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Motivation

Stainless steels will likely find application for high-pressure, small-diameter
piping and components in the nascent infrastructure of the proposed
hydrogen-based economy. Type 316 stainless steel is particularly attractive
for high-pressure gaseous hydrogen service because:

- it benefits from a broad experience-base in hydrogen-producing aqueous
environments

- itis resistant to deformation-induced microstructural changes (i.e., martensite
transformation)

- a few key studies have shown it to be more resistant to fracture in high-pressure
hydrogen gas compared to other common stainless steels.
In this study, we explore hydrogen-assisted fracture in several 316 alloys and
a high-strength alternative to 316, super duplex stainless steel SAF 2507.

Several materials variables are compared:

- Strength: annealed compared to cold-worked microstructures

- Composition of 316 alloys:
« Nickel content ranging from 11 to 13.5 wt%
e Carbon content: 316 and 316L alloys

- Microstructure: stable austenitic stainless steel (316) compared to duplex (austenite-

ferrite) stainless steel
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Methodology

Two types of mechanical tests were employed to study hydrogen-
assisted fracture:
- Smooth Bar Tensile Testing
- J-integral Fracture Toughness Testing using Single-Edge Bend (SEB)
specimens (only cold-worked materials were testedin the LR orientation)
All testing was performed in laboratory air

Triplicate specimens were tested for most conditions, although in
some cases only two specimens were tested; all reported values are
averages of all tests

Specimens were tested in two conditions:
- As-machined (uncharged) condition

- With internal hydrogen thermally precharged from the gas phase

e 138 MPa hydrogen gas at 573 K for 10 to 30 days depending on geometry to
produce uniform hydrogen concentration through the cross-section of the
specimens

e Resulting hydrogen contents (averages of several measurements):
- 316 alloys: 136 wppm hydrogen (0.76 wt%)
- SAF 2507: 125 wppm hydrogen (0.70 wt%)
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Methodology

e Thermal precharging supersaturates the materials with
hydrogen relative to room temperature

- This represents an exaggerated hydrogen concentration after
exposure to gaseous hydrogen environments

- Internal hydrogen, however, does not replicate the conditions at
a crack tip where external hydrogen is a source for hydrogen
uptake to the hydrostatic stress field at the tip of a crack

V s where c, is the hydrogen concentration in the
C.=C,exp H o stressed lattice, V,, is the partial molar volume of
s H RT

hydrogen in the steel lattice (~2 cm®* mol') and &
is the hydrostatic stress (near the crack tip)

- The hydrogen concentration achieved at equilibrium at 573 K is
estimated to be of similar magnitude in austenitic stainless steels
to the enhanced concentration due to the hydrostatic stress state
at a crack tip at room temperature
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Materials

Four materials were tested

* High-strength corrosion-resistant substitute for 300-series stainless

steel: super duplex stainless steel, alloy SAF 2507
e This alloy is composed of approximately 50% ferrite and 50% austenite

e Three 316 stainless steels:
 Premium grade: 316L VIM/VAR with high Ni and low inclusion

content

e Standard grade: 316 with high carbon and moderate Ni
e Off-the-shelf: 316L with relatively low alloy content

Fe Cr Ni Mn Mo N C Si S P
Super Duplex Stainless
Steel. SAF 2507 Bal | 2522 | 694 | 046 | 3.9 | 0287 | 0.011 | 025 | 0.0006 | 0.019
(UNS32750)
316 Bal | 1772 | 1213 | 169 | 236 | 003 | 0041 | 057 | 0027 | 0.026
316L Bal 177 | 135 | 031 | 263 | 001 | 0017 | 035 | 0.006 | 0.011
o . . . . . . . . .
316L Bal | 16.63 | 11.07 | 1.29 | 202 | 0023 | 003 | 049 | 0024 | 0.03
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Materials

316L VIM/VAR
Cold-Worked Bar
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Materials

316L
TR od Cold-Worked Bar
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SAF2507
Cold-Worked Bar
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'
/I‘Iélrogen Assisted Fracture in Metals

ydrogen dissolves into metals where it interacts with the microstructure to
assist deformation and fracture by a number of processes generally referred to as
hydrogen embrittlement

Chemical Equilibrium: /2

(1) Hydrogen gas Solubility ¢, = Kf'"?
(2) Physisorption ok
(3) Dissociation Diffusivity =D ;1 - = 172

(4) Dissolution

(5) Diffusion Permeability ¢ =DK
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~Hydrogen-Assisted Fracture
Mechanisms in Metals

Hydrogen attack
e chemical reaction of atomic hydrogen with microstructural features

' (6)
H . d
/% xn A pressurized /'\ crack
> gas, hydride ) | nucleation

inclusions | 7, H )
b ‘ phase, etc. _.\A’
H

Jo
Hydrogen solute effects
« solute hydrogen enhanced failure of interfaces and deformation mechanisms

 class of mechanisms affecting stainless steels

O

t o particle,|
Hydrogen N\
accumulation at

id Hydrogen
interfaces affects vord enhanced shear
strength of interface localization

(grain boundaries,
second phases,
Jo
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Hydrogen Solubility

e Thermodynamic equilibrium of hydrogen
dissolution in a metal

[zH, < H]

e Hydrogen content is determined from
thermodynamic equilibrium:

CH _ Kf1/2

where c, is the equilibrium concentration of hydrogen dissolved in a
metal, K is the equilibrium constant and f is the fugacity of the

hydrogen
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Hydrogen Solubility

e Equilibrium constant for 300-series stainless
steel

(K =135exp(-710/T)

e Fugacity of hydrogen gas is function of
temperature (T) and pressure (P):

f = Pexp(Pb/RT)

where R is the universal gas constant (8.31447 J mol-1 K-1) and
for hydrogen b = 15.84 cm3 mol-L.
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Concentration of Hydrogen (wppm)

Hydrogen Solubility
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Results
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Yield Tensile Reduction Uniform Total
Material Condition Strgr;gth Strg:gth ofR,:rea EIorIIEg:]Iiltlon EIonEgI?tlon

(MPa) (MPa) (%) (%) (%)

SAF 2507 uncharged 647 879 85 25 48
Annealed bar precharged 745 914 46 24 35
SAF 2507 uncharged 988 1110 80 1.2 26
Cold-worked bar precharged 1208 1221 25 1.0 12
316 uncharged 257 602 80 54 67
Annealed bar precharged 311 651 69 55 66
316 uncharged 563 735 78 26 47
Cold-worked bar precharged 665 811 66 25 45
316L VIM/VAR uncharged 221 551 85 57 71
Annealed bar precharged 279 607 72 60 71
316L VIM/VAR uncharged 594 736 78 20 41
Cold-worked bar precharged 690 812 68 21 40
316L uncharged 253 585 81 58 70
Annealed bar precharged 306 642 62 57 66
316L uncharged 583 722 78 24 45
Cold-worked bar precharged 694 819 59 23 41

SAF 2507: 125 wppm hydrogen (0.70 at%)
316 alloys: 136 wppm hydrogen (0.76 at%)

Hydrogen precharging: 138 MPa hydrogen gas, 573 K, 10 days.

All testing was performed at room temperature in air with a constant displacement rate
of 0.02 mm s corresponding to a strain rate in the plastic regime of ~1.2x10-3 s,
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For austenitic stainless steels:
e Strength properties are generally enhanced
e Ductility is characterized by clear difference in reduction of area (RA)
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_ / y

Tensile properties

The relative properties provide a gauge for comparing property changes
under specific environmental conditions: values >1 indicate an
Improvement in properties as observed for strength; values <1 indicate a
degradation in property as observed for ductility (RA and elongations)

Material RSy RS, RRA REl, REl;
R 1.15 1.05 0.54 0.95 0.73
Coli'-a\\/\llzorzkse?;bar 1.22 1.10 0.32 0.79 0.48
A bar 1.21 1.08 0.87 1.02 0.99
ol 4 bar 1.18 1.10 0.84 0.98 0.95
3fr'\‘n;gl';’g\é§‘f 1.26 1.10 0.84 1.05 1.00
JloL VIMIVAR 1.16 1.10 0.87 1.07 0.96
et 1.21 1.10 0.76 0.99 0.94
ol 1.19 1.13 0.76 0.98 0.92
RS - Sy(H precharged) RRA — RA(H precharged) RE| = Ell(H precharged)
g S, (uncharged) RA(uncharged) ' El, (uncharged)

* S, (uncharged) ‘  El, (uncharged)

RS - Su(H precharged) RE| - El, (H precharged) @
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Engineering Stress (MPa)
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Engineering Stress (MPa)
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Engineering Stress (MPa)

Tensile Flow Curves

316 Cold-Worked Bar
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Engineering Stress (MPa)
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Engineering Stress (MPa)
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Engineering Stress (MPa)
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Engineering Stress (MPa)
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Fracture Surfaces: Tensile
SAF 2507, Cold-Worked Bar
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Fracture Surfaces: Tensile
316L VIM/VAR, Cold-Worked Bar
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Tensile

Fracture Surfaces
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Fracture toughness

Yield J-integral Tearing Linear Elastic Linear Elas_tlc
Plane-Strain
Strength Fracture Modulus Fracture Eracture
Material Condition Toughness Toughness
Toughness
Sy JQ dJ/da KJQ T1/2 Kic
(MPa) (N/mm) (MPa) (MPa m™) (MPa m*?)
SAF 2507 uncharged 088 370 830 280 —
Cold-worked bar precharged 1208 16 20 60 48
316 uncharged 563 190 400 210 —
Cold-worked bar precharged 665 160 350 190 —
316L VIM/VAR uncharged 594 310 500 260 —
Cold-worked bar precharged 690 180 350 200 —
316L uncharged 583 200 360 210 —
Cold-worked bar precharged 694 120 270 160 —

t K,y =+J,E Where E' =220 GPa for SAF 2507 and E' =216 GPa for 316 stainless steel.

Hydrogen precharging: 573K, 138 MPa hydrogen gas, 30 days.
SAF 2507: 125 wppm hydrogen (0.70 at%)
316 alloys: 136 wppm hydrogen (0.76 at%)
All specimens were precracked in fatigue. Testing was performed at room temperature in air.
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Fracture toughness
SAF 2507 Cold-Worked Bar

Super Duplex Stainless Steel (SAF 2507) Cold-Worked Bar
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Fracture toughness
316 Cold-Worked Bar
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J (N/mm)

Fracture toughness
316L VIM/VAR Cold-Worked Bar
316L VIM/VAR Cold-Worked Bar

400

350
300
250
200
150

100

.7 0.2 mm offset

4
4

50

7 I |
0 0.1 0.2 0.3 0.4
Crack extension, Aa (mm)

0.5

Sandia
National
Laboratories



J (N/mm)
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racture Surfaces: Fracture

Toughness
SAF 2507, Cold-worked Bar
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racture Surfaces: Fracture
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Conclusions

Super Duplex Stainless Steel, alloy SAF 2507

SAF2507 is susceptible to hydrogen-assisted fracture

- Significant decrease in ductility (RA) is displayed in tensile tests
of specimens with internal hydrogen (thermally precharged) for
both annealed and cold-worked condition

- Change in fracture mode: with internal hydrogen, the ferrite
phase appears to show cleavage fracture

- Cold-worked microstructure is more susceptible to hydrogen
effects

Despite the reduction in ductility and change in fracture

mode, SAF2507 in the annealed condition with internal

hydrogen is nominally ductile in tension with an RA = 45%

Fracture toughness was only measured for the cold-worked
condition in the radial direction (SEB): K,. = 50 MPa m?/2

The fracture morphology in the SEB specimens is similar to the
tensile specimens with the addition of secondary cracking @ Sandia
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> Conclusions

316 stainless steel alloys

Modest reduction in ductility and increase in strength for all alloys
with internal hydrogen
- RA >50% and total elongation > 40% for all 316 alloys with internal
hydrogen
- Fracture mode of 316 alloys in tension nominally unchanged by hydrogen,
although some changes in the morphology of fracture surface

Geometry independent plane-strain fracture toughness was not
obtained in this testing

- The measured stress intensity factor (K,,) was 2160 MPa m*/2 for all
tested cold-worked 316 alloys with internal hydrogen

- Fracture toughness (J,) of cold-worked 316 alloys with internal hydrogen
was reduced by as much as 40% compared to uncharged

Cold-worked and annealed materials had similar resistance to
internal hydrogen in tensile tests

316L VIM/VAR and 316 materials displayed similar resistance to
hydrogen-assisted fracture in tensile tests

316L had the lowest nickel content (11wt%) of the three alloys and
suffered the greatest reduction in ductility with internal hydrogen
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