II dongles supporting the ELM327 chip [26], as depicted in Figure 42 and 43(a). The app also collects the 
iOS device’s locational/GPS and timestamp data so that OBD-II readings could be correlated with 
simulation.  Table 7 summarizes all this extra data. The collected data are available in a Comma Separated 
Values file format for further off-line data analysis. All the OBD datasets are also aggregated based on Unix 
timestamps. The app was extended to read the combustion engine Mazda CX7’s 11-bit CAN protocol, as 
depicted in Figure 43(b), and the electric motor Nissan Leaf’s unstandardized protocol, as depicted in Figure 
43(c).  

 

Figure 42: Functional architecture of the developed iOS OBD Logger App [21]. 

 

 
(a)          (b)                    (c) 

Figure 43: (a) An ELM327-based WiFi OBD-II reader attached to our test vehicle. The user interface 
showing real-time data of our test vehicles: (b) Mazda CX-7 2009 with gasoline engine, and (c) Nissan Leaf 
2011 electric vehicle (REGEN denotes Regenerative Braking and ASSIST denotes Torque Assist mode). 
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Table 7. The extra data collected from the sensors of the iOS device for both experimental CAVs. 

Data 
Name 

Data 
Type and Unit 

Collection 
Method 

Sampling  
Rate 

Timestamp Continuous (UNIX) iOS device sensor 1 Hz max 
Vehicle Speed Continuous (kph) iOS device sensor 1 Hz max 
Vehicle Orientation Continuous (degree) iOS device sensor 1 Hz max 
Vehicle Position 
(GPS Latitude & Longitude) 

Continuous (°) iOS device sensor 1 Hz max 

Vehicle Altitude Continuous (m) iOS device sensor 1 Hz max 
 

A custom procedure was programmed to increase the default data sampling frequency of the ELM chip. In 
total, data was collected from the Mazda at a rate of 8hz, and data was collected from the Nissan at a rate 
of 4hz. This was accomplished by i) Sending “Carrier Return” to ELM327 instead of re-sending the exact 
previous command each time, ii) Programming the ELM327 not to wait 200 ms after each “Carrier Return” 
command, and iii) Sending the number of lines that ELM should expect to receive; as a result, after receiving 
the pre- defined number of lines, the ELM stops looking for new data. Figure 44 shows a typical ELM327 
request and response. 

 

Figure 44: The default timing of ELM327’s request and response, adopted from [26]. 

 

9.1 Internal combustion engine vehicle 
Table 8, lists the data logged for energy measurement purposes. Since fuel pumps are not available on-site, 
fuel consumption of internal combustion engine vehicle (Mazda CX7) is estimated based on OBD-II data. 
First, fuel flow rate was modeled as a function of available OBD-II signals and one data-driven parameter. 
The fuel estimation model was then validated using fuel volume and flow data available from a flow meter 
during a chassis dynamometer calibration test. Finally, the calibrated model was applied to OBD-II data 
from the test track to record fuel consumption. 
 
Table 8. Basic OBD Data collected for energy usage estimation (Internal combustion engine vehicle). 

Data 
Name 

Data 
Type and Unit 

Collection 
Method 

Sampling  
Rate 

Fuel System Status Discrete (0 to 6) OBD port 8 Hz max 
Commanded Equivalence Ratio Continuous OBD port 8 Hz max 
Mass Air-flow Continuous (g/s) OBD port 8 Hz max 
Short Term Fuel Trim Continuous (%) OBD port 8 Hz max 
Long Term Fuel Trim Continuous (%) OBD port 8 Hz max 
Calculated Engine Load Value Continuous (%) OBD port 8 Hz max 
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Fuel injector flow rate, pulse width, or a similar quantity was not available on the test vehicle, so fuel rate 
was modeled using ECU-estimated mass airflow (MAF), commanded λ, and a derived MAF correction 
curve. As background, the air-fuel ratio of a conventional gasoline engine is typically near stoichiometric 
to promote stable combustion, high efficiency, and low emissions. However, a mildly rich λ of 0.85 to 0.91 
can increase maximum torque. Even richer mixtures are sometimes used to limit exhaust gas temperatures, 
particularly in turbocharged applications. The test vehicle’s OBD-II data includes the ECU-commanded 
air-fuel ratio in the form of λ = mfs/mf where mfs and mf  denote the stoichiometric and actual mass fuel flow, 
respectively. The fuel flow that the ECU commands is modeled as follows. 

   (17) 
A stoichiometric air-fuel ratio AFRs = 14.1 was used for the 10% ethanol pump fuel that is commonly 
available in the United States. 
 
In Eqn. (17), EA is a correction factor to the ECU-estimated mass airflow. λ is normally closed-loop 
controlled to stoichiometric using an exhaust oxygen sensor. Long-term and short-term correction factors 
called trims are applied to the fuel pulse width such that the desired λ is delivered. These trims are denoted 
LTFT and STFT, respectively. Errors in both airflow measurement and fuel system modeling contribute to 
these fuel trims. Assuming that fuel system model deviation results from a change in effective orifice size, 
Eqn. (18) assumes that the trim due to the fuel system is a constant eF with respect to mass airflow. 

 

  (18) 

 
Figure 45: MAF correction factor and source fuel trim data. 

 

 
 0 0 
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 Time [s] Time [s] 
Figure 46: Comparison of OBD model-based fuel rate with and without MAF correction against fuel flow 
measurements. 
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do emerge over large datasets. So, EA is not used directly, but rather averaged into bins to calibrate EA - 
where M is the number of samples in the bin. 

  (19) 

9.1.1 Calibration and Validation 
Closed-loop data from track tests of various algorithms was combined into a calibration dataset for EA. 
Figure 45 shows the resulting correction, which is within 5% for all ma. The OBD-based fuel flow model 
was validated in two ways: dynamically by comparison against measurements from a volume flow meter, 
and cumulatively by comparison against a measured volume of fuel placed in the empty tank. This fuel was 
also weighed to ensure accurate density. Figure 47 shows the flow meter calibration experiment, with an 
AVL KMA Mobile flow meter connected between the fuel tank and the high pressure fuel pump of the 
engine [23]. The SoMat eDAQ system [25] was used with the SoMat Test Control Environment software 
to collect fuel data. 
Three tests were performed, all of which began with an empty fuel tank before putting a certain amount of 
fuel in the tank, as shown in Figure 48. For each test, the vehicle was run on a chassis dynamometer until 
it ran out of fuel. Test 3, during which 3 US gallons of fuel was consumed, was used to calibrate eF. Tests 
1 and 2 were reserved for validation. Figure 46 demonstrates qualitative model performance in lower and 
higher power samples from Test 1. 

Table 9 lists the model’s accuracy in the three chassis dynamometer tests where total fuel volume was 
directly measured. Test 2’s flow meter and volume-based cumulative fuel measurements differed by 8.0%, 
exceeding the differences observed in the other tests and indicating a possible ground truth measurement 
error in Test 2. Therefore, the proposed OBD-based technique was adopted by virtue of its close match to 
the validation data in test 1 and acceptable match to the instantaneous fuel flow measurement in Figure 46. 

 Table 9: OBD model accuracy in cumulative fuel consumption 

 

 

 

Figure 47: The AVL KMA Mobile fuel measurement system and the OBD-based fuel rate estimator 
connected to the combustion test vehicle 

Test No. Meas. Fuel Vol. [L] Est. Fuel Vol. [L] 

1 (validation) 3.79 3.79 
2 (validation) 9.46 8.90 
3 (calibration) 11.36 11.38 
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Figure 48: The steps to calibrate and evaluate our OBD-based fuel rate estimations. 

9.2 Battery electric vehicle 
Unlike the combustion engine vehicle, the specification of the electric vehicle’s OBD data is not published 
by the vehicle manufacturer - mainly because the electric car manufacturers have not established a standard 
for messages exchanged from its CAN bus [28]. The existing smart phone applications for Nissan Leaf’s 
OBD data collection, such as Leaf Spy [24], provide insufficient sample rates. Following the guidelines in 
[28] and verifying the results with that of Leaf Spy [24], OBD-based measurements were collected for the 
signed battery current, I, terminal voltage, VT, state-of-charge, SOC, and capacity via the custom iOS app. 
Table 10, lists the data logged for energy measurement purposes. 
 

Table 10. Basic OBD Data collected for energy usage estimation (Battery electric vehicle). 

Data 
Name 

Data 
Type and Unit 

Collection 
Method 

Sampling  
Rate 

Battery Current Continuous (A) OBD port 4 Hz max 
Battery Voltage Continuous (V) OBD port 4 Hz max 
Battery State-of-Charge (SOC) Continuous (%) OBD port 4 Hz max 
Battery Capacity Continuous (Ah) OBD port 4 Hz max 

 

For the Li-ion battery of the Nissan Leaf, a lumped resistance Rs is considered. As shown in [27], the open-
circuit voltage, VOC, is assumed to have a linear relationship with SOC in the mid-range of SOC levels when 
considering fixed battery temperature (We assume that the ambient temperature is constant during our 
tests). So, the resulting linear model is fit to the collected OBD data to give an estimated value of Rs = 0.1Ω. 
As the obtained resistive loss is negligible compared to the battery net energy, and each test consisted of 
similar ambient temperatures, Rs was assumed constant for all tests. Considering the resistive energy loss, 
the battery net energy is then obtained by integrating over the entire test interval. 

 
(20) 

 (21) 

10) Simulation and control timing (Milestones 3.1.1, 3.2.1) 
Timing mechanisms are defined in the server layer for precisely controlling the simulation environment to 
run in real-time and broadcast updates on its status in regular intervals of 10hz, and are defined in the client 
layer for broadcasting the ego vehicle’s status in regular intervals of 10hz - so that the vehicle can provide 
feedback to the simulation for surrounding virtual traffic to react to. Because multiple computers are 
involved, a Network Time Protocol (NTP) was introduced to synchronize the clocks and regularly measure 
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communication delay [29]. In this case, as shown in Figure 49, the client polls the server for its clock time, 
and makes an adjustment to its own clock by measuring a time-offset t´, and round-trip delay ∆t, 

  (22a) 

 ∆t = (t3 − t0) − (t2 − t1) (22b) 
 
where t0, t3 are the client’s request and reception message timestamps, and t1, t2 are the server’s reception 
and response message timestamps. Most recent round-trip delays are used by the client and server to 
interpolate positional data from the ego vehicle and its preceding vehicle. 
 

10.1 Simulation data exchange  
A client-server architecture was designated between the ego vehicle and simulation computer so that 
computational load could be split between multiple computers. Such a setup also has the advantage of 
allowing co-simulation of multiple clients at once - suitable for future experiments. 

In this case, exchange of key data between simulation and the ego vehicle was defined using a Google 
Protocol Buffer (Protobuf) serialization to byte arrays and then broadcast through the User-Datagram 
Protocol (UDP) socket communication [30]. UDP was chosen because of its low-latency data exchange and 
is suitable in systems with lower chances of packet loss. Protocol buffers are a mechanism to serialize data. 
We specify the structure of the data in a protocol buffer message format [31] which can be used to transfer 
data between our instrumented vehicles and our simulation server regardless of their implementation 
language. As claimed by Google and as evaluated in [32], the Protocol Buffer leads to fast data transfer 
over the web comparing to eXtensible Markup Language or XML [33]. This is mainly because the Protocol 
Buffer uses binary format to serialize structured data. 

The data exchanged between the physical vehicle and the simulation server lies in four categories with their 
data structure shown in Figure 50: 1) Subscription/Un-subscription Message: A physical vehicle subscribes 
to the simulation server at the beginning of VIL simulations, or unsubscribes to end the simulation, 2) 
V2Sim Message: A physical vehicle transmits its updates (x, y, v, θ) to the simulation server, 3) Sim2V 
Message: the simulation server transmits information of the simulated vehicles surrounding the physical 
vehicle, and 4) V2V Message: the simulated and physical vehicles exchange planned trajectories for 
connected vehicle guidance (MPC-C). 

Each message is preceded with a predefined preamble after being serialized by Google Protocol Buffers. 
In order to reduce the bandwidth challenges imposed on the simulation side, we incorporate the vehicle-to-
vehicle (V2V) messaging into the Sim2V and V2Sim messages. The resulting buffer is only a few hundred 
bytes in size. Please note that the preamble should not be serialized; otherwise, the receiver should decode 
the received packet by trying all possible message types which can impose a huge performance penalty. 

 

Figure 49: Network Time Protocol (NTP) implementation between the client and server layers of the 
VIL architecture. 
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Figure 50: Four different message types implemented for the VIL test environment (Protocol buffer 
structured messages preceded with a preamble). 
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c. What opportunities for training and professional development has the project 
provided? 

The project engaged two postdoctoral researchers, five Ph.D. Students, and one undergraduate student. 
Through working on the project and regular meeting with PIs they were trained on algorithm development, 
software development and simulation, and hardware implementation. Moreover, they got invaluable 
experience in team work, communication, and presentation and project management.  

The following awards have been won by the students. 

1. Longxiang Guo wins 2020 CECAS College Outstanding Graduate Researcher Award for his 
contribution to the team effort and in particular experimental testing of automated vehicles, 2020. 

2. Best Paper Award, ASME Technical Committee on Automotive and Transportation Systems for 
“Predictively Coordinated Vehicle Acceleration and Lane Selection Using Mixed Integer 
Programming” by A. Dollar and A. Vahidi, 2019 

3. Young Author Award, International Federation of Automatic Control for the paper “Chance 
Constrained Automated Vehicles in Hazardous Merging Traffic,”, 2019 

4. Advanced Vehicle Technologies Best Paper Award, ASME IDETC Conference, 2019 
5. Austin Dollar selected as a recipient of a 2018-2019 STEM Chateaubriand Fellowship for eight-

month research in France on topics related to team’s collaboration, 2018.  
6. The 2017 SAE Trevor O. Jones Outstanding Paper Award 
 

d. How have the results been disseminated to communities of interest? 

A number of papers have been published, presented at various conferences, and submitted for review 
and are listed in the publication section.  Additionally, an overview of the project methods and results have 
been prepared in a presentation to be shared with a number of government, industry, and research partners. 
An on-site demonstration was scheduled for March 24, 2020 with confirmed participants from GM, Ford, 
BMW, Toyota, Cummins, Commsignia, PTV group, Allision Transmissions, ZF, Michelin, Southwest 
Research Institute, Argonne National Lab, and Oakridge National Lab. An executive summary of the 
project had been distributed which provided exposure for the project. Unfortunately, the demo had to be 
canceled in mid-March due to the shut-down imposed by the 2020 Pandemic.  

Encouraged by the results and with support of two technical experts from General Motors, has been 
submitted to GM with the goal of continued experimental testing and extending some of the ideas developed 
in this project to the industry.  
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III. Products  
 

a. Publications, conference papers, and presentations

 

 

 

- T. Ard, L. Guo, R. A. Dollar, A. Fayazi, N. Goulet, Y. Jia, B. Ayalew, and A. Vahidi.  “Energy-
Efficient Automated Car-Following:  Vehicle-in-the-Loop Field Results.”  Transportation Research 
Part C, in review, 2020. 

- L. Guo and Y. Jia. “Combine Heuristic AI based Control with Analytic Model Formed Control for 
Automated Vehicles.” In Review, IEEE Transactions on Vehicular Technology (2020). 

- T. Ard, R. A. Dollar, D. Karbowski, Y. Zhang, and A. Vahidi. “Evaluating the Impact of Automated 
Vehicles with Optimal Eco-Driving in High Fidelity Traffic Microsimulations.” , Transportation 
Research Part C, 120, 2020. 

- G. G. M. Nawaz Ali, Beshah Ayalew, Ardalan Vahidi, and Md. Noor-A-Rahim, “Feedbackless 
Relaying for Enhancing Reliability of Connected Vehicles,” IEEE Transactions on Vehicular 
Technology, 69, 4621 – 4634, 2020  

- G. G. M. Nawaz Ali, Beshah Ayalew, Ardalan Vahidi, and Md. Noor-A-Rahim, “Analysis of 
Reliabilities Under Different Path Loss Models in Urban/Sub-urban Vehicular Networks”, to appear, 
Proceedings of IEEE 90th Vehicular Technology Conference (IEEE VTC-Fall’19), Honolulu, HI, 2019. 

- Goulet, N. and Ayalew, B. “Coordinated Model Predictive Control on Multi-Lane Roads”. In 
Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers 
and Information in Engineering Conference (IDETC 2019). August 18-21, 2019. Anaheim, CA, USA. 

-D. Yoon and B. Ayalew (2019) “D. Yoon and B. Ayalew (2019) “Hierarchical Vehicular Social Force 
Control for Human-like Autonomous Driving,” Proceedings of the American Control Conference, July 
10-12, Philadelphia, PA 

- R. Dollar and A Vahidi, “Automated Driving with Variational Optimal Control and Mixed Integer 
Programming,” in review, IEEE Transactions on Control Systems Technology, 2019. 

- R. Dollar and A. Vahidi, “Chance Constrained Automated Vehicles in Hazardous Merging Traffic,” 
in Proceedings of IFAC Conference on Advances in Automotive Control, Orleans, France, 2019. Won 
IFAC’s Best Young Author Award.  

- R. Austin Dollar, and Ardalan Vahidi. “Predictively Coordinated Vehicle Acceleration and Lane 
Selection Using Mixed Integer Programming." in Proceedings of the ASME DSCC, 2018. Won 
Automotive and Transportation Systems Technical Committee Best Paper Award. 

- R. Austin Dollar, and Ardalan Vahidi. "Efficient and Collision-Free Anticipative Cruise Control in 
Randomly Mixed Strings." IEEE Transactions on Intelligent Vehicles, 3, 439-452, 2018. 
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- R. Austin Dollar, and Ardalan Vahidi. "Quantifying the impact of limited information and control 
robustness on connected automated platoons." In Proceedings son IEEE Conference on Intelligent 
Transportation Systems (ITSC), 2017. 

- N. Goulet and B. Ayalew. "Impacts of Distributed Speed Harmonization and Optimal Maneuver Planning 
on Multi-Lane Roads." To Appear, 2020 Conference on Control Technologies and Applications. 

- R. A. Dollar, A. Sciarretta, and A. Vahidi. “Multi-Agent Control of Lane-Switching Automated Vehicles 
for Energy Efficiency.” Presented, American Control Conference, 2020. 

- R. A. Dollar, A. Sciarretta, and A. Vahidi.  “Information and Collaboration Levels in Vehicular Strings: 
A Comparative Study.” Presented, IFAC World Congress, 2020. 

- N. Goulet and B. Ayalew. “Distributed Maneuver Planning with Connected and Automated Vehicles for 
Boosting Traffic Efficiency.” Submitted and in review, IEEE Transactions on Intelligent Transportation 
Systems. 
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Presentations: 

 

- A. Vahidi, “Energy and Flow Effects of Optimal Automated Driving in Mixed Traffic”, online, New 
York University, Abu Dhabi, November 8, 2020. 

- A. Vahidi, “Vehicle-in-Loop Experiments of Optimal Automated Driving in Mixed Traffic” PTV 
Group North America, Virtual Webinar, October 15, 2020. 

- A. Vahidi, “Efficient Driving Leveraging Cellular Connectivity,” virtual, Qualcomm, San Diego, CA, 
September 28, 2020. 

- A. Vahidi,  “Anticipative Guidance of Connected and Autonomous Cars for Energy Efficiency,” 
Workshop on Emerging Control of Vehicular Traffic for Improving Sustainability and Energy 
Efficiency, Society of Instrument and Control Engineers (SICE) Annual Conference, Chiang Mai, 
Thailand, September 23, 2020. 

- A. Vahidi, “Eco Driving with Connected and Automated Vehicles”, Department of Mechanical and 
Industrial Engineering, University of Ilinois at Chicago, January 28, 2020. 

- A. Vahidi, “Eco Driving with Connected and Automated Vehicles”, Workshop on Connected and 
Automated Vehicles for Energy Efficiency and Environment Impact, IFP Energies Nouvelles, Rueil-
Malmaison, France, September 30, 2019. 

- A. Vahidi, “Anticipative Guidance of Connected and Autonomous Cars for Energy Efficiency” 
IDETC-CIE, Anaheim, CA, August 2019. 

- A. Vahidi, “Opportunities for Efficient Driving with CAVs and Their Network-wide Impact” NSF 
Workshop on Control for Networked Transportation Systems,  Philadelphia, PA, July 8-9, 2019.  

- A.Vahidi, “Eco-driving with Connected and Automated Vehicles: Algorithms and Experiments” 3rd 
IAVSD Workshop on Dynamics of Road Vehicles: Connected and Automated Vehicles, University of 
Michigan, Ann Arbor, April 28, 2019. 

- A. Vahidi, “Eco-Driving with Connected and Automated Vehicles”, ASME DSCC, Workshop on 
Connected and Automated Vehicles, Atlanta, GA, September 30, 2018. 

- A. Vahidi, “Anticipative Guidance of Connected and Autonomous Cars for Energy Efficiency,” 
Research and Innovation Center, Ford Motor Company, May 17, 2018.   

- Y. Jia, “Human Intervention Detection on a Retrofit Steering Actuation System in Autonomous 
Vehicles,” Keynote in Connect2Car at SAE World Congress Experience (WCX), Detroit, MI, April 12, 
2018. 

- A. Vahidi, “Optimal Coordination of Connected and Autonomous Cars in Smart Cities”, University of 
California, Berkeley, November 3, 2017 (please see [7]). 

- A. Vahidi, “Optimal Coordination of Connected and Autonomous Cars in Smart Cities”, New York 
University, Abu Dhabi, November 19, 2017. 
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Relevant Indirect Products: 

 

b. Websites or other Internet sites 

Video of autonomous Nissan Leaf: https://www.youtube.com/watch?v=ekcnKJGLm7w 

Video of autonomous Mazda CX-7: https://www.youtube.com/watch?v=LMsJKHJ72R0 

c. Technologies or techniques 

ITIC received valuable input to improve their smart mobility testbed through V2X capabilities which 
allow both car manufacturers as well as suppliers to test AV scenarios in mixed reality configurations 
emulating real world traffic conditions. That capabilities can be used in the future to classify and potentially 
certify smart mobility testbed through consortiums such as SAE/IEEE-supported International Alliance for 
Mobility Testing and Standardization (IAMTS). 

 

- X. Wang, L. Guo and Y. Jia, "Online Sensing of Human Steering Intervention Torque for 
Autonomous Driving Actuation Systems," IEEE Sensors Journal, vol. 18, no. 8, pp. 3444-
3453, 2018 

- X. Wang, L. Guo and Y. Jia, “Human Intervention Detection on a Retrofit Steering 
Actuation System in Autonomous Vehicles,” SAE World Congress, 2018. Won SAE 
Trevor O. Jones Outstanding Paper Award. 

- A. Vahidi and A. Sciarretta, “Energy Saving Potentials of Connected and Automated 
Vehicles,” Transportation Research Part C, 95, 822-843, 2018. 

- J. Han, A. Vahidi and A. Sciarretta, “Fundamentals of Energy Efficient Driving for 
Combustion Engine and Electric Vehicles: An Optimal Control Perspective,” accepted, 
Automatica, 2018.  

- Q. Wang, B. Ayalew and T. Weiskircher “Predictive Maneuver Planning for an 
Autonomous Vehicle in Public Highway Traffic,” in review, IEEE Transactions on 
Intelligent Transportation Systems (2018). 

- Q. Wang and B. Ayalew (2017), “Probabilistic Constraint Tightening for Predictive 
Guidance of an Autonomous Vehicle in Multi-Vehicle Traffic”, in review, IEEE 
Transactions in Robotics. 

- A. Hunde and B. Ayalew (2018), “Automated Multi-Target Tracking in Public Traffic in 
the Presence of Data Association Uncertainties” Accepted for publication, Proceedings of 
the American Control Conference, June 27-29, Milwaukee, WI. 

- D. Gundana, R. A. Dollar and A. Vahidi, “To Merge Early or Late:  Analysis of Traffic 
Flow and Energy Impact in a Reduced Lane Scenario.”  To be presented, Intelligent 
Transportation Systems (ITSC), 2018 IEEE 21st International Conference on, 2018. 

-A. Hunde, B. Ayalew and Q. Wang (2019) “Automated Multi-Object Tracking for 
Autonomous Vehicle Control in Dynamically Changing Traffic,” Proceedings of the 
American Control Conference, July 10-12, Philadelphia, PA (in review). 
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d. Inventions, patent applications, and/or licenses 

Nothing to report in this quarterly report. 
 

e. Other products 

1. Automotive News, “'Ghost' AV research may put the brakes on stop-and-go traffic”, June 18, 2020. 
2. ASEE’s First Bell, “Clemson Researchers Develop Technology To Help Autonomous-Driving 

Vehicles Save Energy,” June 18, 2020 
3. Clemson News, “‘Ghost’ vehicle research shows energy savings in self-driving cars”, June 17, 

2020. 
4. Government Report by NSTC and US DOT, "Ensuring American Leadership in Automated 

Vehicle Technologies - Automated Vehicles 4.0," January 2020. 
5. Upstate Business Journal, “How automotive testing in Greenville could impact tomorrow’s 

roadways” (September 2019) 
6. Upstate Business Journal, “How Clemson researchers plan to boost energy efficiency with 

connected, automated vehicle technology” (August 2017) 
7. Greenville News, “Clemson awarded $1.16M to research use of connected, automated vehicle 

technology to boost energy efficiency” (July 2017) 
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IV. Participants and Collaborating Organizations 
 

a. What individuals have worked on the project? 

1) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  
 
 
State, and country of residence: 

Prof. Ardalan Vahidi 
PI (Clemson University) 
NA 
30 
Prof. Vahidi is the lead investigator and has been responsible 
for the administration of the research grant. He has also been 
directly supervising his graduate students. 
SC, USA 

2) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Dr. Yunyi Jia 
Co-PI 
NA 
30 
Dr. Jia has been leading a team responsible for vehicle 
instrumentation and design of the autonomous driving 
controls. 
SC, USA 

3) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Dr. Beshah Ayalew 
Co-PI (Clemson University) 
https://orcid.org/0000-0002-3759-3271  
30 
Dr. Ayalew has been working on developing the lane 
selection scheme as part of our predictive autonomous 
vehicle guidance scheme. 
SC, USA 

4) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Mr. Dominik Karbowski 
Co-PI (Argonne National Laboratory-ANL) 
NA 
30 
Mr. Karbowski has been working on estimating energy 
efficiency using ANL’s detailed powertrain simulation tool 
Autonomie. 
IL, USA 
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5) Name: 
Project Role: 
 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Prof. Joachim G. Taiber 
Sub-contractor (International Transportation Innovation 
Center-ITIC) 
NA 
30 
Prof. Taiber, as the CTO of ITIC, has been managing the 
communication network design and implementation and the 
interfaces to the IT backend at the ITIC testbed facility. 
SC, USA 

6) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 
 

State, and country of residence: 

Dr. Ali Reza Fayazi 
Post-doctoral fellow (Clemson University) 
https://orcid.org/0000-0002-8560-2873 
30 
Dr. Fayazi has been monitoring the project progress, and 
setting up project management tools. He has also been 
working on goals related to the vehicle-in-the-loop 
simulation environment.  
SC, USA 

7) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Dr. G. G. Md. Nawaz Ali 
Post-doctoral fellow (Clemson University) 
https://orcid.org/0000-0001-5861-0475 
21 
Dr. Nawaz worked on vehicular simulation and V2X 
communication with VISSIM, MATLAB and ns-3 
environments.  
SC, USA 

8) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

R. Austin Dollar 
PhD Student (Clemson University) 
NA 
30 
Mr. Dollar has been developing the anticipative vehicle 
guidance algorithms. He is working under supervision of 
Prof. Vahidi. 
SC, USA 

9) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Tyler Ard 
PhD Student (Clemson University) 
NA 
30 
Mr. Ard has been working on the goals related to the traffic 
microsimulation and vehicle-in-the-loop experimental 
platforms. He is working under supervision of Prof. Vahidi. 
SC, USA 
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10) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 
 

State, and country of residence: 

Longxiang Guo  
PhD Student (Clemson University) 
NA 
29 
Mr. Guo is working on the goals related to vehicle 
instrumentation and improving the design of the 
autonomous driving controls. He is working under 
supervision of Dr. Jia. 
SC, USA 

11) Name: 
Project Role: 
Researcher Identifier: 
Total number of months: 
Contribution to Project:  

 
 

State, and country of residence: 

Nathan Goulet  
PhD Student (Clemson University) 
NA 
28 
Mr. Goulet is working on the goals related to the anticipative 
lane change maneuver algorithm. He is working under 
supervision of Dr. Ayalew. 
SC, USA 

  

 

Figure 51: The project team during the 2018 annual visit by DOE program managers. 
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b. Has there been a change in the active other support of the PD/Pl(s) or 
senior/key personnel since the last reporting period? 

No. 

c. What other organizations have been involved as partners? 

Clemson University worked with the following organizations as partners on this project:  

- Argonne National Laboratory to integrate the vehicle guidance algorithms with Autonomie, 
Argonne’s detailed vehicle energy utilization simulation software. 

- PTV Group: to incorporate the proposed algorithms in PTV Group’s traffic micro-simulation 
tool (VISSIM). 

- International Transportation Innovation Center (ITIC): to provide the experimentation platform 
for evaluating the proposed technical approach with novel co-simulations of traffic and 
physical connected and automated vehicles on a cyber-physical test track. 

d. Have other collaborators or contacts been involved? 

Collaborative guidance research was co-supervised by P.I. Ardalan Vahidi and Dr. Antonio Sciarretta 
of IFP Energies nouvelles.   
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V. Impact 
What is the impact of the project? How has it contributed?  
 
The project has contributed to the state of art of energy efficient driving by developing 

advanced vehicle guidance algorithms that save energy while preserving safety and traffic compactness. 
If the project’s proposed and experimentally verified methods are adopted in new vehicles and in 
particular automated vehicles, there can be significant reduction in energy consumption and greenhouse 
emissions. These savings can materialize immediately upon implementation, mostly via software, and 
with minimal additional hardware investments. More details are described below.  

 
a.  What was the impact on the development of the principal discipline(s) of the project?  

The algorithms developed under this project are expected to be adopted by other researchers 
and practitioners in the field of energy efficient driving and automated driving. We have taken the 
algorithms beyond academic research by showcasing their positive energy impact in field tests 
without compromising safety, traffic flow, and travel time. The methods have the potential for real-
time implementation. And they can be deployed in mixed traffic where human-driven vehicles are 
present. The DOE funding enabled us to perfect the algorithms beyond what is normally shown in 
academic papers and advance the field of eco-driving.  

As stated elsewhere, the vehicle-in-the-loop testing technology can potentially impact 
vehicle certification and testing and in particular testing of automated vehicles.  

 
b.  What was the impact on other disciplines?  

Our algorithms and testing algorithms are likely to make an impact on automated vehicle 
development and certification.  

 
c.  What was the impact on the development of human resources?  

Four PhD students completed major parts of their dissertation research based on their 
contributions to this project. The project has been an excellent scientific, technical, and project 
management opportunity for these students. The students have received considerable visibility via 
conference presentation and in the news media. When they join the industry or academic work force, 
they carry the valuable experience of having worked on a sizable team project with ambitious 
outcomes that they have achieved. 

Two postdoctoral fellows worked on this project. One has joined academia as an assistant 
professor and the other has joined a Silicon Valley startup working on automated driving and ride 
sharing.  

One undergraduate student (and a minority) participated in early stages of the project and 
published a peer-reviewed conference paper which is unusual for an undergraduate student. He is 
now a Ph.D. student at Cornell University. 

The project has also provided the PIs the opportunity to advance their knowledge in the 
novel field of automated driving; this knowledge can be imparted in their classes to wider students 
and contribute to advancement of their future research. 

 
d.  What was the impact on teaching and educational experiences?  

The PI has recently co-authored and published a book on energy efficient driving of 
connected and automated vehicles with international reach and includes some of the results of this 
project. The findings of the project provide excellent and sensible motivating examples for our 
undergraduate and graduate classes. The students relate to cars, get excited by automation, and care 
about energy impact. Showing even a video of the test track experiments along with basic underlying 
technical concepts, goes a long way in our classes to get the students excited and motivated to pursue 
careers or graduate education in line with the goals of this DOE VTO project.  
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The findings of the project have been presented in several invited talks nationally and 
internationally and as a result many experts in the field have seen different stages of the project 
findings via these talks. Examples are workshops on connected and automated vehicles in Atlanta 
(2018), The University of Michigan (2019) IFP, France (2019), and an NSF sponsored workshop on 
connected transportation systems held in 2019 in Philadelphia. 

 
e.  What was the impact on physical, institutional, and information resources that form  

infrastructure?  
Testing in this project consisted of one electric vehicle (Nissan Leaf) and one gasoline 

engine vehicle (Mazda CX-7). These vehicles were not equipped with automated driving capabilities 
from the manufacturer, so they were modified to execute the commands from the high-level 
controller autonomously. The modifications include adding necessary sensors, actuators, and 
designing control algorithms. These vehicles are now available for educational and research 
purposes. The vehicles were tested at ITIC test track in Greenville, South Carolina. A Vehicle-in-
the-loop platform has been built that allows testing these vehicles while surrounded by virtual 
vehicles reducing or eliminating collision risk. This mostly-software-based VIL platform provides 
many future possibilities for testing automated vehicles. Moreover DSRC equipment has been 
deployed and programmed for V2V communication that extends testing capabilities at ITIC.  

 
f.  What was the impact on technology transfer?  

The Vehicle-In-Loop testing platform that we have developed has a clear potential for 
technology transfer as it could reduce the cost and risk of connected and automated vehilces testing 
and certification. Several companies have expressed interest in the concept. We have submitted a 
research proposal to General Motors that proposed to utilize VIL experiments. The PI is working 
with Cummins on another DOE funded project (on truck platooning) that may use our VIL 
architecture. Researcher at Argonne National Lab are also interested in utilizing our VIL platform. 
The test track operator, ITIC, received valuable input to improve their smart mobility testbed through 
V2X capabilities which allow both car manufacturers as well as suppliers to test AV scenarios in 
mixed reality configurations emulating real world traffic conditions. That capabilities can be used 
in the future to classify and potentially certify smart mobility testbed through consortiums such as 
SAE/IEEE-supported International Alliance for Mobility Testing and Standardization (IAMTS). 

Our published eco-driving algorithms can be prime candidates for adoption by industry as 
they have been successful in proof-of-concept experimental demos.  

 
g.  What was the impact on society beyond science and technology?  

Our research advances the state-of-art in self-driving cars and also connected vehicle 
technologies. Our proposed algorithms, if implemented, can reduce energy consumption and green 
house emissions significantly (8-23% if widely deployed) which has direct positive environmental 
and societal impact.  

 
h.  What percentage of the award’s budget was spent in foreign country(ies)?  

Only one conference paper was presented in Europe. The expenditure was only conference 
registration and lodging. The student presenter was already on a fellowship residency in Europe so 
there were no foreign travel expenses.  

 

VI. Changes 
The last task is not complete due to 2020 pandemic shutdowns that prevented us from conducting test 

track experiments after March 7, 2020. All the low-level control functions are implemented on the car and 
were tested on the test track before March 7. The high-level algorithms are all in mature shape and tested 
in microsimulations. Only test track verification of lane change remains and is expected to be done over a 
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few days once we are able to test. We have completed all other test track testing on car following scenarios 
as presented in this report. We plan to complete 2 days of testing once we can go back to the test track after 
project close-out so we can write the paper we intend to write on the topic.  

VII. Special Reporting Requirements 
NA.   

VIII. Budgetary Information 
The quantitative budget information is submitted separately in the Federal Financial Report. 

IX. Project Outcomes 
• Novel car-following and lane selection algorithms that can save energy in presence of 

human driven vehicles and without compromising road capacity and travel time. Proven 
performance in large scale microsimulations, high fidelity fuel economy evaluations, and 
road experiments with gasoline and electric vehicles.  

• Demonstrated capabilities of our proposed Vehicle-In-the-Loop (VIL) experimental 
platform that enables testing CAVs in challenging traffic scenarios while eliminating risk 
of collision or injury. Full integration of VIL with a commercial traffic microsimulation 
software, with robust software and V2V communication architecture. Potential for wider 
use and impact in automated vehicle industry.  

• Showcased the real-time implementation of sophisticated optimization-based control 
algorithms on experimental vehicles driving at highway speeds that limits the reaction 
times.  

• Perfected sensing, localization, and low-level pedal and steering control algorithms for 
precise execution of eco-driving maneuvers. Approach can be extended to other automated 
vehicle development and research activities.  

• Characterized realistic hurdles such as influence of packet drops and communication delays 
via simulation and in experiments. 
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