

An Overview of the Claps Package

**Trilinos User Group Meeting
Albuquerque, New Mexico**

October 31- November 2, 2005

**Clark R. Dohrmann
Structural Dynamics Research Department
Sandia National Laboratories**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Outline

- 1. Package Description**
- 2. Some Applications**
- 3. Current & Future Plans**
- 4. Remaining Questions and Comments**

What is Claps?

A collection of domain decomposition preconditioners and solvers for

$$Ax = b$$

preconditioner $M^{-1} \Rightarrow M^{-1}Ax = M^{-1}b$

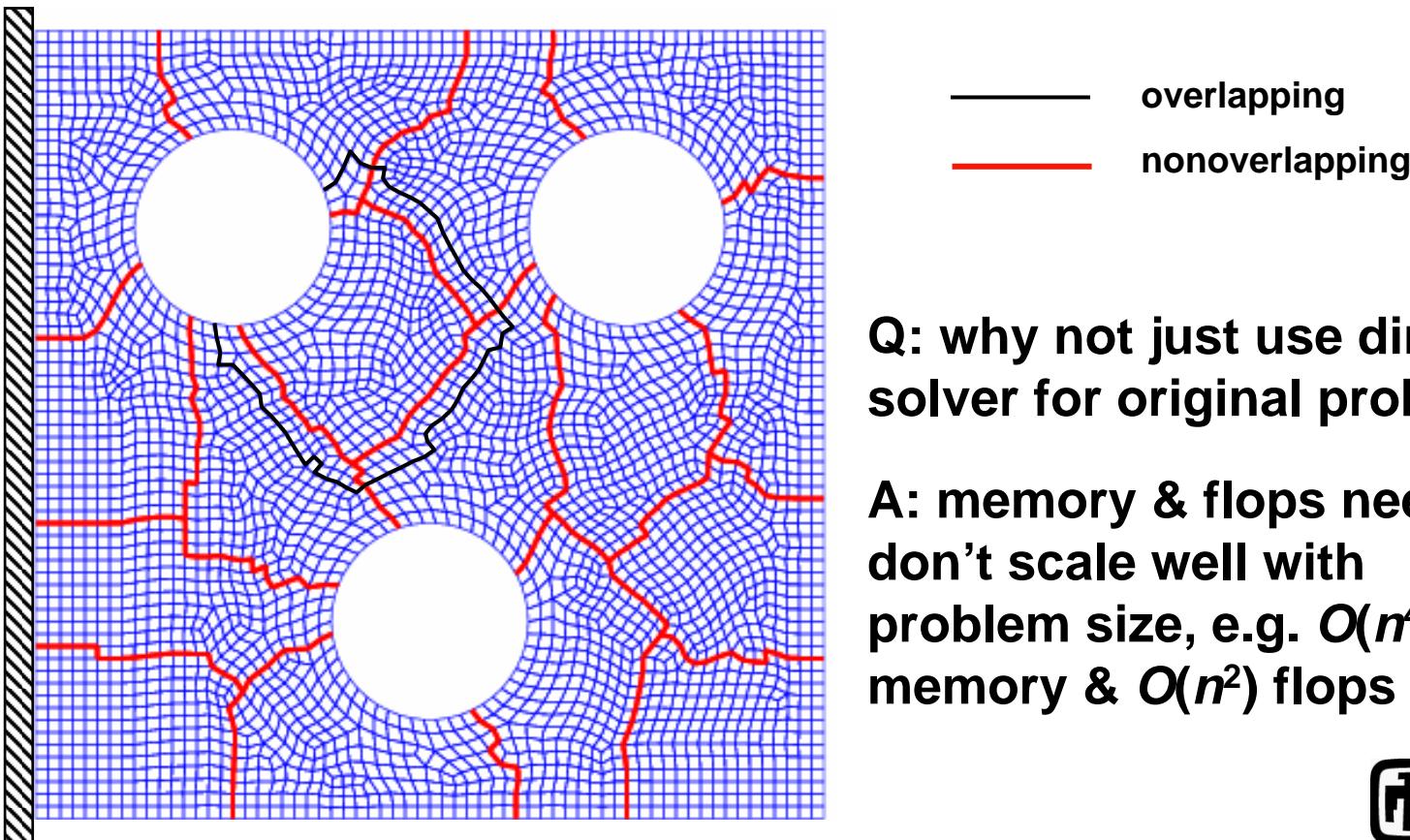
Some introductory books:

Smith, Bjorstad, and Gropp, *Domain Decomposition: Parallel and Multilevel Methods for Elliptic Partial Differential Equations*, Cambridge University Press, 1996.

Toselli and Widlund, *Domain Decomposition Methods: Algorithms and Theory*, Springer Series in Computational Mathematics 34, 2005.

What is Domain Decomposition?

Basic idea: solve smaller problems local to each subdomain (overlapping or nonoverlapping) and add results together. Coarse problem also needed for scalability.



Why Domain Decomposition?

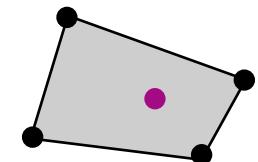
1. Previous success using FETI algorithms for difficult problems in Salinas
2. Parallel communications straightforward
3. Conceptually simple
4. Existing theory
5. Can use efficient sparse solvers

Claps Workhorses

- **CLIP**
 - an **interface (substructuring) preconditioner**
 - can be viewed as primal counterpart of FETI-DP
 - multilevel extensions and inexact solves possible
- **CLOP**
 - an **overlapping preconditioner**
 - **coarse problem more challenging than CLIP, but avoids unexpected subdomain singularities**
- **CLOP_IFD**
 - for **incompressible fluid dynamics problems**
 - **preconditioner for saddle point systems (not currently part of internal release)**

Constraint Equations

- Often appear in Salinas problems
 - tied contact (connecting dissimilar meshes)
 - rigid surfaces (e.g. for joint models)
- Constraint equations have historically presented big challenges to solvers
- Minimize $x^T A x / 2 - x^T b$ subject to $Cx = 0$



$$\begin{bmatrix} A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- Use sparse null space approach $\Rightarrow \tilde{A}\tilde{x} = \tilde{b}$

Some Applications

- **Claps used in current release of Salinas**
 - **Milepost 5.4 calculations for hostile blast**
 - **> 70k constraint equations in models**
 - **recent structural acoustics work (indefinite)**
- **CLOP_IFD currently used in incompressible fluid mechanics code Kachina**
 - **primal based penalty preconditioner for saddle point systems**
 - **applied to Stokes and Navier-Stokes problems**

How do I go about using Claps?

- **Store problem components in Epetra form (e.g. Epetra_CrsMatrix, Epetra_IntVector, ...)**
- **Best bet right now is to contact me about your specific application**
 - documentation limited to comments in the code
 - test problems need to be added to package
 - all capabilities driven by specific requests
- **Claps currently available in internal release only**

Current and Future Plans

- Use inexact solves
 - current versions of CLIP and CLOP use sparse direct solvers for subdomain and coarse problems
 - maximum number of elements assigned to each processor is constrained primarily by memory requirements of direct solvers
 - theory for inexact solves in CLIP recently developed, corresponding theory for overlapping methods (CLOP) already exists
 - would allow much larger problems to be run on the same number of processors

Current and Future Plans (continued)

- **Investigate AMG for inexact solves**
 - **combine simplicity of communications for domain decomposition with optimal complexity of multigrid**
 - **recent AMG development encouraging**

nelem	ndof	nlevel	iter	cond
$(8+2)^3$	2,187	2	8	1.37
$(16+2)^3$	14,739	3	8	1.38
$(32+2)^3$	107,811	4	9	1.39
$(64+2)^3$	823,875	5	9	1.40

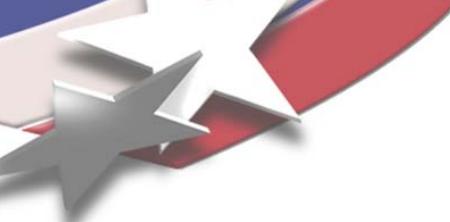
**3D elasticity
serial AMG
cube geometry
V-cycle, $\nu = 1$
 $rrtol = 10^{-8}$**

Current and Future Plans (continued)

- **Investigate new coarse problem for CLOP**
 - current coarse problem based on partition of unity
 - careful attention required for problems with rotational dofs (e.g. shells)
 - new approach based on energy minimization concepts (formulation for scalar PDEs, elasticity, and problems involving shells essentially same)
- **Multilevel Extensions to CLIP and CLOP**
 - currently both are 2-level methods w/ coarse problem solved exactly
 - for larger (>10k) processors, coarse problem will be too large to solve directly

Current and Future Plans (continued)

- **Preconditioners for Different Problem Types**
 - continue work on structural acoustics
 - shifted eigenproblems, direct frequency response
 - **non PDE problems (circuits) or different PDEs (e.g. electromagnetics)**
- **Move Claps to external release**
 - documentation
 - test problems



Additional References

- **CLIP**
 - C.R. Dohrmann, “A Preconditioner for Substructuring based on Constrained Energy Minimization,” *SIAM J. Sci. Comput.*, Vol. 25, No. 1, pp. 246-258, 2003.
 - J. Mandel and C.R. Dohrmann, “Convergence of a Balancing Domain Decomposition by Constraints and Energy Minimization,” *Numer. Linear Algebra Appl.*, Vol. 10, pp. 639-659, 2003.
 - J. Mandel, C.R. Dohrmann, and R. Tezaur, “An Algebraic Theory for Primal and Dual Substructuring Methods by Constraints,” *Appl. Numer. Math.*, Vol. 54, pp. 167-193, 2005.
- **CLOP**
 - C.R. Dohrmann, “A Study of Two Domain Decomposition Preconditioners,” Technical Report SAND2003-4391, Sandia National Laboratories, Albuquerque, New Mexico, 2003.
- **CLOP_IFD**
 - D. K. Gartling and C.R. Dohrmann, “Quadratic Finite Elements and Incompressible Viscous Flows,” to appear in *Comput. Methods Appl. Mech. Engrg.*
 - C.R. Dohrmann and R.B. Lehoucq, “A Primal Based Penalty Preconditioner for Elliptic Saddle Point Systems,” to appear in *SIAM J. Numer. Anal.*

Remaining Questions Comments

- See additional pages for more details on preconditioners

CLIP Building Blocks

Additive Schwarz:

- Coarse grid correction v_1
- Substructure correction v_2
- Static condensation correction v_3

$$\left. \begin{array}{c} \\ \\ \end{array} \right\} M^{-1}r = v_1 + v_2 + v_3$$

FETI-DP counterparts:

$$v_2 \leftrightarrow \sum_{s=1}^{N_s} B_r^s K_{rr}^{s^{-1}} B_r^{s^T} \lambda^k$$

$$v_1 \leftrightarrow F_{I_{rc}} K_{cc}^{*^{-1}} F_{I_{rc}}^T \lambda^k$$

$v_3 \leftrightarrow$ Dirichlet preconditioner

Coarse Grid and Substructure Problems

coarse problem:

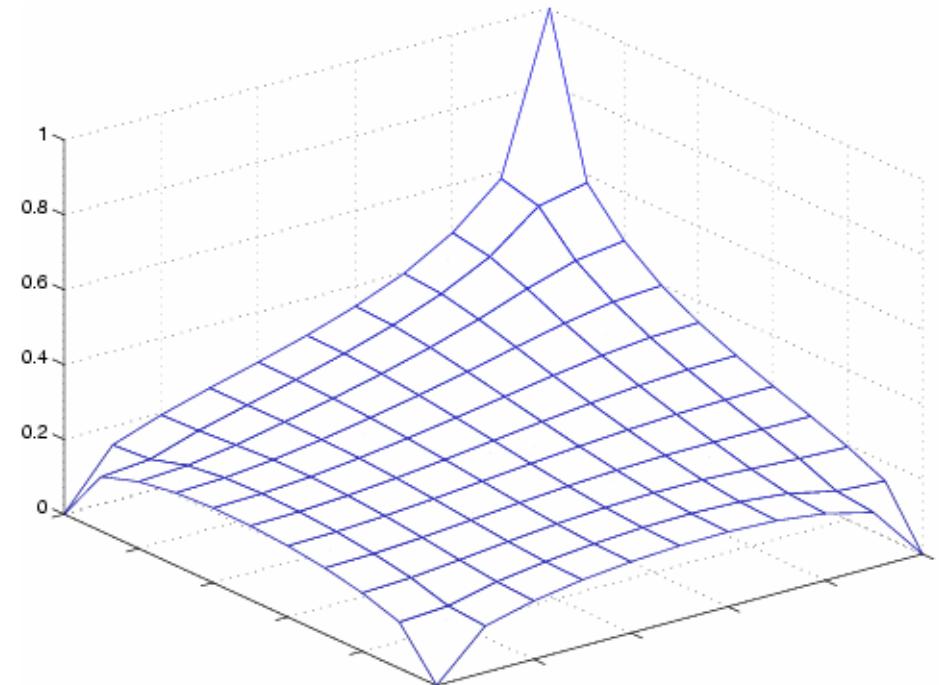
$$\begin{pmatrix} K_i & C_i^T \\ C_i & 0 \end{pmatrix} \begin{pmatrix} \Phi_i \\ \Lambda_i \end{pmatrix} = \begin{pmatrix} 0 \\ I \end{pmatrix}$$

$$\Rightarrow K_{ci} = \Phi_i^T K_i \Phi_i$$

- K_{ci} coarse element matrix
- assemble $K_{ci} \Rightarrow K_c$
- K_c positive definite

substructure problem:

$$\begin{pmatrix} K_i & C_i^T \\ C_i & 0 \end{pmatrix} \begin{pmatrix} v_{2i} \\ \lambda_{2i} \end{pmatrix} = \begin{pmatrix} r_i \\ 0 \end{pmatrix}$$



CLOP Description

Solve $Ax = b$ using pcg

Preconditioned residual $M^{-1}r$ obtained as follows:

1. coarse grid correction

$$u_1 = \Phi(\Phi^T A \Phi)^{-1} \Phi^T r$$

2. residual update

$$r_1 = r - Au_1$$

3. subdomain correction

$$u_2 = \sum_i R_i^T (R_i A R_i^T)^{-1} R_i r_1$$

4. residual update

$$r_2 = r_1 - Au_2$$

5. coarse grid correction

$$u_3 = \Phi(\Phi^T A \Phi)^{-1} \Phi^T r_2$$

6. preconditioned residual

$$M^{-1}r = u_1 + u_2 + u_3$$

Note: Steps 1 and 2 can be omitted after first iteration

Coarse Space

Coarse space (Φ) based on partition of unity (Sarkis)

- multiply rigid body modes by partition
- reduce coarse space energy further by static condensation

Same types of calculations required for subdomain problems are used to construct partition of unity

- takes advantage of existing factorizations/preconditioners for subdomain problems

Specialized treatment needed for problems with rotational dofs

- coarse space for simple treatment still spans rigid body modes, but energy too high

CLOP_IFD Preconditioner

original system:

$$\begin{pmatrix} A & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \quad \begin{aligned} & A > 0 \text{ on kernel of } B, \, C \geq 0 \\ & A^T = A, \, C^T = C, \, B \text{ full rank} \end{aligned}$$

penalized (regularized) system: Axelsson (1979)

$$\begin{pmatrix} A & B^T \\ B & -\tilde{C} \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \quad \tilde{C} > 0, \quad \tilde{C}^T = \tilde{C}$$

exact solution of penalized system

$$\begin{pmatrix} A & B^T \\ B & -\tilde{C} \end{pmatrix} \begin{pmatrix} z_u \\ z_p \end{pmatrix} = \begin{pmatrix} r_u \\ r_p \end{pmatrix}$$

is

$$z_p = \tilde{C}^{-1} (B z_u - r_p)$$

$$S_A = A + B^T \tilde{C}^{-1} B$$

$$z_u = S_A^{-1} (r_u + B^T \tilde{C}^{-1} r_p)$$

primal rather than dual Schur complement considered

$$S_{\tilde{C}} = -(\tilde{C} + B A^{-1} B^T)$$