

A Fitness Landscape Analysis of the Vehicle Routing Problem and Implications for Metaheuristic Behavior

Jean-Paul Watson

jwatson@sandia.gov

Discrete Algorithms and Mathematics
Sandia National Laboratories
Albuquerque, NM USA

Talk Caveats

- I *don't* care about “beating benchmarks”
 - Operations Research modus operandi for metaheuristics papers
 - Hooker (1994,1995)
 - Engineering (in the best case), not science
- I *do* care about analyzing existing state-of-the-art algorithms
 - Watson et al. (JAIR, 2005)
 - Watson et al. (C&OR, 2006)
- Why?
 - To build behavioral models of metaheuristic algorithms...
 - which can be used to inform the design process...
 - and build a theory of metaheuristics...
 - to move beyond “iterative hacking”

Talk Outline

- Background
 - Capacitated Vehicle Routing (CVRP)
 - Tabu Search for the CVRP
- Motivation
- Analyzing the Run-Time Dynamics of Tabu Search on the CVRP
 - Where is tabu search spending time in the search space?
 - How can the behavior of tabu search be modeled?
- Fitness-Distance Correlation and the “Big Valley”
 - Background and introduction
 - Prior investigations on the CVRP
 - Re-considering fitness-distance correlation in the CVRP
 - Implications for pool-based metaheuristics
- Conclusions

Background: Tabu Search and the CVRP

- Experimental context
 - The standard capacitated vehicle routing problem (CVRP)
 - Start simple, because we don't yet understand simple
- Tabu search algorithms are very effective metaheuristics for the CVRP
 - Taillard et al.
 - Gendreau et al. (TabuRoute)
 - Cordeau et al. (Unified Tabu Search)
 - Ho and Gendreau
- Tabu search state-of-the-art through early 2000, but no longer
 - Evolutionary strategies (Mester and Braysy, 2004)
 - Memetic algorithms (Prins, 2004)

Motivation(s)

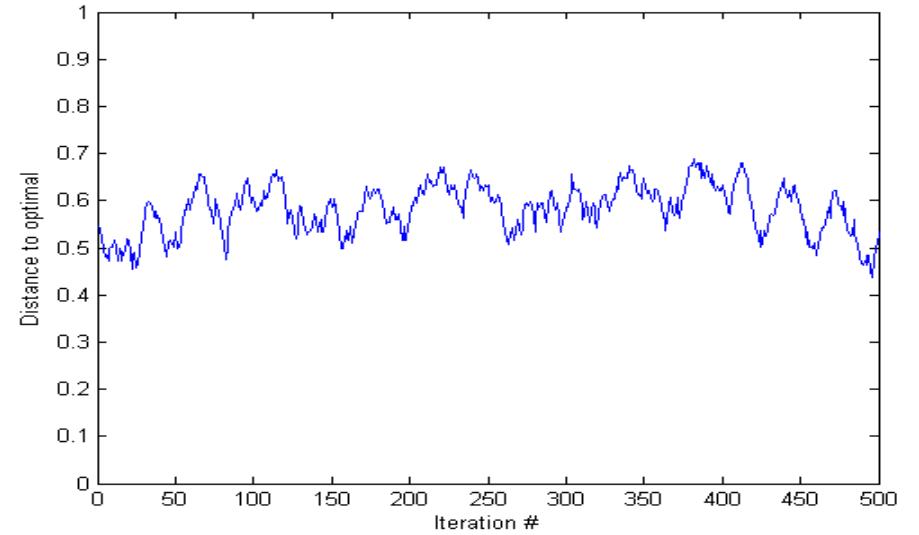
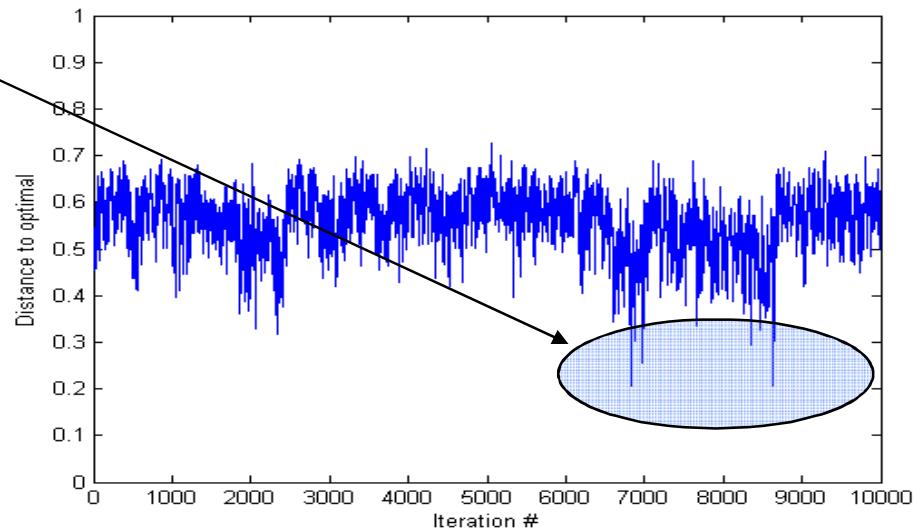
- The Central Dogma of Metaheuristic Theory
 - $\text{Performance} = f(\text{fitness landscape, search strategy})$
- Implications
 - A metaheuristic is effective if and only if the search strategy is strongly “correlated” with, i.e., exploits, the fitness landscape
 - If you don’t understand the fitness landscape structure, how can you design effective metaheuristics?
- How many fitness landscape analyses have you found on the CVRP?
 - 1.5 – despite the central role of landscape structure in performance
- To better understand what tabu search algorithms for the CVRP are really doing, why they are so effective, and how they can be further improved
- Disclosure: I don’t have all the answers, and I raise more questions than answers

Tabu Search CVRP Run-Time Dynamics: Preliminaries

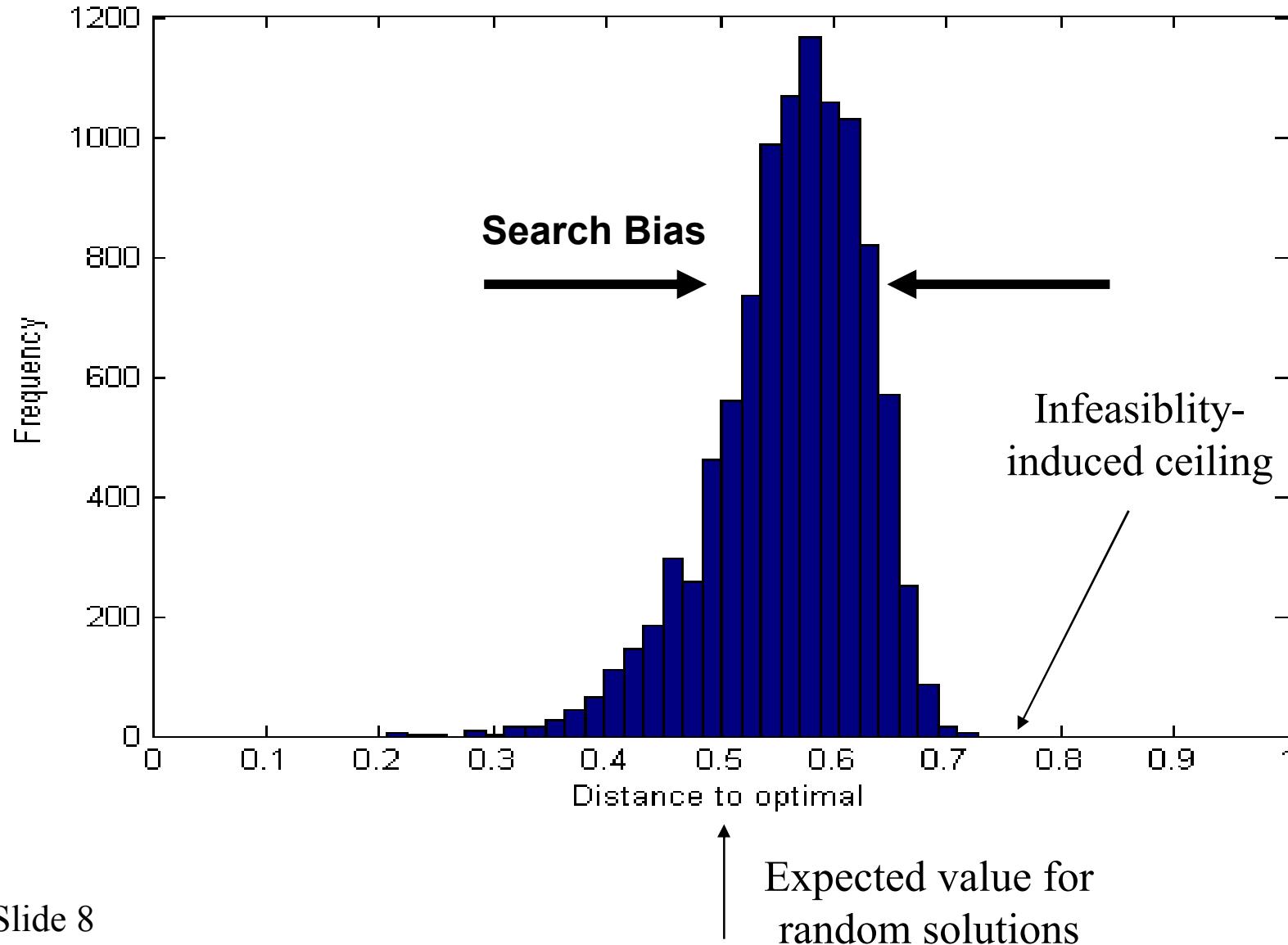
- One advantage of benchmarks and benchmark-beating papers
 - Optimal and/or presumed-optimal solutions are widely available
- Experimental question
 - Search is *supposed* to be driven toward the optimal solution...
 - but where is search really spending most of its time?
- Experimental methodology
 - Grab an optimal/presumed-optimal solution from the literature
 - Implementation of Taillard-like tabu search with (1,0) neighborhood
 - For now, without frequency-based long-term memory
 - Run algorithm for 100,000 iterations
 - Record “distance” to reference/optimal solution every iteration
 - Distance principle: Are customers in the same tour in both solutions?

Tabu Search CVRP Run-Time Dynamics: Results (1)

- Test instance: CMT 2 (n=75)
- Search appears to be largely stuck near solutions that are 0.5 distance away from the optimal solution
- There are periodic “bursts” of progress toward the optimal solution – and this is when new best-so-far solutions are identified
- 99+% of search is expended in regions of the space that are nowhere near the optimal solution



Tabu Search CVRP Run-Time Dynamics: Results (2)



Tabu Search CVRP Run-Time Dynamics: Commentary (1)

- The long-term dynamics of basic tabu search in the CVRP can be modeled as a random walk with a strong bias toward “average-distance” solutions
 - Ehrenfest diffusion model with a restorative force (Feller, Volume 1)
 - Extension of prior results for job shop scheduling (Watson et al, 2005)
- What causes the restorative force?
 - The underlying representation
 - Given that search is near a reference solution, there are always more moves away from the reference solution than toward it
- Improving search efficiency and effectiveness is easy
 - “Just” spend more time in the left tail of the distance-to-optimal distribution
 - If you’re not doing this, then you’re likely wasting your time
 - If you’re not doing something qualitatively different than existing algorithms, you’re wasting everyone’s time...

Tabu Search CVRP Run-Time Dynamics: Commentary (2)

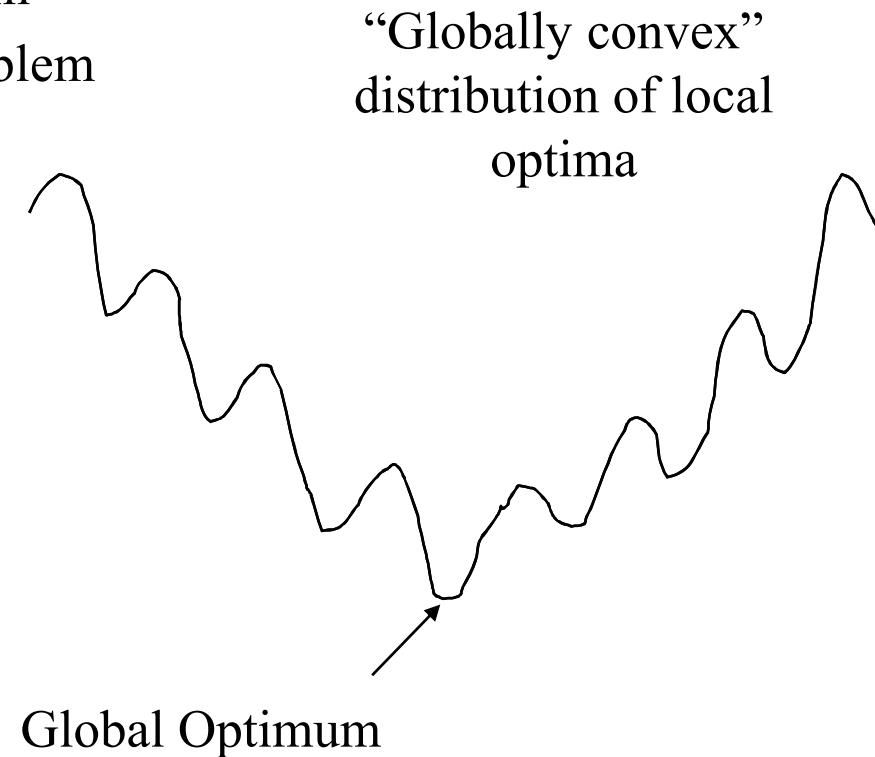
- In case you were wondering...
- What happens when you add in long-term memory?
 - Fundamental nature of the histograms does not change
 - Discernible (order-of-magnitude) growth in the left-tail mass
- What happens when you allow search in infeasible space?
 - Early results indicate further increase in the left-tail mass
 - Not claiming solid results yet, as replicability of some algorithms is more difficult than expected

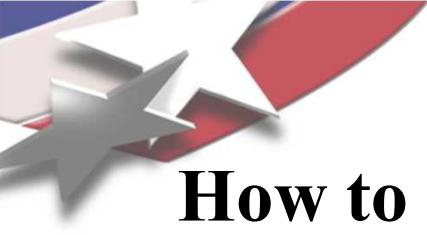
Fitness-Distance Correlation: Introduction

- What is Fitness-Distance Correlation (FDC)?
 - Take an individual problem instance
 - Generate a large number of local optima
 - Compute the quality of each optimum
 - Compute the distance between each local optimum and the globally optimal solution
 - FDC is the (Pearson's) correlation coefficient for distance vs. quality
- Another variant of the FDC methodology
 - Compute average distance between a local optimum and all other local optima in the sample
- So what?

How to Exploit FDC? (1)

- High FDC => the existence of a “Big-Valley” local optima structure
 - Boese et al. (1994)
- Also found in other NP-hard problems
 - Traveling Salesman Problem
 - Flow-Shop Scheduling Problem
 - Graph Bi-Partitioning
 - ...
- Two exploitation mechanisms
 1. Intensification
 2. Path relinking



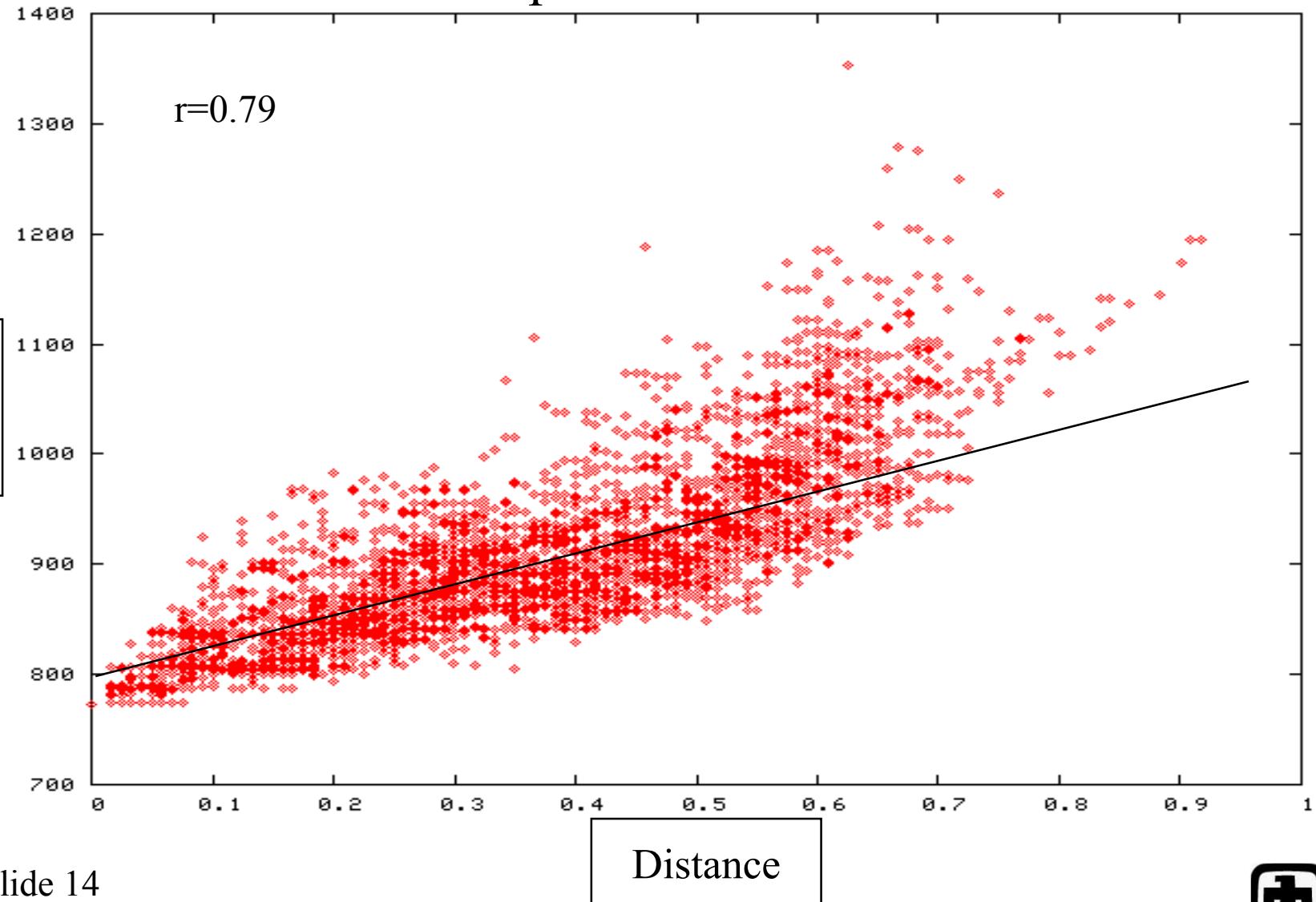


How to Exploit FDC? (2)

- Maintain a pool P of elite solutions
 - Small, typically $|P| < 10$
 - Initialize using $|P|$ best solutions encountered by a moderate-length run of tabu search
- General design philosophy
 - Short bursts of tabu search from carefully selected initial solutions
- Intensification
 - Pick an elite solution p at random
 - Perform a short run of tabu search from p
 - If better solution found, replace p in P
- Diversification
 - Pick two elite solutions $p1$ and $p2$ at random
 - Perform path relinking to generate a solution “in between” $p1$ and $p2$
 - Perform a short run of tabu search from p
 - If better solution found, replace worst of $p1, p2$
- Perform reintensification and diversification with equal probability
 - Only diversification \Rightarrow might miss good nearby solutions
 - Only intensification \Rightarrow you might not be “deep” enough in the big-valley

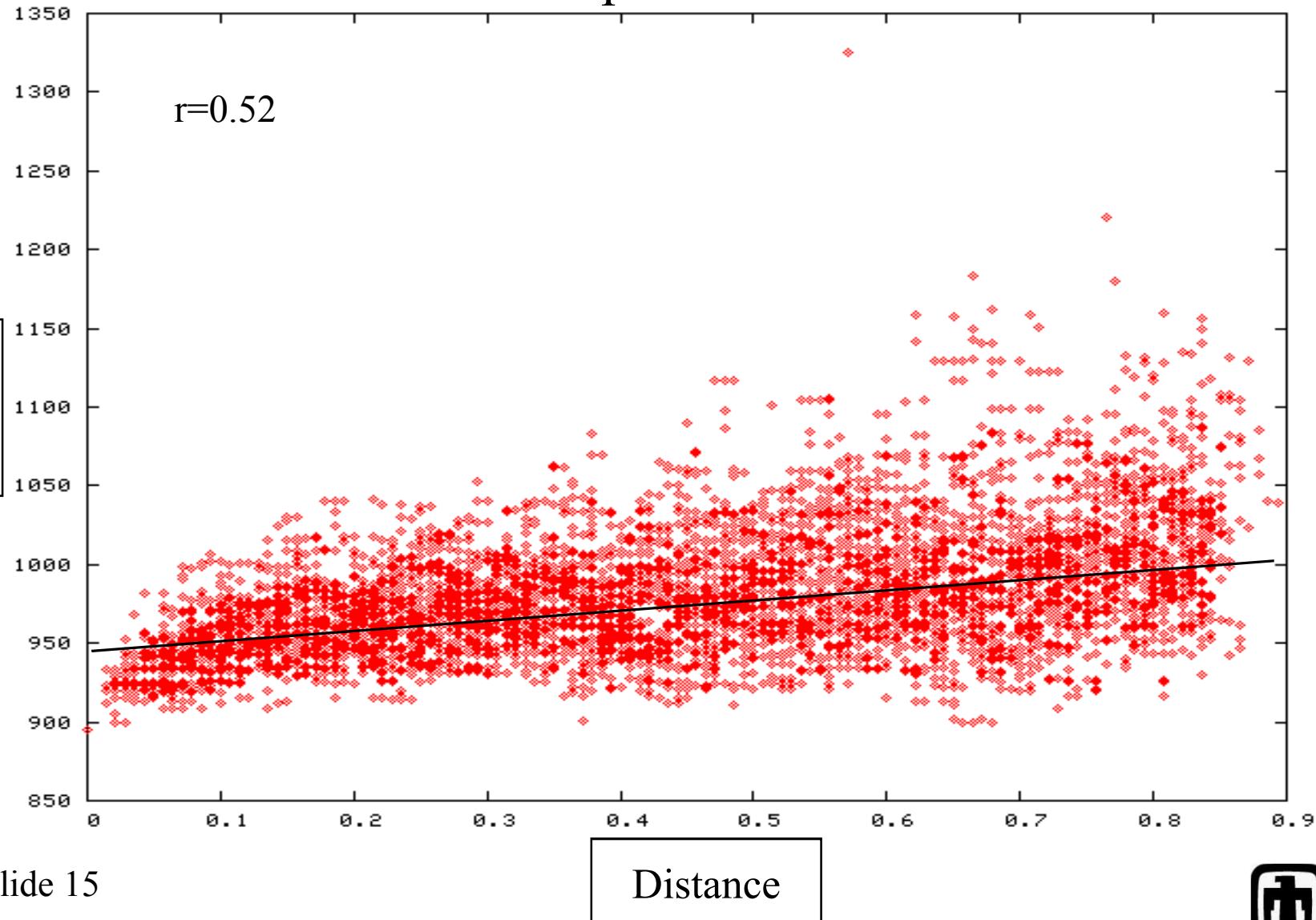
An Example of High Fitness-Distance Correlation

A p-Median instance



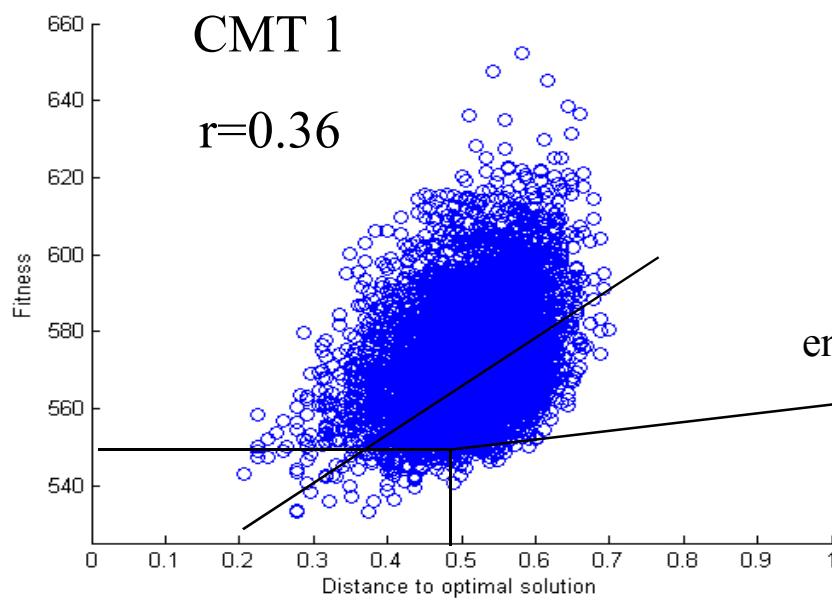
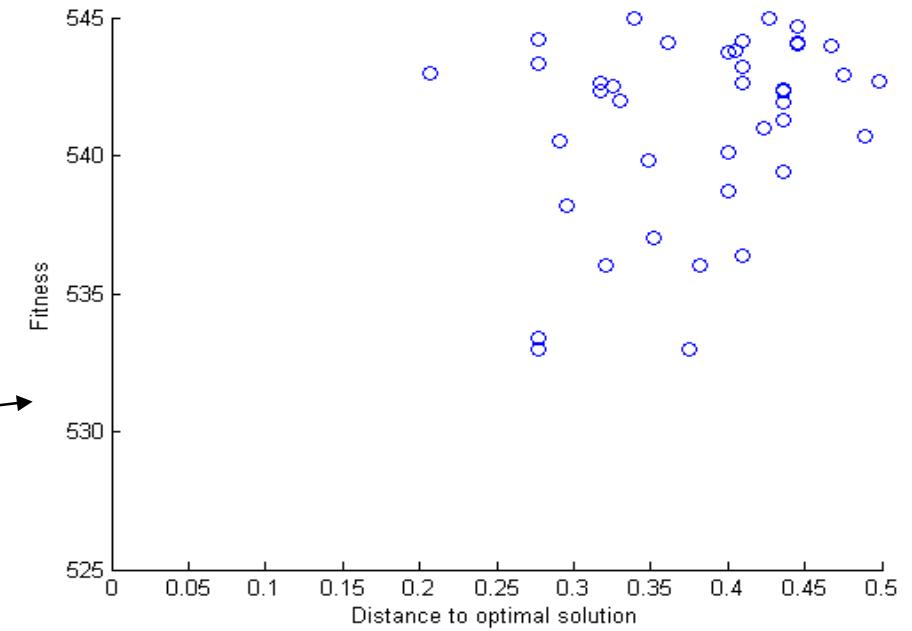
An Example of Low Fitness-Distance Correlation

Another p-Median instance

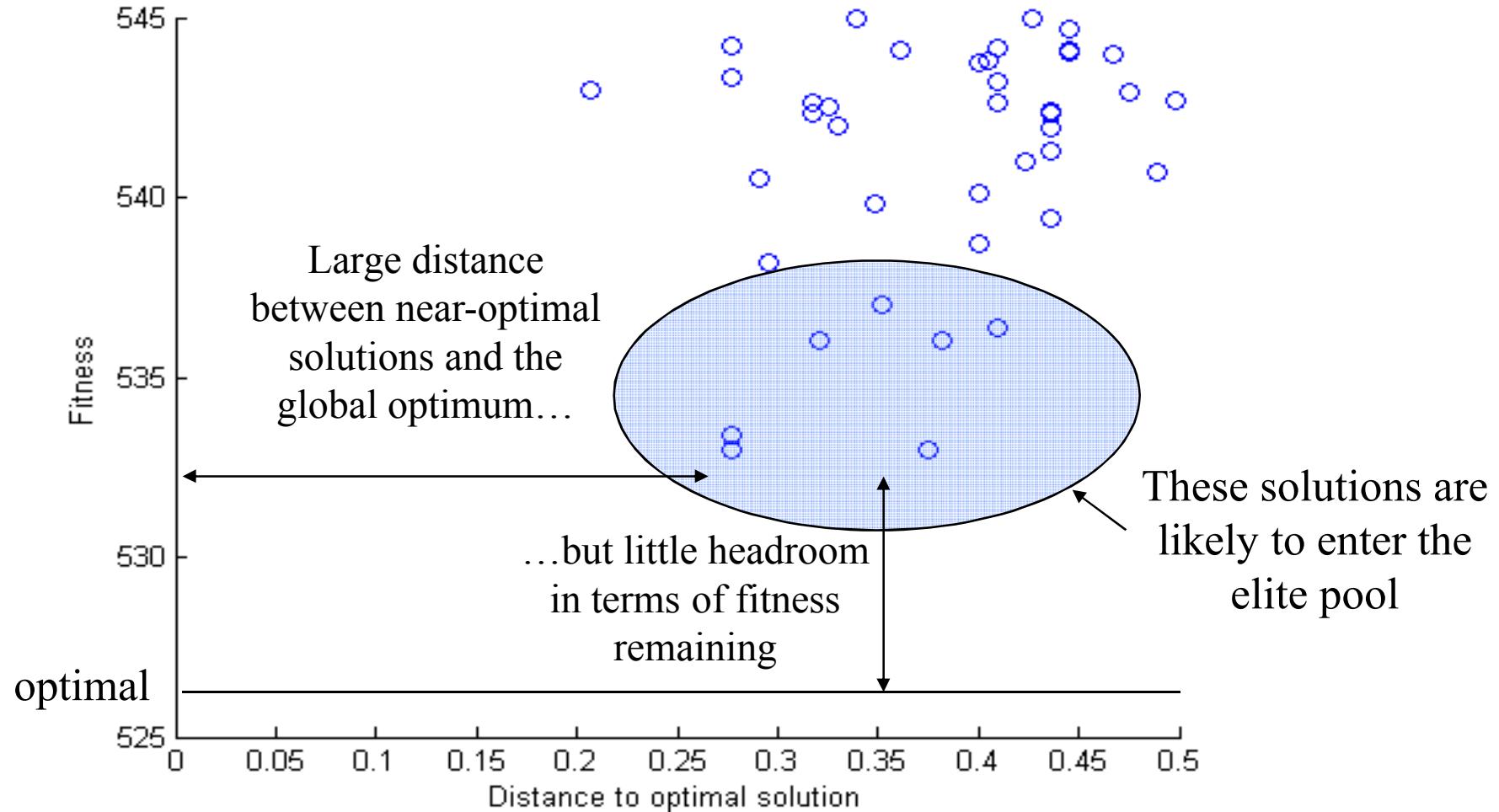


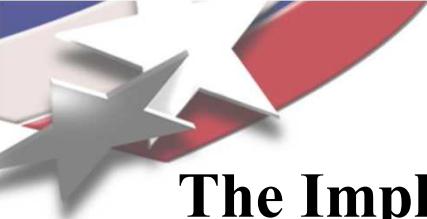
“Online” versus “Offline” Fitness-Distance Correlation (1)

- Previously reported FDC for the CVRP range from ~ 0.7 to ~ 0.8
 - Random local optima (Kubiak, 2004)
- But: Random local optima aren’t likely to enter an elite pool
 - Look at local optima *actually visited* by tabu search over 25K iterations



“Online” versus “Offline” Fitness-Distance Correlation (2)





The Implications of Low FDC for Pool-Based Metaheuristics

- Key observation for low FDC in the CVRP
 - Near-optimal solutions are frequently very far from optimal solutions
- Implication for (re)intensification
 - (1) High-quality solutions are very distant from optimal solutions
 - (2) Naïve pool maintenance schemes
 - (3) Search is quickly driven toward “0.5” distance solutions
 - => Intensification is likely to fail far more often than not
- Implication for diversification
 - (1) High-quality solutions are very distant from optimal solutions
 - (2) High probability that two elite solutions are not “deep” in the valley
 - => Path relinking is likely to search sub-optimal regions of the space

Conclusions

- Empirical analysis of fitness landscape – metaheuristic interactions can lead to significant insights into the behavior of these algorithms
 - Even state-of-the-art metaheuristics are wasting 99+% of their time
 - Fundamentally new mechanisms are needed to overcome this “feature”
 - Simple analyses can determine whether a newly proposed mechanism is qualitatively changing the way search is being performed
- Fitness-distance correlation based on random local optima is flawed
 - If you consider local optima likely to be visited by an algorithm, FDC in the CVRP is substantially lower than previously reported
 - Low FDC causes unique difficulties for pool-based metaheuristics

Questions?

- Thanks!