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Mission:

Conduct fundamental research
to understand critical in-cylinder
engine processes.

Approach:
m | aser based optical diagnostics

® Realistic engine conditions

B Readlistic engine geometries with

Optical access through:
- Pistons
- cylinder liner
- spacer plates
- exhaust ports
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m H,ICEs are part of DOE's transitional strategy towards a hydrogen economy.
— technology is available today and economically viable in the near-term.
— fewer constraints concerning H, storage compared to fuel cells.
* relative ease of a dual-fuel option (H,/gasoline).
« amenable to high temperature metal hydrides.
 impurities are a non-issue.

m DOE's near-term goals for the H,ICE:
— peak brake thermal efficiency (BTE) = 45%.
— Tier2/bin5 emissions or better (NO, < 0.07g/mile).
— power densities greater than present-day gasoline engines.

m Research is required to resolve technical barriers to meet these goals.
— fundamental research of in-cylinder combustion and transport processes.
— NO, emissions and control.
— investigate advanced H,ICE concepts and related technical issues:
* pressure boosting (preignition, CR effects, heat transfer, etc)
» direct-injection (in-cylinder mixing, injector durability, etc)

m Project is relatively new (December 2003)
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m Sponsor: DOE Office of FreedomCAR and Vehicles Technologies Program
—
FreedomCAR ofe [Il] DavierCHRySLER

m Project is conducted in close collaboration with Ford Motor Company
(only FreedomCar partner with a clear interest in H,ICEs).

m Collaborate within the European Research Project HylICE (Optimizing
Hydrogen Powered Engines) through a non-disclosure agreement.
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m Compressionratio (CR) = 9.1
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BMEP' = BMEP / BMEP

max-gasoline

e (CR=14.5), m (CR = 12.5) Tang et al. SAE 2002-01-0242.
A (CR=9.1) Swain et al. SAE 810350.

NOx, ppm
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e, ¢ A ¥V x(closed symbols) engine out
<, > (open symbols) aftertreatment with 3-way catalyst

Compared to gasoline-fueled ICEs,
present day H,ICEs have:

m higher thermal efficiencies.

m lower power densities.

Can operate with near-zero emissions:*
m operate ultra-lean (¢ < 0.45).
m operate at stoichiometry (¢ = 1)

with aftertreatment.

NO, is essentially the only non-zero air pollutant emission from a H,ICE.
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1. Improve power density relative to conventional port-fuel-injection (PFI).

oo ot contustion  PDLL S e SN
%%’;9 of air at ¢ =1) PFI PFI DI
Power related to gasoline (%) 100 85 115
n
@ volume of air ®mvolume of fuel at ¢ = 1
2. Minimize undesired combustion _ K .
(preignition and backflash). = h /
o N I P
e H, is predisposed to pre-spark combustion g \ \v N heptane
(i.e., preignition from engine hot-spots). g \ A P
é 10" \ propane P
e Difficult to operate a PFI-H,ICE near E \ /<
¢ = 1 without preignition problems € .. hydrogen
(further reduction in peak-power). 100 o5 1 15 2 25 5 35 4
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B Pressure-boosted-H,ICE (turbocharging/supercharging of intake air)

m Liquid-hydrogen-fueled-H2ICE (hydrogen stored onboard as a liquid)
®m Direct-injection-H,ICE (H2 injected after intake valve closing (IVC))
- improves maximum power (no displacement of intake air).

- minimize preignition events with late injection (less time for combustible mixture to preignite).
- increased degrees of freedom (multiple injection, start of injection (SOI), among others).

m H,ICE-electric hybrid (H2ICE in parallel or series with an electric motor)

® Super-advanced-H,ICE (combination of advanced H2ICE options)
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m Establish a state-of-the-art laboratory to investigate in-cylinder

H,ICE combustion and emissions processes.
* increase efficiencies ¢ increase power output * decrease emissions

m Focus is direct injection of H, in cylinder (DI-H,ICE).
— most promising advanced H,ICE concept (i.e. many degrees of freedom).

m Use optical diagnostics in-cylinder to build a detailed understanding

of H,ICE mixing, combustion and emissions processes.
— OH* chemiluminescence: flame development, flame speed, preignition,
knock and qualitative measure of local ¢.
— planar laser induced fluorescence (PLIF): quantitative measure of local
¢ and in-cylinder NO, formation.
— particle image velocimetry (P1V): in-cylinder fluid motion effects and
hydrogen jet development.

m Couple experiments with Large Eddy Simulations (LES).
— improved understanding of fundamental physics.
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GM single-cylinder head
— 4 valves, central spark plug
— CR: 9.1 (flat piston)
Sandia drop down optical cylinder
— interchangeable quartz liner
— interchangeable quartz piston
Hydrogen fueling
— pre-mixed (in progress)
— port fuel injection (PFI)
— side direct injection (DlI)
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Injector-tip

- tip, 4mm diameter spherical-cap
- six hole, D = 0.56mm

- separation = 1.31mm

- jet angles 45° wrt to injector axis




m Hardware: high-pressure high-flow H, injector (durability issues).
— Westport Innovations (experimental prototype)
— working pressures: 100 — 2200 psi / flow rates: 0.2 — 4.5 g-s™*

m Mixing:
— maximum mixing times (SOl at IVC) 20-4 ms over speed range 1000-5000 rpm.
— preignition is minimized with late injection (post IVC) but mixing times are reduced.
— optimization of the many degrees of freedom: (SOI, duration, pressure, multiple, etc..).
— effect of mixture inhomogeneities is non-trivial (see figure below).

@ 10000 \

. . open symbols (¢ < 0.5
Engine-out N_Ox concentration verses I:> 800! *\\ Clzsediymbolg(d) N 0.)5)
SOl from various studies. N N,

m NO, concentration increases with £ \
retard of SOI in some data sets, and g 0000 \\
decreases in others. O><40007 — v
pd \\<

Similar effec_:ts on BTE, <:I 20001 L &\\'\%/‘ N
therefore it is critical S s~
to develop a knowledge base ol = =g e T ey
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Emission spectra of a hydrogen-air flame
(courtesy of B. Patterson & B. Schefer)

emission (a.u.)
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m OH* has a unique emission spectra.

0.8

0.67

0.4f

0.21

m OH* is a combustion intermediary that tracks heat-release (i.e.
flame front) and does not require external excitation.

m OH* intensity correlates with fuel/air ratio (Q: can we extrapolate a line-
of-sight averaged local ¢).

Y. lkeda et al.,
SAE 2001-01-0919
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Investigate
m In-cylinder mixing and flame development for various injection strategies.

m How does mixture formation at combustion affect IMEP and cycle variability.

m Qualitative measure of in-cylinder local ¢.

Operating point: 800 and 1200 rpm, MAP = 50kPa, ¢ = 0.6, Coolant T = 80 °C.

Burst Fired Scheme: 12 total cycles, 9 motored and 3 fired consecutively.
Imaging: Acquired on 3rd fired cycle with 10-20 images acquired per CAD.

experimental setup Case (SOI/EOI) Description
[ injector (1) 270/240 "pre-mixed"
Gisaite _ o 0.45 <« $ <095
window ‘e =SSER - (2) 110/80 early injection
- ol Pinj = 20 bar low-pressure
(3) 110/101 early injection
Pinj = 100 bar high-pressure
o (4) 60/30 late injection
' F Pinj = 20 bar low-pressure
Veviciis (5) 39/30 late injection
E‘H&‘F&?&m mirror Pinj = 100 bar high-pressure
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Inner circle: quartz piston, d = 65.5 mm Case 1: SOI270/EOI1240
Outer circle: cylinder bore, d = 85.9 mm "premixed" inject during intake stroke

Rel. Gain (AU): 28. Rel. Gain (AU): 28.
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Case 2: SOI110/EQI80 Case 3: SOI110/EOI101
early-injection, Pinj = 20 bar early-injection, Pinj = 100 bar
Rel. Gain (AU): 26.4 Rel. Gain (AU): 25.9
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Case 4: SOI60/EOQI30 Case 5: SOI39/EOI30
|ate_injection’ PmJ =20 bar Iate-injection, Plnj=100 bar

S, - e
-

NOTE: Cycle-to-cycle OH* intensity is widely variable for late injection
(see next slide). Interpretation of the ensemble average is not straightforward.
@ﬁ“?-ﬁn‘z. MODELING WILL HELP INTERPRETATION
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Case 1 (20 Images at 8 CAD):
"premixed", low-pressure, GAIN = 20

Case 5 (10 Images at 12 CAD):

late-injection, high-pressure, GAIN = 1

m "Premixed" case is extremely consistent.

m Case 5 is widely variable.
— importance of a few cycles

m Only small differences in COV,p.
— high flame speed of hydrogen

CASE | SOI/EOT | IMEP | COViyer
1 270/240 200 kPa | 1.1%
2 110/80 (LP) | 238 kPa | 1.7%
3 110/101 (HP) | 234 kPa | 1.7%
4 60/30 (LP) | 231 kPa | 2.4%
5 39/30 (HP) | 235 kPa | 1.4%
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m Qualitative OH* chemiluminescence provides valuable information.
 assessment of mixture formation and injection variables

* cycle-to-cycle variability

m Quantitative OH* chemiluminescence provides more information.
* measure of flame speed
* measure of local equivalence ratio

Next few slides introduces some preliminary work done on
quantitative OH* chemiluminescence
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x104 e
T T N From “premixed” data where
- T el T ¢, P and /(OH*) are known
; (), using non-linear least
] squares regression we find:
¥ 25
T
Q 24 I(OH*) = AP” exp(CP"¢)
1.5
1+ then
05
B
| gl ap?)
1000 : 1 CP”
Pressure (kPa) 0 04 06 ¢ uncertainty + 6%

From |(OH*) and P we can gain a semi-qualitative measure of local ¢.
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m Primary focus remains to develop a fundamental understanding of
in-cylinder H,-air mixing processes and the evaluation of various
DI strategies.

m Diagnostics to be used:
— Patrticle Image Velocimetry (P1V) = in-cylinder velocity vectors.
— Planar Laser Induced Fluorescence (PLIF) = pre-combustion local ¢.
— Chemiluminescence imaging = combustion/post-combustion local ¢.

m Implementation of a NO, emissions bench:
— time averaged emissions measurements (many cycles)
— investigate methods to measure cycle-resolved NOx emissions (assumption is that
a few cycles are responsible for producing high time-averaged NO, emissions).

)

Sandia
A Netional
Laboratories

£




