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Introductory Info

Evacuation Procedures:

• Exits are located…

• Restrooms out back

Classification:

• Absolutely no classified discussions

• If you have a concern, let us know

• Some material may be OUO, it will be marked 
as such
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Summary for 
Finite Element Method III

Begin with:

• General form for element diffusion matrix and 
source/flux vectors

and end with:

• General procedure for computing element matrices 
and vectors in multi-dimensions
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Questions for Finite Element Method III: 

• What complications are encountered in developing 
general element matrices?

• What are simplex elements and simplex (area) 
coordinates?

• What are natural coordinates for non-simplex 
elements?

• What are typical shape functions for multi-
dimensional elements?

• How and why is numerical quadrature performed?
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Comments on Computing 
Element Matrices 

Recall again the definitions of the basic diffusion matrix 
and load vector 

The shape functions       could  be defined directly in terms 
of the problem coordinates. This was done last time for the 
linear triangle. We will revisit that formulation to include 
the surface flux and to emphasize the need to change 
coordinate descriptions. 
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2-D Linear Triangle (1) 

The shape functions for the linear triangle were developed 
from

which produced           
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2-D Linear Triangle (2)  
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The element stiffness matrix can then be written as 

and substituting  
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2-D Linear Triangle (3)  

The element stiffness matrix can be written as 

and integrating (if everything is constant)
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2-D Linear Triangle (4)

The load vector for the volume source is

which for constant      is
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2-D Linear Triangle (5)

For an element with an edge on the domain boundary 
the flux vector for a specified flux      is

where     is the coordinate along the edge and      is the 
element shape function restricted to (evaluated on) the 
element edge. 
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2-D Linear Triangle (6)

For the linear triangle, the edge shape function is a linear 
function of distance along the edge or

and 

where     varies from     to     . For constant    
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2-D Linear Triangle (7)

For an element with an edge on the domain boundary 
the flux vector for a convective flux     is

where     is the coordinate along the edge and      is the 
element shape function restricted to (evaluated on) the 
element edge. 
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2-D Linear Triangle (8)

For the linear triangle, the edge shape function is a linear 
function of distance along the edge or

and    

where     varies from     to     . For constant     and 
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Summary for
2-D Linear Triangle (9)  
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Example Problem Using 
2-D Linear Triangles

Consider our continuing example problem

For a total length of L, 

Each element is w=L/4 wide and h=L/4 high

Recall, Q=2, L=k=1 with q(0)=2 and q(L)=10 (T-2)
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2-D Linear Rectangle (1)

The shape functions for a linear rectangle element can 
be derived from

which produces
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2-D Linear Rectangle (2)

The element stiffness matrix can then be written as

and substituting
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2-D Linear Rectangle (3)

After integration the stiffness is

for a constant    . The volume source vector is
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2-D Linear Rectangle (4)

The load vector for the applied flux and convective heat 
flux are the same as for the linear triangle.

where                    depending on the edge and       are 
the nodes on the edge.
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Summary for 
2-D Linear Rectangle (5)
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Observations on 2-D Elements

• Successfully developed required element matrices and 
vectors to represent steady heat conduction in 2D

• We should have observed some obvious limitations on 
these elements and their descriptions (coordinates)

 For triangles, integration limits cause a problem when the 
integrands are not constant

 For rectangles, the element geometry is not very useful as it 
leads to a structured mesh and any generalization of the 
geometry would lead to integration problems

• The conclusion from this exercise is that a more 
general method of element description and matrix 
construction is required
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Simplex Elements (1)

Simplex elements for N-space are defined “as the 
minimal possible nontrivial geometric figure in that space; 
it is always a figure defined by N+1 vertices.” In 1-D, this 
is a line, in 2-D this is a triangle and in 3-D this is a 
tetrahedron. 

Shape functions for the 1-D element were previously 
developed using the natural coordinates for the line. For 
2-D and 3-D elements we need to develop shape 
functions in the “natural” coordinates for the simplexes. 
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Simplex Elements (2)

General families of shape functions for 2D and 3D 
simplex elements can be derived using Pascal’s 
triangle and its 3D counterpart. For example, the family 
of triangles

2 2
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Simplex (Area) Coordinates (1)

A natural (or local) coordinate system for a triangle is 
defined by the simplex or area coordinates. For a point 
P located within a triangle, the area coordinates are 
given by                . These coordinates are the ratios of 
the areas of the sub-triangles formed by point P and 
any two vertices and the area of the triangle. For 
example, the second coordinate
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Area Coordinates (2)

The problem coordinates for the triangle are related to 
the area coordinates by

Using these relations, the inverse transformation can be 
derived, which defines the linear shape function in area 
coordinates
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Area Coordinates (3)

• Area coordinates vary from 0 to 1

• The area coordinates are not independent since there 
are three coordinates to describe two spatial 
dimensions

• The relation                                 allows the third 
coordinate to be written in terms of the first two. 
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Simplex Elements (3)

Return to the writing of shape functions for the simplex 
elements using the area coordinates
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Simplex Elements (4)
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Isoparametric Triangle (1)

With the shape functions defined in area coordinates, 
we want to return to the construction of the element 
matrices and vectors. In order to allow a general 
element shape, we will use the isoparametric mapping 
defined previously to describe the element geometry.

Linear and quadratic shape functions are the usual 
choices and the only ones considered here. We will 
write the functions and their derivatives and then 
construct the general form of the matrices.
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Isoparametric Triangle (2)
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Isoparametric Triangle (3)
Element Equation 

The weighted integral statement for steady conduction

which will produce

We will consider how to construct each term in this equation 
in preparation for assembly into the global system.
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ˆ
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Diffusion Matrix (1)
Isoparametric Triangle

To compute the matrix components we will use the 
parametric mapping where the element geometry is 
defined by the same shape functions as the dependent 
variable interpolation. Thus, for the triangle

or

where the         vectors contain the coordinates of the 
nodal points.

 ( ) ;i ix x L y y L 

T T;x y Ψ x Ψ y

,x y
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Diffusion Matrix (2)
Isoparametric Triangle

The spatial derivatives of the shape functions are 

or inverting the Jacobian matrix 
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Diffusion Matrix (3)
Isoparametric Triangle

Substituting the mapping functions

and
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Diffusion Matrix (4)
Isoparametric Triangle

The area integration over          in the triangle must be 
transformed to the area coordinates          . The needed 
relation is 

which states that the ratio of incremental areas between 
the physical element and the master element is given 
by the determinant of the Jacobian matrix for the 
coordinate transformation. 

,x y
1 2,L L

1 2, 1 2x y L Ldxdy d J dL dL J d    
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Diffusion Matrix (5)
Isoparametric Triangle

Diffusion matrix for anistropic case

which is the sum of four matrices.

T T T T
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Diffusion Matrix (5)
Isoparametric Triangle

Consider in detail one of the matrices and transform to 
the master element
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Diffusion Matrix (6)
Isoparametric Triangle

All of the diffusion matrices are of the same form

where        is generally a complex function of the area 
coordinates. For the case of area coordinates, there are 
simple rules (formulas) for the integration of polynomials. 
However, in general we prefer to perform this integration 
numerically to retain consistency and commonality with 
the non-simplex elements.

111

1 2 2 1

0 0

( , )
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e
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Volume Source Vector
Isoparametric Triangle

Consider next the volume source term

Transforming to the parent element and using area 
coordinates

This has the same functional form as the diffusion matrix 
and is also treated via numerical integration.
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Surface Flux Vector (1) 
Isoparametric Triangle

Two components of the surface flux vector for elements 
with an edge on the boundary are

or
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Surface Flux Vectors (2)
Isoparametric Triangle

As before, we want to transform to a master element 
surface (edge) description . The linear and quadratic 
edge shape functions were given previously as
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Surface Flux Vector (3)
Isoparametric Triangle

The transformation of the line integral is similar to the 
area transformation

Basically, the edge determinant (of the Jacobian) 
provides the ratio of the line lengths between the 
physical edge and the master edge.

1
2 2 2

;
x y

d J d J 
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Surface Flux Vector (4)
Isoparametric Triangle

The surface flux vectors are then

or in matrix form

The edge integrals will be computed using numerical 
integration. Note that the      matrix will be moved to the 
left-hand-side of the equation and combined with the 
diffusion matrix since the term contains unknown nodal 
point temperatures.

1 1
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1 1
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Non-Simplex Elements (1)
Quadrilaterals

Shape functions for non-simplex, quadrilateral elements 
can be generated using tensor products of one-dimensional 
polynomials. These products are most conveniently done in 
the natural coordinate system for the master element. The 
natural coordinate system, as designed for the line 
element, is used in each direction for the quadrilateral. The 
coordinates,         run from -1 to +1  and are centered in the 
master element.

, 
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Quadrilateral Elements (2)

General families of shape functions for 2D 
quadrilaterals can be derived directly using polynomial 
expansions of the following forms 

2 2
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Quadrilateral Elements (3)

Return to the writing of shape functions for quadrilateral 
elements using the natural coordinates
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Quadrilateral Elements (4)
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Diffusion Matrix (1)
Isoparametric Quadrilateral 

We will only consider one component of the diffusion 
matrix in detail, as everything done for the 
isoparametric triangle carries over to the quadrilateral. 
The only change that is required is a change in the 
element coordinates from           to           and a change 
in the limits of integration. A cross component of the 
diffusion matrix then is
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Diffusion Matrix (2)
Isoparametric Quadrilateral

Transform to the master element
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Volume Source Vector &
Surface Flux Vector 

The load vectors are of the same form as for the 
isoparametric triangle. The coordinates for the area 
integrals must be changed for the quadrilateral but the 
coordinates and shape functions for the surface (edge) 
integrals are the same.
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Numerical Integration (1)

The integrals of interest for computing element matrices 
and vectors are generally complex functions of the 
element coordinates, property variations, etc. The limits 
of integration are simplified by use of the natural 
coordinates for element shape functions and the 
(isoparametric) mapping of the element into a master 
element.

Numerical integration (quadrature) is generally used to 
compute the area and boundary integrals. For some 
element types this type of integration is mandatory. 
Element libraries are most easily constructed when 
quadrature is  is used on all element types.
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Numerical Integration (2)

Consider the general area integral for a quadrilateral

This can be evaluated using a product Gauss-Legendre 
quadrature formula

where          are the number of quadrature points,          
are the quadrature points in the interval at which     is 
evaluated and            are weights associated with each 
quadrature point.
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Numerical Integration (3)

For quadrilateral elements,              because the 
interpolating functions are the same degree in each 
direction. The number of points       is selected such that

where      is the order of the highest polynomial in     . 
The minimum value of        is the number of points 
required to integrate the area of the element exactly; this 
ensures convergence of the method in the limit of the 
mesh size going to zero.
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Numerical Integration (4)

For simplex elements, the basic area integral is of the 
form

This is typically integrated using a non-product rule 
where
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Numerical Integration (5)

Integration for boundary integrals proceeds in the same 
manner as the area integrals. The quadrature rules are 
single sums since the integration is one-dimensional. 
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Answers for Finite Element Method III: 

• Complications encountered in developing general 
element matrices include limits of integration, 
integration of complex functions and describing 
element geometries

• Simplex elements are basically triangles and 
tetrahedrons and simplex (area) coordinates are the 
natural coordinates for simplex elements

• Natural coordinates for non-simplex elements are 
normalized coordinates running from -1 to +1 in each 
coordinate direction

• Shape functions for multi-dimensional elements?

• How and why is numerical quadrature performed?



ESP300: Finite Element Method III

Answers for Finite Element Method III: 

• Shape functions for multi-dimensional elements 
included Lagrange polynomials and tensor products 
of polynomials written in natural coordinates for each 
element type

• Numerical quadrature is performed to evaluate 
general area and boundary integrals that are usually 
too complex for analytic evaluation. Both product 
rules and non-product formulas are used.


