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Topics for discussion

• Current SOFC research
– Electrochemical control of hydrocarbon oxidation reactions

understand the electrochemical behavior of membrane-transported O-2

stable and functional anode catalyst formulations
low temperature electrolytes

• Ceramics processing
– MEA fabrication

synthesizing powders
printing, robo-casting, firing, sealing

• Diagnostics and materials characterization
– Thermal chemistry of anode powders
– Electrochemical performance of MEA



The chemical nature of membrane-transported O-2

• Identify and exploit differences 
between chemisorbed and 
membrane-transported O species
– Three phase boundary

complex surface and charge transfer 
reactions

– Control the extent of oxidation
– Control product selectivity

• Improve efficiency of hydrocarbon 
processing
– Integrated cogeneration

better use of process enthalpy
– Enhanced separation
– Enhanced selectivity
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Membrane electrode assemblies and tubular reactor

• Sandia and Ceramatec combine to fabricate 
test cells
– Slurries generated from anode powders 

and sprayed through masks
– Gold collector traces printed on surfaces
– Multiple firing steps, glassed onto tubes
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Design of experiments and diagnostics

• Hot and cold wall reactors
– Jet-stirred reactor (cold)

spherical cavity
single chamber cells
internal heated pedestal

– Tubular reactor (hot)
cylindrical cavity
air-breathing cell stack
inserted into tube furnace

• Integrated diagnostics
– Surface Raman
– Gas chromatography
– Mass spectrometry
– CPU controlled potentiastat
– Impedance spectroscopy
– Dynamic load equipment



Methane partial oxidation to synthesis gas

• Probe thermal chemistry to 
baseline effects of carbon and 
oxygen
– Mn doped Ni-YSZ
– BaNiAl11O19 doped Ni-YSZ

• Stabilize anode to carbon 
deposition
– Maintain conversion and 

synthesis gas selectivity
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Raman scattering from relevant surfaces

• Established high frequency surface 
Raman capability
– Diode-pumped Q-switched Nd:YAG

5kHz /15 ns pulse width at 532 nm
– Interface to tubular reactor 

gated CCD to reduce effects of 
incandescence

• Ambient and elevated temperature 
Raman study
– Oxidized anode (green material)

significant Ni-O feature at 463 cm-1

– Reduced anode (black material)
weak Ni-O band evident, otherwise 
featureless
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Summary of jet stirred reactor experiments

• Single chamber cell with Ni-YSZ anode at 900 K
– Premixed inlet composition at dilute 4:1 H2:O2 or 5:1 CH4:O2

• Small, variable cell current dependent on potential and gas composition
• Catalyst surfaces support POM

– No significant variation in selectivity or conversion with applied field
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POM under anodic potential
in air-breathing mode over Ni-YSZ
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Conclusions and path forward

• Experimental evidence suggests membrane-transported O species 
prefer partial oxidation pathways even in the presence of chemisorbed 
O atoms
– This observation has not been reported in the literature

significant debate over direct oxidation versus internal reforming
– Supports the supposition that partial oxidation reactions can be

exploited electrochemically
• Further explore simple hydrocarbon partial oxidation with Sandia anode 

formulations
– POM, ethane and propane dehydrogenation

• Formulate MEA for epoxidation chemistry
– Radically different anode formulations
– Low temperature ion conductors

doped ceria or gadolinia electrolytes
monolithic stacks comprised of mixed conductors (ion, electron)


