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;l' Interests & Goals

for Organic and Hybrid PV

* Low cost photovoltaic devices
- low temperature & non-vacuum processing
- Printed at high speed on flexible substrates
- Using roll-to-roll processing
- Low installation and system cost
* Near term: 5 - 10% efficiency, lifetime 10,000
hrs (currently 2%)
— “Niche” applications in consumer electronics

— DOD: portable power, field deployed electronics,
“future force warriors”

« Long term: 15% efficiency, lifetime > 3 - 5 yrs
— Roof top power generation
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Hybrid, Heterojunction-Based Solar Cells

Electron Acceptor
Electron Transporter

Electron Donor
n > Hole Transporter
P3HT (Exciton Generation)

Project Objectives

Gain expertise in the “nano-engineering” of controlled oxide
growth, oxide/polymer assembly, and interface control as applied to
hybrid organic-inorganic solar cells.

Develop alternative power generation technologies to support
Sandia initiatives.

Position Sandia for future funding and partnership opportunities

in the photovoltaic arena.
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* Spacing ~ exciton diffusion length
* Increase performance by 4x
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.Why E)rganic-Oxide Semiconductor Hybrid Solar Cells?

Top Contact
Grid

Electroactive £ enioCLaver
Polymer
Oxide Semiconductor
Nanofibers
Interface
Modifier
TCO 1 >
Back Contact Glass / plastic substrate

Proposed “Idealized Structure”

Advantages of using metal oxide semiconductor as the electron acceptor:

- Electron mobilities in crystalline oxide semiconductors is many orders
higher than mobilities in organics

- Ordered structures might induce order in polymers to maintain high hole
mobilities

- Control band alignments through judicious choice of materials

- Less susceptible to environments
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1 Fabrication of Hybrid PV Devices
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Infiltrate polymer among oxide nanostructures
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Project Focus

What is limiting the efficiency in current cells?
Form a new basic understanding of the properties required for
optimal electron transporter nanostructures.

I. What is the optimum size, spacing & morphology of the oxide
nanostrucutres?

- Determine impact of acceptor structure on cell performance.
(e.g., branched structures versus simple nanorod arrays)

Ill. Can we engineer the polymer/oxide interface?

- Demonstrate polymer wetting and infiltration at the nanoscale.
- Optimize electron transfer at interface.

lll. What is the best acceptor material system?

- Determine if other oxide semiconductor material systems provide
advantages over ZnO and TiO.,.

NREL: Polymer development and cell characterization
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|. What is the Best Morphology?
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Control Growth of Nanostructures
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Morphology Control of ZnO Nanostructures
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Control Placement of ZnO
Nanostructures on Substrates
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» Il. Infiltrating P3HT into ZnO Nanofibers

' Fibers with no polymer
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[1l. Surface Functionalization

- Quantum Dots on ZnO Nanorods

Zn0O + QDs
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Summary

Hybrid Cell with
Hierarchal Acceptor Structure

50 -100 nm
polymer electrode
Oxide
nanostructures Surface
TCO electrode functioning

substrate

Sandia
m National
Laboratories




