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Introductory Info

Evacuation Procedures:

• Exits are located…

• Restrooms out back

Classification:

• Absolutely no classified discussions

• If you have a concern, let us know

• Some material may be OUO, it will be marked 
as such
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Summary for 
Finite Element Method

Begin with:

• General integrals for element “stiffness” and “load” 
vectors

and end with:

• Global system of equations for one-dimensional 
and two-dimensional steady heat conduction 
equation with selected element types



ESP300: Finite Element Method II

Questions for Finite Element Method II: 

• How do we compute “element” matrices in a general 
way for more complex, multi-dimensional elements?

• What are problem coordinates, natural coordinates?

• What are isoparametric mappings?

• What are the “Jacobian matrix” and the “Jacobian?”

• How do we “assemble” these element matrices into a 
global matrix?
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Preview

Today we will cover the following topics:

• Coordinate transformations between problem 
coordinates and natural coordinates (master 
elements)

• 1-D linear element using natural coordinates

• 1-D quadratic element using problem and natural 

• 2-D triangle using problem coordinates 
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Comments on Computing 
Element Matrices 

Recall from last time that we need to compute element matrices of the 
following form. 

We need to define shape functions and derivatives of shape functions in a 
way that is convenient in a more general sense. 

To do so, we will consider “mapping” elements in physical space into a 
“master” element or a (-1 to +1) space.  We will also have to use numerical 
integration to compute the element matrices in the general case. 

Numerical integration of element matrices for general element shapes is 
the primary driver!
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Mapping Coordinate Transformations

To develop the transformation between 
actual element and the master element, 
we will use an “isoparametric” mapping 
and will consider a 2-D development.  
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Mapping Coordinate Transformations (2)

To begin, we change coordinates from                 to    

Now  

To compute the derivative of the shape function, use the chain rule
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Mapping Coordinate Transformations (3)

Expressed in matrix form 

Where         is the Jacobian matrix of the transformation.

For an isoparametric mapping, we use the same coordinate 
functions as for the shape functions
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Mapping Coordinate Transformations (4)

For an isoparametric coordinate mapping, the entries in the 
Jacobian matrix can be computed using the assumed coordinate 
functions.

Which yields
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Mapping Coordinate Transformations (5)

With the entries in the Jacobian matrix known, then the inverse can 
be computed and the derivatives with respect to the problem 
coordinates (which we need for our element integrals) are written in 
matrix form 

To compute the inverse of the Jacobian matrix requires that the  
Jacobian matrix is non-singular; the “Jacobian” or the determinant 
of the Jacobian matrix is non-zero.   
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Mapping Coordinate Transformations (6)

Putting it all together to compute our “element” stiffness matrix and 
load vectors, we need to consider the other terms in the integral.  

In addition to the terms involving the derivatives with respect to the 
problem coordinates, we need to also transform the differential 
area associated the integrals.  In 2-D the result is 

The Jacobian provides the mapping of areas (or volumes in 3-D) 
from the actual element to the master element.   In the long run, 
this approach greatly simplifies the computation of these element 
matrices.

 detdA dx dy J d d  
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Element Matrices for 1-D Linear 
Element using Natural Coordinates

Further, using vector notation

and the derivatives
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Element Matrices for 1-D Linear 
Element using Natural Coordinates (2)

Using the same function for the coordinate transformation

Then the Jacobian is 

And the temperature gradient is 
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Element Matrices for 1-D Linear 
Element using Natural Coordinates (3)

Now, evaluate the two integrals for the element stiffness and load 
vector
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Element Matrices for 1-D Linear 
Element using Natural Coordinates (4)

Now, evaluate the two integrals for the element stiffness and load 
vector
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1-D Quadratic Elements Using 
Problem Coordinates
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Element Matrices for 1-D Quadratic 
Element using Problem Coordinates

We will develop the element matrices using problem coordinates by 
assuming a quadratic temperature function with unknown 
constants,

To determine the constants, evaluate the temperature function at 
each node (3 eqs, 3 unknowns)
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Element Matrices for 1-D Quadratic 
Element using Problem Coordinates (2)

Solving for the three unknowns, results in

So
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Element Matrices for 1-D Quadratic 
Element using Problem Coordinates (3)

We need the temperature and shape function derivatives, 

and
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local node numbers

1

2

22

2

1

3 / 4 /

4 / 8 /

1/ 4 /

d

dx l x l
dd

l x l
dx dx

l x l
d

dx







 
 

   
  

     
      
 
 

Ψ

1T
31 2

2

3

T
dd ddT d

T
dx dx dx dx dx

T

 
 

   
     

   
 

Ψ
T

1 3

/ 2x l

2

0x  x l



ESP300: Finite Element Method II

Element Matrices for 1-D Quadratic 
Element using Problem Coordinates (4)

Now, evaluate the two integrals for the element stiffness and load 
vector
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Element Matrices for 1-D Quadratic 
Element using Problem Coordinates (5)

Or

We have everything in terms of x,  “just integrate it out!”
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Element Matrices for 1-D Quadratic 
Element using Problem Coordinates (6)

Now, evaluate the two integrals for the element stiffness and load 
vector

or
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Element Matrices for 1-D Quadratic 
Element using Problem Coordinates (7)

To summarize the 1-D quadratic element, the element stiffness and 
load vector are

And

We will apply them to our example problem later.
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1-D Quadratic Elements Using 
Natural Coordinates
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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates

We will develop the element matrices using natural coordinates 
using a quadratic temperature function. With natural coordinates, 
we will use a transformation that results in limits of our integrals 
being  -1 to +1. 

Recall that we will need integrals of the form

and

Just what terms will we need?
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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates (2)

We begin with shape functions for the temperature function written 
in natural coordinates
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local node numbers
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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates (3)

We will need the derivatives of the shape functions and the 
temperature function.

We will also need the Jacobian

element e
local node numbers

1

2

3

1/ 2

2

1/ 2
















 
    
   

     
     

 
 

Ψ

1T
31 2

2

3

T
T

T

T

 

    

 
     

     
       

 

Ψ
T

1 3

0 
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1   1  
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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates (4)

We will also need to construct the Jacobian.  For an isoparametric 
coordinate mapping, the entries in the Jacobian matrix can be 
computed using the assumed coordinate functions.

which, for 1-D simplifies to

or

with 

1

( , )N
i

i
i

x
x

  

 




 


 

x y

x x
J

x y

y y

  

  

          
                               

                 

Ψ Ψ Ψ
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J
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
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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates (5)

Using the same function for the coordinate transformation

Then the Jacobian  is 

Note that this time, the Jacobian is a function of position

      
1T

2

3

1/ 2 2 1/ 2

x
dx

xJ
d

x

  
 

 
  

       
  

 

Ψ
x
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T 2
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x
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x

    

 
 
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 
 

Ψ x



   
T
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dx

J x x x
d

  
 


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
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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates (6)  

So, we now have determined all the terms necessary to evaluate 
the element matrices

Note that for the element stiffness, the integrand is a ratio of 
polynominals.  We will resort to numerical integration to evaluate 
these.  Extrapolate that thought to multi-D problems, because that’s 
where we are heading.  We will defer the discussion of numerical 
integration for later.

 
   

 
 

T1
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1 1e
d d

k J d
J d d J
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
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 
   
 

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   
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e Q J d  

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Element Matrices for 1-D Quadratic 
Element using Natural Coordinates (7)

To summarize the 1-D quadratic element, the element stiffness and 
load vector are (again)

And

We will apply them to our example problem later.

1

4
6

1

e Q l
 
 

  
 
 
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Revisit the 5-node Example Problem

For a total length of L, each element is L/2

Element 1 has global nodes 1, 2, and 3

Element 2 has global nodes 3, 4, and 5 

Recall, Q=2, L=k=1 with T(0)=1 and T(L)=2

Element “1” Element “2”

1 2 3 4 5



ESP300: Finite Element Method II

Contributions of Element 1 to the 
Global System of Equations

For element 1

“Assembly” of element 1 contributions in the global system of 
equations

1
( / 2)

4
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e Q L
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Contributions of Element 2 to the 
Global System of Equations

For element 2

“Assembly” of element 2 contributions in the global system of 
equations
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Modifications to the Global System of 
Equations for Specified Temperature

We can see how each of the element contributes to the global 
system of equations

Element “1” Element “2”

1 2 3 4 5

1

2

3

4

5

0 0

0 0
( / 2)

6( / 2) 6
0 0

14 16 2 1

16 32 16 4

2 16 14

14 16 2 1

16 32 1

1

6 4
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T
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     
     
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Modifications to the Global System of 
Equations for Specified Temperature

Substituting in for Q, k, and L

We still need to impose boundary conditions T(0)=1 and T(L)=2

1

2

3

4

5

7 8 1 0 0 1

8 16 8 0 0 4
1

1 8 14 8 1 2
4

0 0 8 16 8 4

0 0 1 8 7 1

T

T

T

T

T

     
             

      
          
         

Element “1” Element “2”

1 2 3 4 5
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Modifications to the Global System of 
Equations for Specified Temperature

For boundary conditions T(0)=1 and T(L)=2
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Results for 1-D Quadratic Elements

The FEM solution and the analytical agree.  

Because these are quadratic elements, the flux varies 
linearly from  q(0) = -2   to q(L) = 0.  

x/L :            0         ¼          ½           ¾           1

FE Temp:  8/8    11.5/8     14/8     15.5/8     16/8

Analytic :   8/8    11.5/8     14/8     15.5/8     16/8
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2-D Linear Elements Using
Problem Coordinates
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2-D Linear Triangles Using 
Problem Coordinates  

i

y

x

k

j

We will develop the element matrices using problem coordinates by 
assuming a quadratic temperature function of the form

The constants are determined by 
evaluating the function at the nodes results 
in 3 equations with 3 unknown constants

1 2 3i i iT x y    

1 2 3( , )T x y x y    

1 2 3j j jT x y    

1 2 3k k kT x y    
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2-D Linear Triangles Using 
Problem Coordinates (2)  

i

y

x

k

j

The set of equations can be rewritten as 

Solving, results in the following constants

     1
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2
j k k j i k i i k j i j j i kx y x y T x y x y T x y x y T

A
        

1

2

3

1

1

1

i i i

j j j

k k k

T x y

T x y

T x y







     
        
         

     2

1

2
j k i k i j i j ky y T y y T y y T

A
        

     1

1

2
k j i i k j j i kx x T x x T x x T

A
        

1

where 2 det 1
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i i
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x y
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x y
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2-D Linear Triangles Using 
Problem Coordinates (3)  

i

y

x

k

j

The shape functions are 

where the constants are given by 

 

 

 
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2-D Linear Triangles Using 
Problem Coordinates (4)  

i

y

x

k

j

Using these shape functions, the temperature profile and 
derivatives can be written as

And the gradients as          

 
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i i
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1 1
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2-D Linear Triangles Using 
Problem Coordinates (5)  

i

y

x

k

j

The derivatives needed in the element matrices can be written in 
matrix form 

1
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i i i i

j j j j

k k k k

a b x c y

a b x c y
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a b x c y
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2-D Linear Triangles Using 
Problem Coordinates (6)  

i

y

x

k

j

The derivatives of the temperature can be written in matrix form 

 T 1
, ,

2

i

ji i i j j j k k k
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2-D Linear Triangles Using 
Problem Coordinates (7)  

i

y

x

k

j

The element stiffness matrix can be written as 

e

e
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x
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2-D Linear Triangles Using 
Problem Coordinates (8)  

The element stiffness matrix can be written as 

Integrating (everything is constant)

2 2

2 2

2
2 24 e

ii i i j i j i k i k

e
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k i k i k j k j k k k
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2-D Linear Triangles Using 
Problem Coordinates (9)  

The volumetric energy generation (load vector) can be written as 

Integrating

1
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ESP300: Finite Element Method II

2-D Linear Triangles Using 
Problem Coordinates (10)  

The load vector is 

where 

and  
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2-D Linear Triangles Using 
Problem Coordinates (11)  

The load vector is 

 

 

 

1

2 1
1

1
32

1
1

2

i i i

e

j j j

k k k

a b x c y
A

QA
QA a b x c y

A

a b x c y
A

 
  

  
   

     
   

  
  

 

F



ESP300: Finite Element Method II

2-D Linear Triangles Using 
Problem Coordinates (12)  

Summarizing, 

the element stiffness is given by

and the load vector is 1
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ESP300: Finite Element Method II

Example Problem Using 
2-D Linear Triangles

We will consider our continuing example problem

For a total length of L, 

Each element is w=L/4 wide and h=L/4 high

Recall, Q=2, L=k=1 with T(0)=1 and T(L)=2

Assume constant conductivity and volumetric energy generation
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Example Problem Using 
2-D Linear Triangles (2)  

For element 1,  global nodes i=1, j=3, k=2

Elements 2, 3, and 4 are identical
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Example Problem Using 
2-D Linear Triangles (3)  

For element 1,  global nodes i=1, j=3, k=2

Substituting w = L/4, h = L/4, and A = hw/2 = L2/32 

Elements 2, 3, and 4 are similar
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Example Problem Using 
2-D Linear Triangles (4)  

For element 5,  global nodes i=4, j=2, k=3   

Substituting w = L/4, h = L/4, and A = hw/2 = L2/32 

Elements 6, 7, and 8 are similar
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Example Problem Using 
2-D Linear Triangles (5)  

Assembly of the element stiffness for elements 1, 2, 3, and 4

And for elements 5, 6, 7, and 8

Where the “exponent” refers to the corresponding element number
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Example Problem Using 
2-D Linear Triangles (6)  

The global stiffness matrix is populated with element contributions

where the “superscripts” refer to the corresponding element 
number
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Example Problem Using 
2-D Linear Triangles (7)  

The global load vector is populated with element contributions

where the “superscripts” refers to the corresponding element number
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Example Problem Using 
2-D Linear Triangles (8)  

So, the global system of equations is

For this problem, we will apply temperature boundary conditions at 
the two ends of the domain.
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Example Problem Using 
2-D Linear Triangles (9)  

Applying the boundary conditions at T(0)=1 and T(L)=2
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Computed Results for 
2-D Triangular Elements

The FEM solution and the analytical agree.  However, 
because these are constant flux elements, the flux is 
discontinuous as it was with the linear 1-D element. 

x/L :            0         ¼          ½           ¾           1

FE Temp:  8/8    11.5/8     14/8     15.5/8     16/8

Analytic :   8/8    11.5/8     14/8     15.5/8     16/8


