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. '
} Introductory Info

Evacuation Procedures:
« Exits are located...
e Restrooms out back

Classification:
« Absolutely no classified discussions
« If you have a concern, let us know

« Some material may be OUOQO, it will be marked
as such
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A
p Summary for

Finite Element Method Il

Begin with:

 General form for element diffusion matrix and
source/flux vectors

and end with:

« General procedure for computing element matrices
and vectors in multi-dimensions
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A 4
} Questions for Finite Element Method lli:

* What complications are encountered in developing
general element matrices?

* What are simplex elements and simplex (area)
coordinates?

* What are natural coordinates for non-simplex
elements?

* What are typical shape functions for multi-
dimensional elements?

 How and why is numerical quadrature performed?
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' '
% Comments on Computing
Element Matrices

Recall again the definitions of the basic diffusion matrix
and load vector

J‘@‘I’ oy’

K Ox,

dQ  F'=[¥Q0dQ+|¥q,dr

The shape functions ¥ could be defined directly in terms
of the problem coordinates. This was done last time for the
linear triangle. We will revisit that formulation to include
the surface flux and to emphasize the need to change
coordinate descriptions.
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>
p 2-D Linear Triangle (1)

The shape functions for the linear triangle were developed
from k

T(x,y)=a,+0,x+0,y

which produced y
T(x,y)="¥"T L
(\|!l.\ ral.+bl.x+cl.y\ 0T(x,y) :5‘PTT
‘I’:<\|!j>:i<aj+bjx+cjy> Ox @xT
2A oT(x,y) oY
\N a,+bx+c.y = T
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A 4
} 2-D Linear Triangle (2)

The element stiffness matrix can then be written as

e T 3\ k
oY oY a;P !
K T= j{ }/« o ldd
wlOx oy ok 4 T ,
\ ay y | I
and substituting x
[ [b ¢ \ (T
| - b, b, b, l
K T= 5 jk b. c, / dA | 1, ¢
447 | -, o le ¢ ¢
N ) Uk,
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>
p 2-D Linear Triangle (3)

The element stiffness matrix can be written as

.

44

Ae

\

and integrating (if everything is constant)

K'T= ~

44

2 2
b +c, bb.+cc;, bb, +cc,
2 2
bb +ccc, b +c” bbb +cc,

2 2
Ob +cc; bbb+, b+
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| b” +c, bb.+cc, bbb, +cc,
e . 2 2
2 2
bb +ce; bbby +cc; b+

dA

o B B




>
} 2-D Linear Triangle (4)

The load vector for the volume source is

F, =

Ae

a.+bx+cy

1
jTQdA:ﬂ/}[ ta +b.x+c,y

a, +b,x+ ¢,V

which for constant O is

((al.+bl.)_c+cj)A\ N
(aj +bj)_c+cj)_/)A - :%< 1}
(a, +bx+c,y)A U
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A
} 2-D Linear Triangle (5)

For an element with an edge on the domain boundary
the flux vector for a specified flux g _is

where s is the coordinate along the edge and ¥ _ is the
element shape function restricted to (evaluated on) the
element edge.
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>
p 2-D Linear Triangle (6)

For the linear triangle, the edge shape function is a linear
function of distance along the edge or

:{I—S/h} and &= \/x —x y y)2

s/h

where s varies from 0 to /. For constant g,

’ h/2
F, =I‘I’S(S)qa ds=q, { hiz}
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A
} 2-D Linear Triangle (7)

For an element with an edge on the domain boundary
the flux vector for a convective flux ¢. is

k

F, =— [¥, h(T-T,)ds

y

F =— [W h (¥T-T)ds l,
- ‘

where s is the coordinate along the edge and Y is the
element shape function restricted to (evaluated on) the
element edge.

X
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>
} 2-D Linear Triangle (8)

For the linear triangle, the edge shape function is a linear
function of distance along the edge or

:{I—S/h} and h= \/x —x y y)2

s/h

where s varies from 0 to % . For constant #.and T,

h h
F; =— [W, 0¥ dsT+|¥ 1T, ds
0

e h3 hi6](T h/2
fo =0 L,/é h/3HT,}+hCTC{h/z}
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Summary for
2-D Linear Triangle (9)

2 2
b +c, bb,+cc, bbb, +cc,

e __ 2 2
K'T= —|bb+cc, b +c,” bb +cc |

~3 33

2 2
bb +cc; Db +oie; b+

\

w2 [H3 e[ 2
F, =4, {h/z} ek Lz/6 h/3HTj}+thc {’l/ 2}

o
F; =%< S
3

\lJ
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. '
p Example Problem Using
2-D Linear Triangles

Consider our continuing example problem

2 4 6 8 1 0
e5 eb e’/ e8
e e2 e3 ed
[
1 3 5 7 9
Ly

For a total length of L,
Each element is w=L/4 wide and h=L/4 high
Recall, Q=2, L=k=1 with q(0)=2 and q(L)=10 (T-2)
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>
} 2-D Linear Rectangle (1)

The shape functions for a linear rectangle element can

be derived from 44 3

T(x,y) =0, +a,x+a,y+o,xy b

which produces y )\ a | |

T(x,y)="¥'T L :
vi| [A-x/a-y/b O0T(x,y) _0W'

w_ V2 l_, (x/a)(1-y/b) > Ox Ox
vi[ | e/ 0T(ry) 0¥
v, | d=x/a)y/b) | 0y Oy
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A
} 2-D Linear Rectangle (2)

The element stiffness matrix can then be written as

(5\PT T\ 4. A .3
K°T= j o¥ WL & Ly b
ox Oy oY T y a
>

oy 1€ ¥ 3>
and substituting
—(l/a)(1~y/b) ~(/b)1~x/a)) X

I (/a)1-y/b)  —(1/b)(x/a) &
9

0 (1/a)(y/b) (1/b)(x/a)

| —({/a)y/b)  (A/b)1-x/a) |

O'—-.Qr‘

{—(1/ a)1-y/b) (/a)1-y/b)  (I/a)y/b) —(1/a)(y/b) } dxdy
~(I/b)1-x/a)  —(1/b)(x/a) (1/b)x/a)  (1/b)(1-x/a)

N NN~
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>
} 2-D Linear Rectangle (3)

After integration the stiffness is

-2b* +a’
2b* +2a’
b* —24°

2 2
—b" —a

_b2 . a2
b’ —2a’
2b° +2a’
-2b* +a’

b*—24°

_b2 _a2
—2b” +a’
2b” +2a°

for a constant k. The volume source vector is

2b* +2a’
N2 2
KeT:i 2b° +a
6ab| —b* —a?
_192—2012

(1\

pe = 2ab

1
4 |1
1
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A
} 2-D Linear Rectangle (4)

The load vector for the applied flux and convective heat
flux are the same as for the linear triangle.

[
F. =2y

. [w3 wel(T, B2
fo =R L,m h/sHTJ}+ s {h/z}

where /1 = a or b depending on the edge and i, j are
the nodes on the edge.
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e
P 4 ‘ Summary for
2-D Linear Rectangle (5)

2b* +2a* 2b*+a® -—-b*—-a’ b*—24% |
KT k |-2b>+a® 2b°+2a° b°-2a° -b’-a’

= — <

6ab| —b* —a* b*=2a° 2b*+2a° -2b*+a’

b* —2a’ —b*—a* 2b*+a* 2b*+24°

P B BN R

\

L ., [#3 HellT /2
F; =q, {h/2} fom ok L,/6 h/aHTj}”CTC {h/z}

., Qab
F¢ —
¢ 4

2

\
ek ek ek ek
N J
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~
*‘ Observations on 2-D Elements

» Successfully developed required element matrices and
vectors to represent steady heat conduction in 2D

* We should have observed some obvious limitations on
these elements and their descriptions (coordinates)

e For triangles, integration limits cause a problem when the
integrands are not constant

e For rectangles, the element geometry is not very useful as it
leads to a structured mesh and any generalization of the
geometry would lead to integration problems

* The conclusion from this exercise is that a more
general method of element description and matrix
construction is required
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A
% Simplex Elements (1)

Simplex elements for N-space are defined “as the
minimal possible nontrivial geometric figure in that space;
it is always a figure defined by N+1 vertices.” In 1-D, this
Is a line, in 2-D this is a triangle and in 3-D this is a
tetrahedron.

Shape functions for the 1-D element were previously
developed using the natural coordinates for the line. For
2-D and 3-D elements we need to develop shape
functions in the “natural” coordinates for the simplexes.
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A
} Simplex Elements (2)

General families of shape functions for 2D and 3D
simplex elements can be derived using Pascal’s
triangle and its 3D counterpart. For example, the family
of triangles

T(x,y)=a,+o,x+a,y
T(x,y)=a, +a,x+o,y+a,xy+ax’ +a,y’

2 2
T'(x,y)=a,+o,x+a,y+o,xy+ax +a,y” +

3 2 2 3
O, X +O0X Y+0O,Yy X+O,,Y
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A
} Simplex (Area) Coordinates (1)

A natural (or local) coordinate system for a triangle is
defined by the simplex or area coordinates. For a point
P located within a triangle, the area coordinates are
givenby L,L L, . These coordinates are the ratios of
the areas of the sub-triangles formed by point P and
any two vertices and the area of the triangle. For

example, the second coordinate 3 5>
bh bs A, s
= — ; = — . L2 _—= —
2 2 A h
A A A4
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A
} Area Coordinates (2)

The problem coordinates for the triangle are related to
the area coordinates by

N N
XZZIJLZ.XZ. : yzzll’iyi ZLizl

Using these relations, the inverse transformation can be
derived, which defines the linear shape function in area
coordinates

L | a+bx+cy W,

3L, p=—<a,+bx+c,y =y ="
24

L, | \ak+bkx+cky) WV,
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>
} Area Coordinates (3)

 Area coordinates vary from 0 to 1

* The area coordinates are not independent since there
are three coordinates to describe two spatial
dimensions

* The relation L, + L, + L, =1 allows the third
coordinate to be written in terms of the first two.
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A
p ‘ Simplex Elements (3)

Return to the writing of shape functions for the simplex
elements using the area coordinates

T(L)=Y"T (L(2L, -1)
L L,(2L,-1)
imear = Lo ¢ Tquadratic = 5 (2L3 ) .
L 4L L,
S 4L,L, 3 e—
3 , - 4LL ),
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A
} Simplex Elements (4)

(L,(3L,-D(3L,-2)
L(3L,-1)(3L,-2)
L, (3L3 - 1)(3L3 -2)
9LL,(3L, —1)
1| 9LL,3L,-1)
w2 9LL(3L,-1)
9L.L,(3L,—1)
9L,L,(3L, —1)
9L.L,(3L,-1)
54LL,L,
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'
% Isoparametric Triangle (1)

With the shape functions defined in area coordinates,
we want to return to the construction of the element
matrices and vectors. In order to allow a general
element shape, we will use the isoparametric mapping
defined previously to describe the element geometry.

Linear and quadratic shape functions are the usual
choices and the only ones considered here. We will
write the functions and their derivatives and then
construct the general form of the matrices.
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A
} Isoparametric Triangle (2)

Linear :

¥ =

[

Quadratic:
(L(2L, -1)
L,(2L, 1)

I AL L,
ALL,
ALL

3\

L3 (2L3 B 1)
X >

J

1
o¥, =0 ¢
oL,
k_1)
(4L1_1) |
0
4L, +4L, -3
1 oan,
-4,
8L, —4L, +4]
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0
(4L2 o 1)
4L, +4L, -3
4L,
—8L,—4L, +4
—4L,




Isoparametric Triangle (3)
Element Equation

}'

The weighted integral statement for steady conduction

j‘@‘l’ oy’

g OX

do T:jTQdQ+j‘ifqndr

which will produce
€ € € € € € €
K, +K{ +K, +K{ |T=F;+F;

We will consider how to construct each term in this equation
In preparation for assembly into the global system.

ESP300: Finite Element Method Il



'
}‘ Diffusion Matrix (1)
Isoparametric Triangle

To compute the matrix components we will use the
parametric mapping where the element geometry is
defined by the same shape functions as the dependent
variable interpolation. Thus, for the triangle

XZX(LZ.) ) y:y(Li)
or
x=¥'x ; y=¥'y

where the X,y vectors contain the coordinates of the
nodal points.
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'}'

The spatial derivatives of the shape functions are

Diffusion Matrix (2)

Isoparametric Triangle

(0¥] [ ox  dy |[a¥) G2
aLl aLl aLl ax 5)6
= X = [J] X >
o¥[ | oax o ||o¥ chd
. aLZ J | 8L2 aLZ |\ ay J . 8-)/ J
or inverting the Jacobian matrix
(OW) oy oy |[oY)
Ox 1 oL, oL, || OL, 1
> = = [J] 3
o¥Y det[J] _ Ox ox ||o0¥
| Oy | i oL, OL, 11 oL, )
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' '
} Diffusion Matrix (3)
Isoparametric Triangle

Substituting the mapping functions

G a - oPT v |(o%) il

x| 1 e e ||en| e
<5_‘I’>:det[J] v opT ||ow =171 ow |
Ly oL, an |leL,. oL,
and

ox gy oOx dy oY X@‘I’T or' ov'

y— X y

det[J]=|J| =
t[/]=V] oL, oL, oL, oL oL oL, ° oL, . ol
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' '
} Diffusion Matrix (4)
Isoparametric Triangle

The area integration over X,y in the triangle must be
transformed to the area coordinates L,,L,. The needed
relation is

dxdy =dQ,  =|J|dLdL, =|J|dQ, ,

which states that the ratio of incremental areas between
the physical element and the master element is given
by the determinant of the Jacobian matrix for the
coordinate transformation.
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' '
} Diffusion Matrix (5)
Isoparametric Triangle

Diffusion matrix for anistropic case

+—k + +
Ox ox ox T oy oy T ox oy 7 Oy

K= |

Qe

T T T T
[a_'l'kxxaqf oy, ov' oy, oy’ oY, oY dex’y

which is the sum of four matrices.
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e '
} Diffusion Matrix (5)
Isoparametric Triangle

Consider in detail one of the matrices and transform to
the master element

: oY, oY
K¢ = j( k dex,y

Lox 7 oy
- aTT 8‘1’ oY oY
jj y k [
JI\ o Yor, oL Y aL
1 (o¥" oF ov" ov
_ L.dL
\J\(aLzyaLl aLlyasz‘J‘d2 |

or' ov' or' ov'
‘J ‘ = X y— X y
oL,  OL, oL, OL,
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' '
} Diffusion Matrix (6)
Isoparametric Triangle

All of the diffusion matrices are of the same form
1 1-L,

K= | f(L.L,)dLydlL,
0 O

where f IS generally a complex function of the area
coordinates. For the case of area coordinates, there are
simple rules (formulas) for the integration of polynomials.
However, in general we prefer to perform this integration

numerically to retain consistency and commonality with
the non-simplex elements.
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. '
} Volume Source Vector
Isoparametric Triangle

Consider next the volume source term

Fy= [ ¥0dO
5

Transforming to the parent element and using area
coordinates

11
F; = ! ! ¥ O(L,)|J|dLdL,

This has the same functional form as the diffusion matrix
and is also treated via numerical integration.
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' '
} Surface Flux Vector (1)
Isoparametric Triangle

Two components of the surface flux vector for elements
with an edge on the boundary are

F/ = [W¥gq,dl' = [¥q,dl - [¥q.dl
| I re re

or

F{ = [Wq,dl— [Wh W' T-T)dr
re re
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e '
p Surface Flux Vectors (2)
Isoparametric Triangle

As before, we want to transform to a master element
surface (edge) description . The linear and quadratic
edge shape functions were given previously as

O 1
: .

A wi) | [0-0z 0

¥ e =\ V2 =51 140 |
v, Tlaa-g),
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p Surface Flux Vector (3)
Isoparametric Triangle
The transformation of the line integral is similar to the
area transformation )
B 172

ox\) (o)
dr =|J.[de ; |J.|=A= (é} +(£j

Basically, the edge determinant (of the Jacobian)
provides the ratio of the line lengths between the
physical edge and the master edge.
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' '
} Surface Flux Vector (4)
Isoparametric Triangle

The surface flux vectors are then
+1 +1
Fi = [WqAdé— [Wh(¥'T-T)AdE
-1 -1

or in matrix form
e e T
F'=F —CT+F,

The edge integrals will be computed using numerical
integration. Note that the C matrix will be moved to the
left-hnand-side of the equation and combined with the
diffusion matrix since the term contains unknown nodal

point temperatures.
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Non-Simplex Elements (1)
Quadrilaterals

;,'

Shape functions for non-simplex, quadrilateral elements
can be generated using tensor products of one-dimensional
polynomials. These products are most conveniently done in
the natural coordinate system for the master element. The
natural coordinate system, as designed for the line
element, is used in each direction for the quadrilateral. The
coordinates, £,n run from -1 to +1 and are centered in the
master element.
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A
p Quadrilateral Elements (2)

General families of shape functions for 2D
quadrilaterals can be derived directly using polynomial
expansions of the following forms

T'(x,y)=0,+to,x+o,y+a,xy

T(x,y)=q, +a2x+a3y—|—a4xy—|—a5x2 -|—oc6y2 +
Oc7x2y +O£8xy2 +Oc9xzy2

T(x,y)zal+a2x+a3y+(x4xy+a5x2+(x6y2+
3 2 2 3
0,X" + 00X Y+, y X +0,,y +
3.3
O XY
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>
p Quadrilateral Elements (3)

Return to the writing of shape functions for quadrilateral
elements using the natural coordinates

TEn="'T

(1-&)1-n)
1]a+ea-n|

‘Plinear T
4 1 (1+E)1+n)
(1-&)1+n)
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'P'
2 | Quadrilateral Elements (4)

(& -5 -n)
E*+E)1M* 1)
E*+E)M +1)
(E* =& +1)
Y, e =1 20-E)A-n") |
2(E* +E)n 1)
20-&E%)(n” +1)
2(62-&)1-n%)
4(1-EM)(1-1") |
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|
}i Diffusion Matrix (1)
Isoparametric Quadrilateral
We will only consider one component of the diffusion
matrix in detail, as everything done for the
Isoparametric triangle carries over to the quadrilateral.
The only change that is required is a change in the

element coordinates from L, L, to ¢,N and a change

in the limits of integration. A cross component of the
diffusion matrix then is

T
K¢, = J‘Lg—q’kxyal]dﬁw
3 Ox oy ’
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' '
} Diffusion Matrix (2)
Isoparametric Quadrilateral

Transform to the master element

T l(ov oY oy’ 8‘1’
NIFEs e

i on 8 55
1 (0P o ov' 8‘1’
déd
\J\(an Yog ae Y jM -4

or' ov' or' ov'
‘J ‘ = X y— X y
Js  0n on  0g
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e '
p Volume Source Vector &
Surface Flux Vector

The load vectors are of the same form as for the
iIsoparametric triangle. The coordinates for the area
integrals must be changed for the quadrilateral but the

coordinates and shape functions for the surface (edge)
integrals are the same.
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- &
* Numerical Integration (1)

The integrals of interest for computing element matrices
and vectors are generally complex functions of the
element coordinates, property variations, etc. The limits
of integration are simplified by use of the natural
coordinates for element shape functions and the
(isoparametric) mapping of the element into a master
element.

Numerical integration (quadrature) is generally used to
compute the area and boundary integrals. For some
element types this type of integration is mandatory.
Element libraries are most easily constructed when
quadrature is is used on all element types.
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A
% Numerical Integration (2)

Consider the general area integral for a quadrilateral
+1+1

=] rEmn)dedn

This can be evaluated using a product Gauss-Legendre
quadrature formula

M N

[ = f(C?nT?J)W[WJ

=1 J=1

where M, N are the number of quadrature points, &;.1,
are the quadrature points in the interval at whichf IS

evaluated and W,,W, are weights associated with each
guadrature point.
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A
} Numerical Integration (3)

For quadrilateral elements, M/ = N because the
interpolating functions are the same degree in each
direction. The number of points M is selected such that

M :int{(pgl)}rl

where p is the order of the highest polynomial in f .
The minimum value of M is the number of points
required to integrate the area of the element exactly; this

ensures convergence of the method in the limit of the
mesh size going to zero.

ESP300: Finite Element Method Il



A
} Numerical Integration (4)

For simplex elements, the basic area integral is of the

form
-
0

This is typically integrated using a non-product rule
where

1

-L
| f(L,L)dL, dL,
0

M
1= f(L,L)W,
=1
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>
} Numerical Integration (5)

Integration for boundary integrals proceeds in the same
manner as the area integrals. The quadrature rules are
single sums since the integration is one-dimensional.
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A
} Answers for Finite Element Method llI:

« Complications encountered in developing general
element matrices include limits of integration,
integration of complex functions and describing
element geometries

« Simplex elements are basically triangles and
tetrahedrons and simplex (area) coordinates are the
natural coordinates for simplex elements

» Natural coordinates for non-simplex elements are
normalized coordinates running from -1 to +1 in each
coordinate direction

» Shape functions for multi-dimensional elements?

 How and why is numerical quadrature performed?
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A
% Answers for Finite Element Method llI:

« Shape functions for multi-dimensional elements
iIncluded Lagrange polynomials and tensor products
of polynomials written in natural coordinates for each
element type

* Numerical quadrature is performed to evaluate
general area and boundary integrals that are usually
too complex for analytic evaluation. Both product
rules and non-product formulas are used.
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