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} Introductory Info

Evacuation Procedures:
« Exits are located...
e Restrooms out back

Classification:
« Absolutely no classified discussions
« If you have a concern, let us know

« Some material may be OUOQO, it will be marked
as such
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>
} Summary for

Finite Element Method

Begin with:
« General integrals for element “stiffness” and “load”
vectors

and end with:

» Global system of equations for one-dimensional
and two-dimensional steady heat conduction
equation with selected element types
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A 4
} Questions for Finite Element Method II:

* How do we compute “element” matrices in a general
way for more complex, multi-dimensional elements?

* What are problem coordinates, natural coordinates?
* What are isoparametric mappings?
* What are the “Jacobian matrix” and the “Jacobian?”

* How do we “assemble” these element matrices into a
global matrix?
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% Preview

Today we will cover the following topics:

« Coordinate transformations between problem

coordinates and natural coordinates (master
elements)

* 1-D linear element using natural coordinates
« 1-D quadratic element using problem and natural

 2-D triangle using problem coordinates
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Comments on Computing
Element Matrices

Recall from last time that we need to compute element matrices of the
following form.

K¢ = J:z v, k W, dx F :szl//i O(x)dx

y

We need to define shape functions and derivatives of shape functions in a
way that is convenient in a more general sense.

To do so, we will consider “mapping” elements in physical space into a
“master” element or a (-1 to +1) space. We will also have to use numerical
integration to compute the element matrices in the general case.

Numerical integration of element matrices for general element shapes is
the primary driver!

ESP300: Finite Element Method i



To develop the transformation between
actual element and the master element,
we will use an “isoparametric” mapping
and will consider a 2-D development.

n y=Yy
| / n =+l
Q
> G
n=-1
E=-1 E=+1
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A
}Mapping Coordinate Transformations (2)

To begin, we change coordinates from (x, y) to (i ,T])
X = x(é,n) Y = y(éﬂ?)

Now

v (x, )=y {x(E,n), €M) |
To compute the derivative of the shape function, use the chain rule

0¥ 0¥ ox 0¥ oy

e ox 0E oy ot

0¥ _0¥ox 0¥ oy

on  ox on dy onm
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Mapping Coordinate Transformations (3)

Expressed in matrix form

oY) [ax oy |[o¥) Eia
0 O 0

) g [ _ g g ) ax >:[J]< ax y
oY ox oy ||o¥ o¥
on) |on on |l oy 0

Where [J ] is the Jacobian matrix of the transformation.

For an isoparametric mapping, we use the same coordinate
functions as for the shape functions

x(éj,n)=in l//i(éjarl) J/(CZE,TI)ZZ)/,- l//z'(é:rl)
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A
}Mapping Coordinate Transformations (4)

For an isoparametric coordinate mapping, the entries in the
Jacobian matrix can be computed using the assumed coordinate

functions. N r o o
oY ox oy |(ow Bk
0 o 0
X §>: : : <ax>:[J]<ax>
o¥ ox oy ||o0¥ oY
(on) [on on Loy | LY
Which yields
B oy, (é n) 5 Oy, (é n)
_lexl Z
ox & 81//(5 n) = aq/(g n)
—=2.x Z
an i=1 i=1
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Mapping Coordinate Transformations (5)

With the entries in the Jacobian matrix known, then the inverse can
be computed and the derivatives with respect to the problem

coordinates (which we need for our element integrals) are written in
matrix form

ra‘I'\ ra—‘I'\
ox | 0&

<§E{>:[J]l<aq?>

Ly L on |

To compute the inverse of the Jacobian matrix requires that the

Jacobian matrix is non-singular; the “Jacobian” or the determinant
of the Jacobian matrix is non-zero.

[ ox Oy |
0 0
"Jacobian" =J = det[J] = det S S
x
| on  on |
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Mapping Coordinate Transformations (6)

Putting it all together to compute our “element” stiffness matrix and
load vectors, we need to consider the other terms in the integral.

In addition to the terms involving the derivatives with respect to the
problem coordinates, we need to also transform the differential
area associated the integrals. In 2-D the result is

dA = dxdy = det[J]déE dn

The Jacobian provides the mapping of areas (or volumes in 3-D)
from the actual element to the master element. In the long run,
this approach greatly simplifies the computation of these element
matrices.
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p Element Matrices for 1-D Linear
Element using Natural Coordinates
Further, using vector notation

T:{%}:{(l_é)/z} , T=¥"T={(1-¢)/2, (1+(§)/2}{?}

¥ (1 +& ) /2 2
and the derivatives

Cdy
d¥_]ds >={_1/2} AT _AY p oy, 1/2}{T1}
de dy, [ | 2] 7 ag ae T,
g
/lljl l//2\
element e —
local node numbers 4 )

+1

c=-1 c=0 S
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} Element Matrices for 1-D Linear
Element using Natural Coordinates (2)
Using the same function for the coordinate transformation

x=Wx={(1-¢)/2, (1+§)/2}{xl}

X2
Then the Jacobian is

dx o¥' x| 1
szzz o x={—1/2, 1/2 }{ 1}=§(x2—x1)

X,

And the temperature gradient is

B T
df _ds dT _ 1l 1 d¥ o Lo 1, 12y
dc  dx dE J dE T dE  J T

2

dT 1 I
dx (xj—xl.)/2{_1/2 ’ 1/2}{7"2}
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Element Matrices for 1-D Linear
Element using Natural Coordinates (3)

},’

Now, evaluate the two integrals for the element stiffness and load
vector

YA d‘I’T 1d¥Y d¥" 1
K°T= k ke~ —
U dx j (J J dé dé T

Jdé |T

X

e } [ +1 1 _1/2 1 Ti\
et o g
: k(-1 T, kgL -l .
cro(L11 ey (L1 el 7]

k 1 -1](T
KT =
(xz_x1) -1 1 Tz,
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} Element Matrices for 1-D Linear

Element using Natural Coordinates (4)
Now, evaluate the two integrals for the element stiffness and load
vector

Xy +1

F* =j ¥ O(x)dx = :‘I’Q J dE

F = Y0 e - {:V"}Q J dt
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A4
} 1-D Quadratic Elements Using

Problem Coordinates
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. Element Matrices for 1-D Quadratic

';,7
Element using Problem Coordinates

We will develop the element matrices using problem coordinates by
assuming a quadratic temperature function with unknown
constants, a's

T(x) = a, +a,x+a,x°

To determine the constants, evaluate the temperature function at
each node (3 eqgs, 3 unknowns
e ' 1) =T = q,

T(1/2) =T, = a, +a, (1/2)+a, (1/2)
T() =T, = a, +a,l+a,l’

element e — | 2 3
local node numbers
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Solving for the three unknowns, results in

a, =T, o, =(—37,+4T,-T;)/ L
So
le\ (ll/l\
T=‘I’TT={I//1 Y, Vs }<Tz> Y=y,
5 ) Vs )
v,

v,

element e —
local node numbers

1
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Element Matrices for 1-D Quadratic

';,'
Element using Problem Coordinates (2)

=2(T,-2T,+T;)/I?

1-3(x/D)+2(x/1)*
Ax/D)—4(x/1)

I\

'S

—(x/ D) +2(x /1Y

l//:; A

3
z

xX=



Element Matrices for 1-D Quadratic
Element using Problem Coordinates (3)

We need the temperature and shape function derivatives,

o
T 1
dI _d¥ T dy, dy, dy, I
dx dx dx dx dx
%y
g )
and ;,//1 ( \
p dx —3/1+4x /1
= ;”2 L) 4/1-8x/? |
x x “1/1+4x/ 1
dy, : ’
| dx
element e — i 2 3
local node numbers
x=0 x=1/2 x=I
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}- Element Matrices for 1-D Quadratic
Element using Problem Coordinates (4)

Now, evaluate the two integrals for the element stiffness and load

vector
VA A b
K¢ T:( j k dx | T

 dx dx
( dy, \ \
l ddx d d d Tl |
Ke T — jk ) l//Z [ l//I l//2 l//3 dx ) ]'vz (
g dx dcx dx dx T
dy, -
. L ax )
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Or

KT =

dy, dy, | (dy, dy, \( dy, dy,
dx dx dx dx dx dx
dy, dy, \(dy, dy, \( dy, dy,
dx dx dx dx dx dx
dyy dy, \(dy, dy, |( dy, dy,
dx dx dx dx dx dx

dx

We have everything in terms of x, “just integrate it out!”

1

k

KT = —
61

x=0

[ 14 -16

-16 32

2 -16
2

x=1[/2

21 (T

—16 4T2 <

14 || T
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. Element Matrices for 1-D Quadratic
Element using Problem Coordinates (5)




Element Matrices for 1-D Quadratic

s

Element using Problem Coordinates (6)

Now, evaluate the two integrals for the element stiffness and load
vector

( dl/jl A

dx
dy,

F* :j- Y O(x)dx =

dx
dy,

dx |
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Ax/1)—4(x/1)
—(x/ )+ 2(x /1)

L O(x) dx = j < L O(x)dx




Element Matrices for 1-D Quadratic

Element using Problem Coordinates (7)

To summarize the 1-D quadratic element, the element stiffness and

load vector are

14
KeT:E —16

6/
2

And )
Z (1\
Fe=Q—<4>

6

1

—-16
32
—-16

- 3

2
—16 |4
14

SN

1 J

v,

|
x=0

x=1[/2

We will apply them to our example problem later.
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A4
} 1-D Quadratic Elements Using

Natural Coordinates
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Element Matrices for 1-D Quadratic
Element using Natural Coordinates

'}'

We will develop the element matrices using natural coordinates
using a quadratic temperature function. With natural coordinates,
we will use a transformation that results in limits of our integrals
being -1 to +1.

Recall that we will need integrals of the form

X T T
i J-d‘l’kd‘l’ Ik1d‘1' AR
dx J dE dE J

X1

and

:T Y O(x)dx = ]‘I’Q Jdé

Just what terms will we need?
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Element Matrices for 1-D Quadratic

';,'
Element using Natural Coordinates (2)

We begin with shape functions for the temperature function written
in natural coordinates

Tl 14 _5(1_5)/2
T=‘I’TT={I//1 vV, Y, }<Tz> T:<W2 F =9 1—52 s
& vy) [ E(1+&)/2

v,
l//1 l//3 A

element e — 1 3
local node numbers ¢

=-1 §=0 ¢ =+l
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Element Matrices for 1-D Quadratic

';,'
Element using Natural Coordinates (3)

We will need the derivatives of the shape functions and the
temperature function.

| ) oy, \
. L, P
T _ 0¥ T:{ oy, Oy, Oy, }<T > ) (E-1/2)
0 o A L e R
3 = | ez
oy,
0
We will also need the Jacobian L 05
element e — 9 3
local node numbers I | — —

E=-1 =0 E=+1

ESP300: Finite Element Method Il



We will also need to construct the Jacobian. For an isoparametric

Element Matrices for 1-D Quadratic
Element using Natural Coordinates (4)

coordinate mapping, the entries in the Jacobian matrix can be
computed using the assumed coordlnate functions.

which, for 1-D simplifies to

with

8‘1’ [ Ox Oy 8_‘1’ 8_‘1’

0

J <§>: 0& a§<5x>:[J]<8x>

oY ox oy ||o¥ o¥

on ) |on on |l oy 0
O¥ ox oY []a‘P or oY _10¥
0E  OF ox Ox ox  J &

ox & oy(s,.m)
ot ,lex’ PY:
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Element Matrices for 1-D Quadratic

';,7
Element using Natural Coordinates (5)

Using the same function for the coordinate transformation

xl
x=W'x={-6(1-€)/2 1-& E(1+&)/2} x,
Then the Jacobian is X, |
A OP &
X
- x={(E-1/2) (-2¢) (&+1/2 )}<f>
dx_@‘I'T

= o x = (§-1/2)x, = 2&x, + (E+1/2 )x,

Note that this time, the Jacobian is a function of position ‘5
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p Element Matrices for 1-D Quadratic
Element using Natural Coordinates (6)

So, we now have determined all the terms necessary to evaluate
the element matrices

o [, 01 dY(E) dYT(E) 1
KT:U"J(&) dg  de J(é)J(é)dé)T

- j\P(g)Q J(E)de

Note that for the element stiffness, the integrand is a ratio of
polynominals. We will resort to numerical integration to evaluate
these. Extrapolate that thought to multi-D problems, because that’'s
where we are heading. We will defer the discussion of numerical

integration for later.
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- Element Matrices for 1-D Quadratic
Element using Natural Coordinates (7)

To summarize the 1-D quadratic element, the element stiffness and

load vector are (again)

- 3

[ 14 -16  2|(T,
KT="|_16 32 -16/i7,!
6l ’
2 -16 14||T,]
And v
rl\ lljl 2
[
Fe=Q—<4>
6 1 1
. J gz_l azo

We will apply them to our example problem later.
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Revisit the 5-node Example Problem

Element “1” Element “2”
/ —- ™~ — ™
o . . . o
1 2 3 4 )

For a total length of L, each element is L/2
Element 1 has global nodes 1, 2, and 3
Element 2 has global nodes 3, 4, and 5
Recall, Q=2, L=k=1 with T(0)=1 and T(L)=2
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Contributions of Element 1 to the
Global System of Equations

For element 1

14 -16 2 |(T) 1)
T=—* 16 32 -16[i1,! A
6(L/2) 6
| 2 -16 14 ]|T]

“Assembly” of element 1 contributions in the global system of

equations
(14 -16 2 0 0](T7;) (1)
" ~-16 32 -16 0 0|7, i 4
2 -16 14 0 0 <T3>=Q( ey
6(L/2) 6
0O 0 0 0 0T, 0
00 0 0 0of(T u
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For element 2

ok
C6(L12)

e

Contributions of Element 2 to the

Global System of Equations

(14
~16

2

—-16
32
—-16

2
16
14

-

L
I,
I

3N

L J

Q(L/2)
6

F°=

2

“Assembly” of element 2 contributions in the global system of

equations
(14 -16 2 0
. -16 32 —-16 0
2 -16 14+14 -16
6(L/2)
0 0 —16 32
0 0 2 -16

0
0
2
16
14

N NNNN

4
QLD ]y
6
4
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Modifications to the Global System of
Equations for Specified Temperature

Element “1” Element “2”
A A
'z N N
@ @ @ @ @
1 2 3 4 5
(14 -16 2 0 0 (7 (1)
L -16 32  -16 0 0 ||T, i 4
2 —16 14+14 -16 2 <T3>=Q( )<1+1>
6(L/2) 6
0 0 -16 32 -16||T, 4
|0 0 2 -16 14 ||T;] | 1]

We can see how each of the element contributes to the global

system of equations
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Modifications to the Global System of

';,7
Equations for Specified Temperature

Element “1” Element “2”
AN A
' N I
@ - - - @
1 2 3 4 5
Substituting in for Q, k, and L
(7 -8 1 0 0|7 (1]
8 16 -8 0 0 [|T, 1 4
1 -8 14 -8 1 |\I;;= Z< 2
0 0 -8 16 -8||T, 4
L O O 1 _8 7 - \]-;/ \1/

We still need to impose boundary conditions T(0)=1 and T(L)=2
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0 O

-8 14

16
-8

-8
7_

N NNNN

ISR

—

— AN A~

Modifications to the Global System of
Equations for Specified Temperature

4D

ESP300: Finite Element Method Il

(4(2))



A 4
p Results for 1-D Quadratic Elements

The FEM solution and the analytical agree.

Because these are quadratic elements, the flux varies
linearly from q(0) =-2 toq(L)=0.

x/L : 0 Ya VZ % 1
FE Temp: 8/8 11.5/8 14/8 155/8 16/8
Analytic: 8/8 11.5/8 14/8 15.5/8 16/8
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2-D Linear Elements Using
Problem Coordinates

;’
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2-D Linear Triangles Using
Problem Coordinates

We will develop the element matrices using problem coordinates by
assuming a quadratic temperature function of the form

k T'(x,y)=0,+o,x+a,y

The constants are determined by
evaluating the function at the nodes results
in 3 equations with 3 unknown constants

‘[ : I =o+a,x +a,y,
N T] =0, +0,X, +0,),

I, =o,+0o,x, +0,),
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The set of equations can be rewritten as

1
> =11
1

J L

2-D Linear Triangles Using
Problem Coordinates (2)

Vi
Y

Vi |

k

L

a,= i:(xjyk —x, )T+ (5= x0T, + (%3, = x0T, |
afﬁ:(y,-—yk)Tﬁ (9 =2)T, + (3 -2,)T, |
alzi:(xk—xj) l.+(xl.—xk)Tj +(xj—xl.)Tk] where

ESP300: Finite Element Method Il
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' '
p 2-D Linear Triangles Using
Problem Coordinates (3)

The shape functions are

1
Y, :ﬂ(ai+bix+ciy) k
V, = 2114(61 +b.x+c y) j

1 Y
Vi :ﬂ(ak_i_bkx_i_cky) | A

where the constants are given by

; = XY =%, b =y,~¥ ¢ =X, —X,
d; =X Vi =XV bj = Vi =i C, = X; =X
dy, =XV, =XV, bk:yi_yj Cp =X, =X
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' '
} 2-D Linear Triangles Using
Problem Coordinates (4)

Using these shape functions, the temperature profile and
derivatives can be written as

k

T(X,y) — Zwi(xay)];

i=1

And the gradients as ¢

oT(x,y) <=0y, b
= E T = E —T
Ox =~ ox ' =24

5T(x,y) :iaWZT :ﬁ: Ci T
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2-D Linear Triangles Using
Problem Coordinates (5)

The derivatives needed in the element matrices can be written in

matrix form
A (a.+bx+cy k
‘I’:<l//j>:ﬁ<aj+bjx+cjy>
25 a,thx+c.y|
yA
_al//i al//i_ i
Ox oy p - &
e
oW oW | |0y, Oy, |_ 1| -
Ox Oy ox oy | 24| 7
b, ¢
oy, Oy, ) )
ox oy
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2-D Linear Triangles Using
Problem Coordinates (6)

The derivatives of the temperature can be written in matrix form

NN~

T:TTT:ﬂ{ai+bix+cl.y, a,+bx+c,y, ak+bkx+cky}<
= b, b, b i k
3 ox >=L S Y
T 24[c ¢ |
oy Uy
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' '
p 2-D Linear Triangles Using
Problem Coordinates (7)

k
The element stiffness matrix can be written as
(0T )
A Yy
K°T= IF‘P aq’}mg}m ‘[ :
el ox oy ol
©a

¢, C. C

1

[ [b ¢ Y (T
k © 5ifb b b
KT= [, « S dA | T
A° bk C, J ) Tk
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2-D Linear Triangles Using
Problem Coordinates (8)

The element stiffness matrix can be written as

" b +c’ bb +cc, bb +cc, I,

K°‘T= J‘ b.b +cc, bj2 —l—cj2 bb, +cic, |dA| T, ¢
4 T

k

44°

e 2 2
| bib +cc; bbb +cc, b+

Integrating (everything is constant)

" I b +c’ bb +cc, bb +cc, 1 (1
K‘T= Y bb+cc, b’+c’ bbb +ce | T}
| Db +cc; bb +oc b’ +c,’ IR
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' '
} 2-D Linear Triangles Using
Problem Coordinates (9)

The volumetric energy generation (load vector) can be written as

(a.+bx+cy ]
., 1
F =57 ca,+bx+c,yr0(x,y)dA
4 a,+bx+c,y
Integrating
j a, +bx+cy)dA
A°
Fe:2<j a +bx+cy dA \
24 | 4
j a, +b.x+c,y)dA
A° y
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>
} 2-D Linear Triangles Using
Problem Coordinates (10)

The load vector is

j(ai +bl.x+cl.y)dA L(ai +bl.)_c+cl.)7)
A 2A
Y +bx+c,y)dA| _ I —
F _ﬂ</‘1“e(aj+ Jx+cjy) 1 —QA<ﬁ(aj+bjx+cjy)>
1 _
/}[(ak+bkx+CkJ’)dA) \ﬁ(ak+bkx +cky))
where | xda=x4 | yda =74
A° A°

1
and colye o velyy
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2-D Linear Triangles Using
Problem Coordinates (11)

ol

The load vector is

—(a, +bX +¢,y)

21A OA L
F¢ = QA<ﬁ(aJ+bj)_c+cj)7)>=T<i>

1 . . -

ﬁ(ak+bkx+cky)
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A
} 2-D Linear Triangles Using
Problem Coordinates (12)
Summarizing,

the element stiffness is given by

2 2
emqp_ 2 2

2 2
bib, +cc; bbb +cc, b+

and the load vector is y ]
F¢ = Q—< 1
3
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Example Problem Using
2-D Linear Triangles

We will consider our continuing example problem

2 4 6 8 1 0
e5 eb e’/ e8
e e2 e3 ed
[
1 3 5 7 9
Ly

For a total length of L,

Each element is w=L/4 wide and h=L/4 high
Recall, Q=2, L=k=1 with T(0)=1 and T(L)=2

Assume constant conductivity and volumetric energy generation
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' '
} Example Problem Using
2-D Linear Triangles (2)

For element 1, global nodes i=1, j=3, k=2

a =Xy, =%y, =hw b =y, -y =- G =X =X, =—W

aj:xkyi_xiyk:() bj:yk_yi: h Cj:xi_xk:()

ak:xiyj_xjyi:() bk:yi_yj:() Cp =X, =X =W

" nw+w —h —w| (T 1)
K°T= a —hzi h2 0 4]; ; Fe:%<l>
—W 0 w | |5 1

Elements 2, 3, and 4 are identical
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' '
}' Example Problem Using
2-D Linear Triangles (3)

For element 1, global nodes i=1, j=3, k=2

) B+t =k Wt | (T
K'T=—| -, K 0 |{T; Fe=4,
44 X ) 3
—W 0 w T,
Substituting w = L/4, h = L/4, and A = hw/2 = L2/32
k'z -1 -1 (T (1
K'T=—|-1 1 0 |<L¢ Fe:QL<1>
-1 0 1] |7 il

Elements 2, 3, and 4 are similar
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e '
}' Example Problem Using
2-D Linear Triangles (4)

For element 5, global nodes i=4, j=2, k=3

) B+t =k W | (1)
K'T=—| -, K 0 |7 Fe=4,
44 , , 3
| W 0 wo |\ T
Substituting w = L/4, h = L/4, and A = hw/2 = L2/32
k'z -1 -1] (71, (1
KeTzz—l 1 0 |[<T} re= 2L )\
-0 1T el

Elements 6, 7, and 8 are similar
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Assembly of the element stiffness for elements 1, 2, 3, and 4

K T=

And for elements 5, 6, 7, and 8

K T=

K
2

K

2
-1
-1

2
-1
-1

-1
1
0

-1
1
0

Example Problem Using

2-D Linear Triangles (5)

—11

0
1

-1
0
1

-

§

3

el

N B R

J

es

§

e2

eb6

§

e3

e7

e4

e8

Where the “exponent” refers to the corresponding element number
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Example Problem Using
2-D Linear Triangles (6)

The global stiffness matrix is populated with element contributions

B 221
_lel

N | 3

_lel
lel + 125

_125

_lel
Oel + 025

_lel Oel +025 lel +222 +125

_122 _ 125

_122

_125
_122 _ 125
122 +2eS +126
022 +026

_126

_122
022 +026
122 +2e3 +126
_123 _ 126

_123

_126
_123 _ 126
123 +226 +le7
023 +Oe7
_127

_123
023 +Oe7
123 +2e4 +le7
_124 _ 127

_124

_127

_ 124 _ 127

_124

le4+2e7 +128 Oe4+028

Oe4 + 028
_128

124 + 128

_128

where the “superscripts” refer to the corresponding element
number
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_128
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Example Problem Using
2-D Linear Triangles (7)

The global load vector is populated with element contributions

N

v

lel
1€1+1€5
161+1€2+1€5
1€2+1€5+1€6
QLZ ) 16‘2 +le3 +le6 QLZ
96 |19 +1°+17 [ 96
le3+le4+le7
le4+le7 +le8
le4+1e‘8
16‘8

- N\
— N W W W W W W N

.

J

where the “superscripts” refers to the corresponding element number
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Example Problem Using
2-D Linear Triangles (8)

So, the global system of equations is

(2 -1 -1 (T 1

-1 2 0 -1 T, 2

-1 0 4 -2 -1 T, 3

-1 =2 4 0 -1 T, 3

k -1 0 4 -2 - | or|3
2 1 2 4 0 -1 T.[" 96 |3
-1 0 4 -2 -1 T, 3

-1 =2 4 0 -1||T 3

-1 0 2 -1||T 2

-1 -1 2|7, 1

For this problem, we will apply temperature boundary conditions at
the two ends of the domain.
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Example Problem Using
2-D Linear Triangles (9)

Applying the boundary conditions at T(0)=1 and T(L)=2

96

or

[2/k 0 0 T, 96
0 2/k 0 0 T, or
-1 0 4 -2 -l T, 3
-1 =2 4 0 -1 T, 3

k 1 0 4 -2 -1 T,| orr| 3
2 12 4 0 -1 [ 9 | 3
1 0 4 -2 -1 T, 3

-1 2 4 0o -1||1 3

0 0 2k 0|7 2(96)

0 0 2/k||T, or

2(96)

or
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p Computed Results for
2-D Triangular Elements

The FEM solution and the analytical agree. However,
because these are constant flux elements, the flux is
discontinuous as it was with the linear 1-D element.

x/L : 0 Ya VZ % 1
FE Temp: 8/8 11.5/8 14/8 155/8 16/8
Analytic: 8/8 11.5/8 14/8 15.5/8 16/8
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