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Multichannel Deconvolution of Vibrational Shock Signals:
An Inverse Filtering Approach

J. V. Candy, K. A. Fisher, B. A. Markowicz, D. J. Paulsen

1 INTRODUCTION

When transporting critical systems of national security interest, out-of-the ordinary, impulsive-
events that can potentially be undetected and affect overall system performance are of great
concern. Impulsive events that can occur are essentially pulse-like, transient signals of short
duration that evolve from various phenomena. Here the event can be created by either the
dropping of a test object, the system, subjecting it to a compact high-energy blow or being
struck unintentionally during transit resulting in potential damage. The intensity and lo-
cation of the strike can cause an inoperability condition that is unacceptable in a national
security environment. Therefore, it is essential to detect, classify and localize damage of any
test object subjected to an impulsive-event.

This effort was targeted to evaluate the vibrational response of test objects that are
subjected to “transport” shocks and roadway vibrations during shipping and handling. Any
potential damage that could be inflicted during transportation must not only be detected,
but also be evaluated to determine the operational readiness of a test object before and
after transport. This event is a critical task that must be addressed as part of the Lawrence
Livermore National Laboratory (LLNL) national security mission.

The estimation of excitation signals from noisy data is termed the deconvolution problem
in the signal processing literature. The deconvolution problem is based on recovering the
input excitation signal from a system characterized by its impulse response sequence [1]-
[5]. Using this model of the system, an “inverse” representation or filter is developed to
remove the system from the measured data and recover the input [6]-[7]. Deconvolution
techniques have existed for a long-time; however, transient deconvolution presents a few
uncommon problems, since the signal has a finite-length time duration resulting in a limited
amount of data containing information about the excitation process. The transient is wide-
band in the frequency domain relative to any measurement sensor implying that the smaller
bandwidth sensor system “filters” the excitation eliminating some of its essential information
for recovery. This fact, coupled with the filtering effect of the test object itself makes this
excitation recovery (deconvolution) problem a challenge for signal processing.

Deconvolution is a problem that has been investigated for a long period of time whether
it is attempting to locate a seismic source or ocean acoustic target or speaker in a crowded
hall or extracting an explosive source for analysis [2], [3], [10], [11]. This problem is even
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more exasperated when multiple signals are involved—a situation prevalent in array based
systems [13]. Multichannel deconvolution poses a myriad of issues besides the fundamental
one that it is an ill-posed “inverse” problem [8]-[12]. Many techniques resort to first ob-
taining the multichannel impulse response and the apply it channel-by-channel to perform
the deconvolution using a single channel method (e.g. Wiener deconvolution [10], [14]). As-
suming that the system under investigation is lightly coupled, then this approach can be
effective. However, when the system is tightly coupled, such as in a vibrating structure, then
the single channel approach can lead to erroneous excitation estimates.

There are two viable candidate approaches that can be used to mitigate this multi-
channel problem. The first is the well-known Wiener least-squares solution employing the
nonparametric multichannel Levinson algorithm developed by Robinson [1], [2]. The second
approach incorporates a state-space model that can be used to develop and inverse filter
directly from input/output data. This approach incorporates any existing coupling of modes
that exists in the underlying structure being monitored. That is, the state-space approach
is to estimate the response of an underlying linear time-invariant, multichannel structural
system using a black-box state-space model. This model captures the underlying structural
dynamics of critical components enabling a viable vibration analysis to ensure that even
weakly coupled modal signals buried in the noise are represented. The structural test ob-
ject is a mechanical system that is modeled by a coupled multichannel mass-damper-spring
(MCK) structure that characterizes its response to an impulsive-event shock pulse excitation
illustrating the approach. First, the multichannel MCK-system model in state-space form
is discussed followed by the methodology to extract it from noisy experimental data using a
shaping or inverse filter design [15], [16].

We start by investigating the structure of the multichannel impulse response and then
show how the state-space easily captures its internal structure. That is, the impulse re-
sponse is an input/output description of a system under investigation with its Fourier
transform yielding the corresponding multichannel transfer function (matrix), while the in-
put/state/output state-space construct enables the internal structure of a system with all of
its coupling to be revealed as well as the input/output response.

We start by investigating the structure of the multichannel impulse response of a multi-
channel mechanical structural test object captured by a linear, time-invariant, MCK-system
[15] and then show how the state-space easily captures this multiple input/multiple output
(MIMO) representation in Sec. 1. That is, the impulse response is an input/output descrip-
tion of a system under investigation with its Fourier transform yielding the corresponding
multichannel transfer function (matrix), while the input/state/output state-space construct
enables the internal structure of a system with all of its coupling to be revealed as well as
the input/output response.

Next we define the basic problem and investigate various transient shock signals that
typically occur during transit. Using a simple MCK-model of a vibrating structure devel-
oped in Sec. 2 [15] various sets of noisy data are synthesized for each individual excitations
using the well-known Gauss-Markov representation [14] in Sec. 3. multichannel deconvolu-
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tion problem is discussed in Sec. 4 from the MIMO construct for both impulse response and
transfer function representations and extended to incorporate state-space models [14]. Shap-
ing or inverse filter designs for multichannel deconvolution using the state-space approach is
discussed in Sec. 5 and applied to the individual excitation data sets. This is followed by
applications of this approach in Sec. 6, first to noisy mass-simulation transportation data
obtained by transporting a large-mass concrete block using a tractor/tailer vehicle on typical
roadways followed by the vibrational response experiment of a test object excited by random
excitations for a shaker table experiment completing the study.

2 Vibrational Response Model

Mechanical systems are important in many applications, especially when considering vibra-
tional responses of critical components such as turbine-generator pairs in nuclear systems
on ships or even at home as well as aircraft structures that transport people throughout the
world. Next we briefly present the generic multivariable mechanical system representation
that will be employed in examples and case studies to follow.

Linear, time-invariant multiple input/output (MIMO) mechanical systems are charac-
terized by the vector-matrix differential equations that can be expressed as [15]

M d̈(t) + Cdḋ(t) + Kd(t) = Bpp(t) (1)

where d is the Nd × 1 displacement vector, p is the Np × 1 excitation force, and M , Cd,
K, are the Nd×Nd lumped mass, damping, and spring constant matrices characterizing the
vibrational process model, respectively. The structure of these matrices, typically, take the
form as

M =



M1 0 0 0 0
0 M2 0 0 0
...

...
. . .

...
...

0 0 0 MNd−1 0
0 0 0 0 MNd

 , Cd =
[
Cdij

]
, and

K =



(K1 + K2) −K2 0 0 0

−K2 (K2 + K3)
. . . 0 0

0
. . . . . . −KNd−1 0

0 0 −KNd−1 (KNd−1 + KNd
) −KNd

0 0 0 −KNd
KNd



If we define the 2Nd-state vector as x(t) :=
[
d(t) | ḋ(t)

]′
, then the continuous-time

state-space representation of this process can be expressed as
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ẋ(t) =

 0 | I
−−− | − −−
−M−1K | −M−1Cd


︸ ︷︷ ︸

A

x(t) +

 0
−−−
M−1Bp


︸ ︷︷ ︸

B

p(t) (2)

The corresponding measurement or output vector relation can be characterized by

y(t) = Cad̈(t) + Cvḋ(t) + Cdd(t) (3)

where the constant matrices: Ca,Cv,Cd are the respective acceleration, velocity and dis-
placement weighting matrices of appropriate dimension.

In terms of the state vector relations of Eq. 2, we can express the acceleration vector
as:

d̈(t) = −M−1Kd(t)−M−1Cdḋ(t) + M−1Bpp(t) (4)

Substituting for the acceleration term in Eq. 3, we have that

y(t) = −CaM
−1
[
Bpp(t)− Cdḋ(t)−Kd(t)

]
+ Cvḋ(t) + Cdd(t)

or

y(t) =
[
Cd −CaM

−1K | Cv −CaM
−1Cd

]
︸ ︷︷ ︸

C

 d(t)
−−−
ḋ(t

+ CaM
−1Bp︸ ︷︷ ︸

D

p(t) (5)

to yield the vibrational measurement as:

y(t) = Cx(t) + Du(t) (6)

where the output or measurement vector is y ∈ RNy×1 completing the multiple input/multiple
output (MIMO) vibrational model. The is the form of the model to be identified directly
from the data, that is, the model set is represented by ΣABCD = {A, B, C,D}.

Corresponding to this representation is the discrete transfer function matrix in terms
of the Z-transform

H(z) = C(zI − A)−1B + D (7)

with the corresponding impulse response matrix specified by its set of Markov parameters
({CAt−1B + Dδ(t)}) specified by the underlying state-space model [14], [16]

H(t) = CAt−1B + D︸ ︷︷ ︸
Markov Parameters

δ(t) (8)
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Recall that the Z-transform (Z) is the discrete-time equivalent of the Laplace transform
(S) for continuous-time systems and is related through the impulse invariant transformation
given by Z = eS4T . The corresponding discrete Fourier transform (DFT) pair is defined by

Y (z)
∣∣∣
z=ejΩm

= Y (Ωm) := DFT
[
y(t)

]
=

M−1∑
t=0

y(t)e−jΩmt

y(t) = IDtFT
[
Y (Ωm)

]
=

1

M

M−1∑
t=0

Y (Ωm)ejΩmt (9)

similar to the continuous Fourier transform calculated on the jω-axis, the DFT is calculated
on the unit circle in the Z-domain [14].

In order to utilize information about the acoustic object of interest and validate ap-
proaches to recover the excitation, a typical structural test object of interest is employed to
extract a reasonable model for simulation and analysis. The approach taken was to use a
multichannel method to extract the shock excitation from synthesized calibration-type data
ensuring a reasonable representation of the overall system and enabling a capability to an-
alyze algorithm performance. Next we investigate a simple mechanical system in [15] that
will be incorporated in processor design and analysis.

Consider the simple 3-mass (spring-damper) mechanical system1 illustrated in Fig. 1
from [15] where mi = 1; ki = 3, k4 = 0; and di = 0.01ki, d4 = 0; i = 1, · · · , 3. These
parameters along with the input/output transmission matrices lead to the following state-
space representation (Nx = 6, Nu = 1, Ny = 3).

ẍ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

A =



0 0 0 | 1 0 0
0 0 0 | 0 1 0
0 0 0 | 0 0 1
− − − | − − −
−6 3 0 | −0.06 0.03 0
3 −6 3 | 0.03 −0.06 0.03
0 3 −3 | 0 0.03 −0.03


; B =



0
0
0
0
0
1


; C =

 1 0 0 | 0 0 0
0 0 0 | 1 0 0
0 0 0 | 0 0 1



with D = 0.

1See [15] for a detailed analysis of this mechanical system.
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Exciting this system with an impulse yields the 3-output response shown in Fig. 2 along
with its accompanying Fourier spectra. Discretizing the response with a sampling interval
of 4t = 0.01sec shows the 6th-order system (Nd = 3, Nx = 6) with modal frequencies
determined from the “discrete” system matrix that is transformed from the discrete (z-
domain) to the continuous (s-domain)—(Z → S) given by

s =
1

4t
ln z

to yield the modal frequencies at: {pi = 0.497Hz, 0.343Hz, 0.123Hz} corresponding to the
peaks present in the Fourier transform of Fig. 2. These features that make this structural
model interesting from a processing perspective is that it can represent any number of me-
chanical objects or sensors such as displacement, velocity or acceleration measurements that
occur routinely in vibrational monitoring systems.

We can consider this representation a simple set of object/sensor measurements that
are contaminated with random disturbances and noise leading to a stochastic system that
incorporates the dynamic MCK-model along with Gaussian noise sources. This stochastic
problem leads to a Gauss-Markov state-space model with noise sources assumed zero-mean,
Gaussian, with covariance matrices, Rvv(t) and Rww(t), respectively (see Fig. 14a for internal
structure). In this case, the discrete state equations become:

x(t + 1) = Ax(t) + Bu(t) + w(t) [State]

y(t) = Cx(t) + Du(t) + v(t) [Measurement]

(10)

that becomes the basis of the deconvolution problems to follow.
For the constant state and noise covariances Π, Rww, Rwv and Rvv, the stationary mea-

surement covariance at lag ` is:

Λyy(`) = CA`−1 (AΠ(`)C ′ + Rwv(`)) ` = 0, 1, · · · , N

to complete the description.
If a deterministic SVD realization (identification) technique was performed using the

impulse response or covariance data at a high SNR of 50 dB. The rank of the Hankel matrix
from the SVD decomposition indicates a 6th-order system (3-modes) as observed in Fig.
3(a). The realization results are shown in Fig. 3(b)-(d) where we see the modal frequency
estimates that match those of the system closely along with the estimated channel outputs
overlaid onto the raw impulse response data—again indicating an accurate realization due to
the high SNR. In Fig. 3(b) we compare the estimated average power spectra from the SVD
realization of the model to the 3-output spectra and show the location of the extracted modal
frequencies. Note how all of the peaks align indicating a valid realization of the underlying
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𝑚1 𝑚2 𝑚3
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𝑑1 𝑑2 𝑑3 𝑑4

𝑝1 𝑝2 𝑝3

Figure 1: The 3-output mechanical system under investigation.

mechanical system. The pole-zero representation along with the extracted modal frequencies
are shown in Fig. 3(c).

Thus, we have a mechanical MCK-system that will be used to synthesized “sensor” data
useful to evaluate the performance of potential single/multichannel deconvolution techniques
to follow by incorporating multiple inputs (excitations) representing a variety of transient
shock pulses.

3 IMPACT PROBLEM: Excitation Signal Analysis

In this section, the various components of the Impact Problem are discussed leading to a
synthesis of data enabling an analysis of the basic problem as well as providing an eventual
simulation test bed for the development of signal processing techniques that can be applied
to each of the facets of this problem [17]. To synthesize a data set essential components of
the problem must be identified individually. As illustrated in Fig. 4 the data initiated by an
impulsive-event is characterized by an impulse-like pulse that excites the vibrational response
of the particular structural object that is then measured by the sensor system. The response
as well as the sensors are subjected to uncertainties and noise as illustrated by additive
sources contaminating the object as well as the sensor responses. Therefore, the overall
synthesis of this model is concerned with: (1) impulsive-event shock pulse; (2) vibrational
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Figure 2: Impulse response and spectrum of 3-output mechanical system. (a) Synthesized
channel impulse responses. (b) Fourier transforms of channel responses with spectral peaks
at: 0.497Hz, 0.343Hz, 0.123Hz.
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poles/zeros. (d) Realization output channels (data/realization) overlays.
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Excitation DEVICE Vibrational Response Sensor System Response Noisy Measurement Response

Figure 4: Multichannel Impact Problem showing the data generated by the impulsive-event
exciting the test object generating its vibrational response contaminated with noise then
measured by the sensor instrumentation system also contaminated by instrumentation as
well as environmental noise providing a realistic measurement system output.

dynamics of the structural object; and (3) sensor system response—all contaminated with
uncertainties and noise.

A variety of excitations can occur during shipping and handling for transport. Initially,
we consider hammer-strikes that can occur at any time during this process followed by three
typical excitations: [18]

• HAMMER—a hammer-strike can impact the structural test object and is employed
during calibration testing as well as any sharp blow that can during shipping/handling
operations.

• DROP—a drop can occur anytime during shipping/handling when the structural object
is being placed in a container or trailer.

• HAZARD—a hazard can occur anytime during transit, once the object is placed in the
transporter (truck, train, plane, ship, etc.).

• ROAD—a road induced vibration can occur anytime during transit on a roadway or
rail or at sea/air.
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These are the primary shocks that will be considered in this study. First, we analyze each
excitation individually and then apply them to our problem.

3.1 Excitation: Hammer-Strike

In this subsection, the properties of a typical hammer strike applied to a structural test
object are investigated in order to ascertain what, if any, unique properties exist that can
be exploited for detection and recovery. A set of instrumented hammer-strikes was obtained
from a previous test. An ensemble of 12-strikes were recorded and their corresponding spec-
tra shown in Fig. 5a. The ensemble spectra indicate that the frequency is relatively flat out
to 3.2KHz–the Nyquist sampling frequency. An average hammer-strike pulse is shown in
Fig. 5b along with its corresponding spectrum. It appears to roll-off out to 3.2KHz with
a reasonably flat spectrum out to 1.2KHz—a good band covering the frequency range of
interest for the object. It is interesting that the raw pulse data appears relatively symmet-
rical and Gaussian-like in structure as observed in Fig. 5a. It is also interesting to note
that both the amplitude and pulse width are reasonably fixed over the ensemble. Unfortu-
nately a direct pulse measurement data is not feasible, since the overall structural object
response, environment, and noise must also be included leading to the required multichannel
deconvolution approach to follow. A spectrogram (frequency vs time vs magnitude) using
a recursive-in-time technique (see Appendix C for details) of the average hammer-strike is
shown in Fig. 6 indicating a concentration of energy across the entire frequency band syn-
thesizing an impulse-like excitation. A dominant peak at approximately 100Hz is shown in
the ensemble spectrum (green) and histogram (red) as well.

3.2 Excitation: DROP

The DROP is the most severe of excitations that can be directly applied to the structural
object being transported. It can occur in a variety of situations when the object is being
handled for shipping such as: forklift placement or moving the object through a variety of
transporters (e.g. truck-to-train or truck-to-plane). Raw median DROP data (blue) are
shown in Fig. 7(a) along with the corresponding spectra. Here the data were obtained
using tri-axial accelerometers and pre-processed (filtered, trends removed, decimated) to
mitigate the measurement noise. This data were provided as input to a subspace identifi-
cation processor (10-mode, 20-th order) to capture its major frequency content as shown in
Fig. 7(b) with the raw (turquoise) and identified (red-filled) spectra indicated along with
corresponding frequency peaks (list inset). From the figure it is clear that the estimator
has captured a viable representation of a DROP event excitation, since both low and high
frequencies are extracted. To see this even further a spectrogram (frequency vs time vs
energy) was estimated for both the raw and identified excitations with the results shown in
Fig. 8 respectively along with the time series (red) ensemble spectra (green) and frequency
peak histogram (red). From the raw data shown in (a), it is clear that a variety of noise
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Figure 5: HAMMER-Strike Data: (a) Ensemble time series and spectra. (b) Average time
series and spectrum.

Figure 6: HAMMER Excitation Model Identification Spectrogram Analysis: HAMMER
spectrogram, signal (red), ensemble spectra (green) and peak frequency histogram (red).
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Figure 7: DROP Excitation Model Identification: (a) Raw median data and estimated DROP
pulse. (b) Raw median DROP spectrum and estimate (model).

peaks occur, while that of the simplified identification model has captured the major energy
while minimizing the noise uncertainty. However, in both spectra, it is clear the this type
of excitation excites most frequencies across the entire band. Next we consider the related
HAZARD that can occur during transit on the roadway or railway.

3.3 Excitation: HAZARD

The HAZARD excitation can also occur in a variety of manners. For instance, if construction
were being performed on a road or railway with uneven surfaces being exposed as well as
pot-holes on a road for example. A typical HAZARD excitation is shown in Fig. 9 with the
median time series (turquoise), the identified model response (red) in (a) and corresponding
spectra (blue) in (b). Again, we see that the simplified model response obtained by the
subspace identifier (15-mode, 30-th order) captures a majority of the spectral energy (red-
filled) as shown in (b). The corresponding HAZARD spectrogram analysis is shown in Fig.
10 where we observe the high frequencies dominated by the noise in (a) and mitigated by
the identifier in (b). It is clear that the frequency peaks are well-defined as indicated by
the corresponding ensemble spectra (green) and peak histogram (red). Finally we consider,
perhaps the most prevalent excitation, vibrational response due to damaged or repairing
surfaces.
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Figure 8: DROP Excitation Model Identification Spectrogram Analysis: DROP spectrogram,
signal (red), ensemble spectra (green) and peak frequency histogram (red). (a) Raw DROP
data. (b) DROP model data.
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Figure 9: HAZARD Excitation Model Identification: (a) Raw median data (turquoise) and
estimated HAZARD pulse (red). (b) Raw median HAZARD spectrum (turquoise) and model
estimate (red-filled).
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(a) (b)

Figure 10: HAZARD Excitation Model Identification Spectrogram Analysis: HAZARD spec-
trogram, signal (red), ensemble spectra (green) and peak frequency histogram (red). (a) Raw
HAZARD data. (b) HAZARD model data.
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3.4 Excitation: ROAD

The ROAD excitation induces a persistent vibrational response of the transported structural
object during transit. It is typically caused by rough surfaces resulting in uneven road and
railways. The typical ROAD excitation is shown in Fig. 11 with the median time series
(turquoise), the identified model (20-mode, 40-th order)) response (red) in (a) and corre-
sponding spectra in (b). In this case, the median roadway vibration data (turquoise) data
is quite noisy, while the identified model data (red) mitigates much of these uncertainties.
Comparing the median measured accelerometer spectrum with that of the model (red-filled)
spectrum provided by the subspace algorithm (see Appendix A), it is clear that this simplified
representation has captured the extended frequency spectrum. The corresponding spectrum
confirms this premise with the median time series (red) providing a noisy uncertain spectral
ensemble (green), while that produced by the identified much simpler with much less uncer-
tainty. Finally, the corresponding spectrograms illustrating the raw and modeled spectral
information is shown in Fig. 12.

Summarizing, the variety of excitation measurements were simplified using the subspace
identification processor providing an archive of such signals for eventual simulation and
analysis. A comparison of the DROP, HAZARD and ROAD spectral are shown in Fig. 13
indicating that each they cover the frequency band extensively from 0.1 − 3.2KHz with
the exception of the HAZARD shock pulse that only extends up to 2KHz and then rolls
off rapidly. This completes the excitation suite that will be applied to our transportation
problem.

4 Multichannel Deconvolution

The basic deterministic deconvolution problem can be defined mathematically as:

GIVEN an Ny-vector measurement sequence {y(t)}; t = 1, · · · , Nt for y ∈ RNy×1, FIND the
corresponding Nu-vector excitation (input) sequence, {U(t)}

The direct solution to the deterministic deconvolution problem is given by

U(t)︸ ︷︷ ︸
Excitation

= H−1(t)︸ ︷︷ ︸
Inverse Impulse Response

? y(t)︸︷︷︸
Measurement

(11)

or in the Z-domain as

U(z)︸ ︷︷ ︸
Excitation

= H−1(z)︸ ︷︷ ︸
Inverse Transfer Function

× Y(z)︸ ︷︷ ︸
Measurement

(12)

Therefore, it is clear mathematically why this problem is termed an “inverse” problem—
primarily because the system impulse response matrix or transfer function must be inverted
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Figure 11: ROAD Excitation Model Identification: (a) Raw median data (turquoise) and
estimated ROAD pulse (red). (b) Raw median ROAD spectrum (turquoise) and model
estimate (red-filled).
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(a) (b)

Figure 12: ROAD Excitation Model Identification Spectrogram Analysis: ROAD spectro-
gram, signal (red), ensemble spectra (green) and peak frequency histogram (red). (a) Raw
ROAD data. (b) ROAD model data.
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ARD (green) and ROAD (red).

in order to recover the excitation signal. Approaches to solve the deconvolution problem
range from a simple division of Fourier spectra to more sophisticated Wiener inversions
using smoothed power spectra to achieve reasonable results for the single channel case [14].
However, all attempts in the multichannel case usually result in transfer function modeling
approaches and time domain solutions as in the seismic case [2]. For multichannel acoustic
systems, a state-space model is one of the fundamental mechanisms applicable [8], [9], [17].

The multiple channel models can be developed, starting with a set of input/output
representations eventually leading to a set of deterministic state-space models. Typical
discrete-time deterministic multiple input/multiple output (MIMO) systems can be char-
acterized by their impulse response matrices or equivalently multichannel transfer function
matrices. The impulse response of a discrete-time system is

y(t) = H(t) ? u(t) =
K∑

k=0

H(t− k)u(k) (13)

with t is the discrete-time index, ? the multichannel convolution operator and y ∈ RNy×1,
the vector of outputs, u ∈ RNu×1, the vector of inputs, H ∈ RNy×Nu the impulse response
matrix.
The corresponding discrete transfer function, H(z) is characterized by the input/output
relation
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Y(z) = H(z)×U(z) (14)

with the discrete-time transfer function matrix defined by H(z).
The impulse response can be represented as a multichannel matrix in terms of its inputs

(columns) and outputs (rows) or equivalently in terms of column vector functions ( hi(t) ∈
RNy × 1) or row vector functions ( hT

i (t) ∈ RNu × 1), that is,

H(t) = Outputs




h11(t) · · · h1Nu(t)
...

. . .
...

hNy1(t) · · · hNyNu(t)


︸ ︷︷ ︸

Inputs

= [h1(t) | · · · | hNu(t)] =



hT
1 (t)

−−−
...

−−−
hT

Ny
(t)

 (15)

The multichannel convolution operations are then defined in terms of this representation
as:

y(t) = H(t) ? u(t) = [h1(t) | · · · | hNu(t)] ? u(t) = [h1(t) ? u(t) | · · · | hNu(t) ? u(t)] (16)

and therefore,

y(t) = H(t) ? u(t) =


h11(t) ? u1(t) · · · h1Nu(t) ? uNu(t)

...
. . .

...
hNy1(t) ? u1(t) · · · hNyNu(t)uNu(t)



=


∑K

k=0 h11(k)u1(t− k) · · · ∑K
k=0 h1Nu(k)uNu(t− k)

...
. . .

...∑K
k=0 hNy1(k)u1(t− k) · · · ∑K

k=0 hNyNu(k)uNu(t− k)


(17)

where hmn(t) the impulse response from the n-th input excitation (un(t)) measured at the
m-th output channel (ym(t)); for m = 1, · · · , Ny; and n = 1, · · · , Nu.

The multichannel transfer function matrix is obtained by applying the Z-transform to
obtain

H(z) =


H11(z) · · · H1Nu(z)

...
. . .

...
HNy1(z) · · · HNyNu(z)

 = [H1(z) · · ·HNu(z)] for Hn ∈ CNy×1 (18)

The multichannel system can also be represented in state-space form with the impulse
response matrix given in terms of its Markov parameters
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H(t) = CAt−1B + Dδ(t)︸ ︷︷ ︸
Markov Parameters

; t = 0, 1, · · · , N (19)

such that

H(t) =


cT

1 At−1b1 + d11δ(t) · · · cT
1 At−1bNu + d1Nuδ(t)

...
. . .

...
cNyA

t−1b1 + dNy1δ(t) · · · cT
Ny

At−1bNu + dNyNuδ(t)

 (20)

with the corresponding transfer function matrix in state-space form given by

H(z) =


cT

1 (zI − A)−1b1 + d11 · · · cT
1 (zI − A)−1bNu + d1Nu

...
. . .

...
cT

Ny
(zI − A)−1b1 + dNy1 · · · cT

Ny
(zI − A)−1bNu + dNyNu

 (21)

illustrating the fact that the input/state/output representation captures the input/output
as well as the internal structure of the underlying system in terms of its state variables and
equivalent impulse response/transfer function matrices.

With this information in mind, the solution to the multichannel deconvolution problem
is based on designing and applying an inverse filter to recover the excitation as shown in Eq.
12. A direct model of an inverse filter is quite difficult to obtain analytically; however, we
apply a subspace identification technique (N4SID) to solve the multichannel deconvolution
problem. Essentially, this approach is used to design a “shaping filter” (see [14]) based on
the state-space approach using representative excitation signals and apply it directly noisy
data. Once designed, the filter is applied to measured data extracting the desired excitation
directly.

5 Inverse (Shaping) Filter Design

In order to investigate the state-space approach to the multichannel deconvolution prob-
lem, we employ the simple 3-mass mechanical system investigated in the previous section
developed by Gawronski [15]. In contrast, we use a 2-input hammer-strike excitation that
would be available if the structure was impacted simultaneously by direct forces on the 1-st
and 3-rd masses. The linear system in this case is characterized by the usual MCK-model
dynamics parameterized in the multichannel structure of Eq. 1. As excitations, we incorpo-
rate actual hammer-strike transient measurements scaled to this problem and contaminated
with random noise. The shaping (inverse) filter is developed to primarily take on input a set
of calibration measurement data and on output produce the excitations, that is, the filter
is designed to create a filter that estimates the inputs. First, the impulse response of the
shaping filter must be estimated and second apply it to measured data as its input. From
the deconvolution problem perspective, the shaping filter is the required “inverse filter”.
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Figure 14: State-Space Realizations of Gauss-Markov and Inverse Filters: (a) Gauss-Markov
model: Input: (u(t)) and Output: (y(t)). (b) Inverse Gauss-Markov (shaping) filter: Input:
(y(t)) and Output: (u(t)).

In the state-space framework, we have that Σinv = {Ainv, Binv, Cinv, Dinv} characterized
by

ξ(t + 1) = Ainvξ(t) + Binvy(t) + w(t) [State]

u(t) = Cinvξ(t) + Dinvy(t) + v(t) [Excitation]

(22)

where y is the new input and u is the new output of this inverse filter “shaping” it to be the
actual excitation. as shown in Fig. 14(b).

In summary, the multichannel shaping (inverse) filter design procedure is:

• Obtain sensor calibration data;

• Extract transient excitation data from archives or experiments;

• Design shaping (inverse) filter, Σ̂inv = {Âinv, B̂inv, Ĉinv, D̂inv}, using subspace identifi-
cation (N4SID); and
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• Filter measured data with the inverse filter to extract the true excitation.

In the MCK-problem, we use multichannel hammer-strikes as the desired excitation sig-
nal from archive data in a high SNR-environment to design the inverse (shaping) filter and
then apply it to noisy synthesized noisy accelerometer measurements synthesized from the
Gauss-Markov model of Eq. 10 to evaluate the processor performance. In this application,
the processor must be able to design a stable and minimum phase processor constrained so
that both resulting poles/zeros lie within the unit circle. These constraints are possible with
the subspace Numerical algorithm for state-space Subspace IDentification (N4SID) [19]-[23].
Typically, inverse filter design is a difficult problem; however, with modern subspace iden-
tification methodology the N4SID-approach is robust enabling a “stable” model to evolve
because of the embedded singular value decomposition (SVD) numerics employed. With this
in mind, we consider 2-input, 3-output, 6-state MCK-system depicted in Fig. 1 with tran-
sient hammer-strike excitations. Since the MCK-system modal frequencies are respectively
fmodal = {0.497, 0.343, 0.123Hz}.

A Gauss-Markov simulation was performed at a sampling frequency of 2Hz and process
and measurement noise sources with covariances of Rww = diag[0.005] and Rvv = 0.01. The
synthesized states and noisy calibration measurements are shown in Fig. 15 where we observe
the 6-states in (a) and accelerometer measurements in (b). In order for the synthesis to be
a viable Gaussian simulation the (Pct.Out/No.) referring to the percentage and number of
samples exceeding the 2σ-bounds should be less than 5%—a 95% confidence interval. For
this particular realization at the specified covariances, all of the bounds were satisfied and
in fact all were < 0.5% as shown in the figure.

Using this calibration data and scaled-in-time (dt = 0.5sec), hammer-strike excitations,
an inverse filter was designed, first using the multichannel state-space algorithm and a 14-
state model with the results of the design shown in Fig. 16. Recall that the input sequence to
the inverse filter is the calibrated 3-channel measurement with output the 2-channel hammer-
strikes. Here we observe the multichannel deconvolution with the extracted excitations shown
in (a) and the corresponding estimator statistical tests in (b). Clearly the deconvolved pulse
estimates (red) have captured the complete structure of the hammer-strike (turquoise) for
each channel confirmed by the zero-mean/whiteness tests (Z-M/W-T) shown in (b). Recall
that for optimality, the corresponding residuals must satisfy these criteria over each channel
with Z-M:(No. 1–0.002 < 0.043), (No. 2–0.002 < 0.043) and W-T: (No. 1–0.44% < 5%),
(No. 2–0.44% < 5%) indicating an optimal design. Next the designed inverse filter was
applied directly to synthesized noisy with the results shown in Fig. 17. Here the design
is shown in (a) using the N4SID-technique to estimate the inverse filter (Σ̂inv) using the 3-
channels of synthesized accelerometer (calibration) data as input and the true mean 2-channel
hammer-strikes as the desired signal for the shaping (inverse) filter. The results using a 14-
th order state-space processor enabled a 97% fit of the strike data for each channel. Once
designed, the inverse filter was applied to noisy data and the results of the multichannel
deconvolution are shown in (b) enabling a good extraction of the strike data.
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As a final application, a set of independent hammer-strikes we synthesize using the
same MCK-model and corresponding statistics of the previous excitation; however, now with
delays between the independent blows. The simulation was a bit more uncertain with the
average percentage of samples lying outside of the 2σ-bounds slightly higher (< 1.5%). The
final results of the processor are shown in Fig. 18 with the design in (a) and the application in
(b). The design also satisfied the optimality constraints imposed by the zero-mean/whiteness
tests (Z-M/W-T) with: Z-M: (No. 1–0.0005 < 0.043), (No. 2–0.0004 < 0.043), (No. 3–
0.0002 < 0.043) and W-T: (No. 1–0.88% < 5%), (No. 2–1.74% < 5%), (No. 3–1.03% < 5%)
indicating an optimal design.

The results are not quite as impressive as the 2-channel simulation, but still acceptable
completing this approach. Perhaps one explanation of these results is that the system is
highly coupled and there is channel feedback of the excitations occurring at different times
creating more of a disturbance in the coupled channels.

Following the same approach applying the subspace method, the single-channel, Wiener
least-squares technique (see Appendix B for details) was applied to the synthesized MCK-
data of Fig. 15 channel-by-channel designing the inverse filter first followed by its application
next. The results of this processor are shown in Fig. 19 with the design in (a) and the
application in (b). These results are not as good as the multichannel state-space approach in
terms of extracting (deconvolving) the excitation strike shape, but it does adequately capture
its structure as shown in the design phase of (a) with application performing reasonably in
(b). Here the processor design was based on using all of the samples available from the data
(2500-samples) for the final finite impulse response (FIR) filter (order).

Finally, along with the hammer-strike all of the excitation signals (DROP, HAZARD,
ROAD) were time-scaled and applied as excitations to the MCK-system as well. Here the
objective was to investigate the performance of the inverse filtering approach as before. The
results of each excitation are shown in Fig. 20- 22 with all three excitations specified as
outputs and the corresponding synthesized response data provided as inputs for the inverse
filter designs. In all of these scenarios, an optimal design was achieved (Z-M (< .004))
and (W-T (< 2% out)). The DROP excitation design and application results are shown in
Fig. 20(a) and (b), respectively. As observed in the figure, the processor is quite capable
of extracting the DROP excitation in the design (14-th order,81% fit) comparing the noisy
transient excitation (turquoise) with its estimate (red). The application of this filter to noisy
data enables a reasonable extraction of the DROP transient impact (red) directly from the
synthesized noisy 3-channel data (gray)“true” excitation (turquoise) shown in (b). Similar
results extracting the excitations are observed for the HAZARD transient (25-th order, 74%
fit) shown in Fig. 21 as well as the ROAD transient (30-th order, 66% fit) shown in Fig.
22—indicating a viable approach to the multichannel problem.

The optimal SISO Wiener (channel-by-channel) approach [14] was applied to the HAM-
MER, DROP, HAZARD, ROAD data sets exciting the MCK-system with the results shown
in Fig. 23. As expected the designs were quite good indicated in (a) for each of these inputs
extracting the excitations with minimal errors; however, the application of the identified
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Figure 15: Mechanical System (MCK) a Gauss-Markov Simulation (Noise: Rww = 0.005,
Rvv = 0.02): (a) Six (6) modal states: data (blue), mean (green), 2σ-bounds (red dashed)—
(Pct.Out < 0.5%). (a) Three (3) accelerometer output channels: data (blue), mean (green),
2σ-bounds (red dashed)—(Pct.Out < 0.5%).

inverse filter did not perform ( see (b)) as well as the multichannel state-space approach
possibly because of the internal coupling between modes is not incorporated into a single
channel methodology.

This completes the investigation of the inverse filtering approach on synthesized data,
next we consider an actual transportation experiment with transient impact excitations.

6 MULTICHANNEL DECONVOLUTION APPLICA-

TIONS

For the deconvolution shock excitations, a simulation capability is under development to
synthesize the response of test objects to shock excitations; therefore, a primary objective
of this investigation is to identify and extract a variety of shock/vibration signals [18].

Next we develop the processing approach to both enhance the noisy measurements and
extract the shock signals of interest. The approach is shown in Fig. 24 where the multichan-
nel measurements are band-pass filtered using a 10th-order Butterworth filter (maximally
flat magnitude in the pass band) between the frequency band of 60Hz to 4.5KHz based
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Figure 16: Inverse Filter Design for Excitation Recovery (Deconvolution) of Mechanical
System (MCK): (a) Hammer-strike (2-channels) recovery estimates (red) synthesized data
(turquoise). (b) Performance statistics: Z-M: < 0.043; W-T: < 5%.
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INVERSE Filter: Estimated Input No. 2
Order = 14, Fit =97%
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Figure 17: Inverse Filter Subspace Design/Application for Excitation Recovery (Decon-
volution) of Mechanical System (MCK): (a) Design: hammer-strike recovery (2-channel)
estimates (red) with true-mean outputs (green) and synthesized accelerometer (3-channels)
inputs (gray). (b) Application: estimated 2-channel hammer-strike excitations (red) with
true mean strikes (green)—InvFilter Order =14 for 97% Fit.
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Figure 18: Inverse Filter Subspace Design/Application for Excitation Recovery (Decon-
volution) of Mechanical System (MCK): (a) Design: hammer-strike recovery (3-channel)
estimates (red) with true-mean outputs (green) and synthesized accelerometer (3-channels)
inputs (gray). (b) Application: estimated 3-channel hammer-strike excitations (red) with
true mean strikes (green)—InvFilter Order =12 for 36% Fit.
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Figure 19: Inverse Filter Wiener Design/Application for Excitation Recovery (Deconvolu-
tion) of Mechanical System (MCK): (a) Design: hammer-strike recovery (single-channel)
estimates (red) with true-mean outputs (green). (b) Application: estimated (single-channel)
hammer-strike excitations (red) with true mean strikes (green)—InvFilter Order =2500.
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on the range of expected rigid body modes of the vibrating structure (< 60Hz) and the
Nyquist frequency of 5KHz. After examining the resulting spectrum, it was then necessary
to equalize or equivalently pre-whiten the data in an attempt to ensure a wide bandwidth
for deconvolution of the shock signals. After the equalized array data were available, a mul-
tichannel subspace (state-space) impulse response model is extracted and its average signal
estimated. The test object channel array data and upper steel plate accelerometer suite data
(equalized) were used to perform a multichannel subspace state-space identification (black-
box) to obtain impulse response estimates of the system. Once these data are available,
the “average” impulse response along with the upper accelerometer measurements are used
in an optimal (single channel) deconvolution scheme to extract the shock excitation. Next
either the array median or average signal was estimated for analysis and further processing.
Here the median processor simply replaces the median value at each time sample (interval)
across each the array channel in contrast to an average value, to arrive at the processed
signal as illustrated in the figure. Once available, the signal was analyzed with a spectro-
gram processor producing the frequency-time evolution analysis of the vibration response as
well as the deconvolution processor. Based on the approach in Fig. 24, a brief discussion
of deconvolution and the subspace identification, spectrogram estimator and deconvolution
processor follow.

6.1 Application: Mass-Simulation Transportation Data

A set of transportation data is available from a Mass Simulator—a concrete block. Mass
simulator experiments were performed by incorporating a 1500-lb concrete block mounted
on a wooden shipping palate—the “Mass Simulator” [18]. The block synthesized a mock test
object that was transported in a 48-ft trailer over a typical transportation path in order to
acquire shock and vibration excitations. The simulator was mounted over the front axles and
instrumented with tri-axial accelerometers located: adjacent to the center-of-gravity (CG)
of the block, centered in the trailer bed and above the rear axle. Data were acquired at a
10KHz sampling frequency triggered by shock events during the transport. Pre-processed
shock time series data for the 9-accelerometer channels are shown in Fig. 26. The raw
data were bandpass filtered between, 60− 4500Hz and decimated to a Nyquist frequency of
5KHz. This data set contains a high g-shock event as recorded over the rear axle on channels
4− 6. It is interesting to note that the transient event is weakly recorded over the front axle
(channels 7 − 9) primarily because of the four shock absorbers on both the air-ride trailer
and the cab as well as the damping provided by the mass of the block. Channels 1 − 3 do
not indicate the high-g energy of the event, since it was hardware constrained by a low-pass
filter (450Hz). The shock, itself, was produced (unintentionally) by the trailer riding over a
large road surface separation at different levels causing a g-force event as shown by the large
transient recorded on the Z-direction channel (No. 6) and indicated on the X, Y -channels
(No. 4 and 5) as well. This shock event is assumed to represents a “pure” input excitation
that might be expected during transport.
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processing.
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The data were further processed extracting the primary shock event (high g-shock) and
analyzed extracting the “pure” sequence and its largest shock transient. After decimation
and trend removal, the data were equalized (whitened) for analysis. These channel shock
measurements and their corresponding spectra were estimated with the results shown in
Fig. 27. The X, Y, Z-channel data clearly shows a consistent structure in (a) with the
corresponding ensemble spectra shown in (b). The spectral bands of this shock excitation
are centered at the following frequencies (bandwidth): 200Hz(BW : 150), 450Hz(BW :
150), 650Hz(BW : 100), 850Hz(BW : 225), 1250Hz(BW : 250), 1550Hz(BW : 150),
1850Hz(BW : 200) and 2050Hz(BW : 125). The median shock signal was estimated with
its corresponding spectrogram shown in Fig. 28. From the figure, the instantaneous ensemble
spectra (green) indicates a multitude of spectral resonances stretching across the bands as
confirmed by its corresponding peak histogram below in red.

Multichannel spectral estimation was performed using a 40-th order state-space method
(N4SID) with the results shown in Fig. 29 where the “fit” is compared to the median
estimates of the data (blue) and equalized data (green) as well as the extracted shock pulse
event (red). It is clear that the estimator has captured the salient spectra coupled directly
to this event. The resonant bands (turquoise filled) clearly illustrate the excitation bands.

The excitation and accelerometer data were pre-processed (filtered, decimated, trend
removed, normalized) as shown in Fig. 30(a) where a set of extracted shock excitation
transients and their corresponding ensemble spectra are given along with the subsequent
response data and spectra in (b). Multichannel deconvolution (design) was performed by
estimating (N4SID) an inverse filter using a 40-th order state-space model applying the
excitation data as the output and the response data as the input [14], [19].

The results of the inverse filter design are shown in Fig. 31 where the true excitation data
(turquoise) and their estimates (red) are overlayed in (a). Recall that the Z-M test requires
that the estimate should lie below the bound (0.17) , while the W-T insists that 95% of
each channel correlation estimates lie within the bounds or equivalently 5% are outside.
For the design, the Z-M/W-T results for each measurement are: (No. 1: 0.022/6.3%), (No.
2: 0.058/6.3%), (No. 3: 0.026/4.7%).

The application of the inverse filter processor to measurement data is shown in Fig. 32
where the average data spectrum is compared to the average deconvolved spectrum. The
results are encouraging, since the spectral bands of high interest are capture by the processor.

6.2 Application: Vibrating Structural Test Object Data

In this section, we discuss the application of the multichannel deconvolution approach to a
structurally “unknown” structural object, that is, a complex, stationary structure (black-
box) with no rotating parts that is subjected to random excitations with accelerometer
sensors placed on its surface and around its periphery. Here the primary objective of this
controlled experiment is to examine the feasibility of applying the model-based deconvolution
technique to a mulitple input/multiple (MIMO) structural system subjected to environmen-
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Figure 28: Mass Simulator Transportation Data (Chan. 4 − 6) Spectrogram: spectrogram,
signal (red), ensemble power spectra (green) and mean (red) and peak histogram (red).
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Figure 31: Mass Simulation Experiment: Inverse Filter Design for Excitation Recovery (De-
convolution). (a) Design: Recovery (multichannel) subspace (order = 16-modes) estimates
(red) with true-mean outputs (turquoise). (b) Performance: Zero-Mean/Whiteness optimal-
ity tests: Z-M/W-T are: (No. 1: 0.022/6.3%), (No. 2: 0.058/6.3%), (No. 3: 0.026/4.7%).
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tal disturbances and noise. However, we do have some prior information about its test
object modal response from historical tables and use this information as a guiding principle
to pre-process the acquired data. The structural object under test was subjected to ran-
dom excitations by placing a stinger or motor-driven rod perpendicular to the base of the
structure as illustrated in Fig. 33. A suite of 19-triaxial accelerometers were positioned
strategically about the structural object surface as well as a single triaxial (XY Z) sensor
allocated to measure the excitation time series. In total, an array of 57-accelerometer chan-
nels acquired a set of 10-minute duration data at a 6.4KHz sampling frequency [24], [25].
For pre-processing the data were subsequently down-sampled to 2.5KHz in order to focus
on the range of the excitation frequencies (< 1.25KHz). For this investigation, a subset of
the 8-triaxial accelerometers was selected as well as the single triaxial sensor on the output
excitation of the stinger. Therefore, from the state-space perspective our MIMO-system, is
a targeted system of up to a maximum of 12-modes or 24-states with an array of 24-channels
(XY Z) of time series measurements and 3-channels (XY Z) of an excitation measurement
that we are attempting to recover from these noisy accelerometer measurements using an
inverse filter.

The raw (down-sampled) data represent the expected data windows (5000 samples)
acquired from a real-time acquisition system. The windowed responses (time series) were
pre-processed, that is, they were outlier corrected, equalized (whitening filter), bandpass
filtered (150− 1.1KHz), and normalized (mean removal/unit variance) prior to performing
the inverse filter design. Once pre-processed the input/output data with roles reversed were
provided to the subspace algorithm enabling an identification of a stability constrained,
state-space model of the inverse filter, ΣINV = {AINV , BINV , CINV , DINV }. With the design
accomplished, the inverse filter was applied to an independent section (5000 samples) of
noisy accelerometer data to validate multichannel deconvolution processor performance.

The MIMO-data of the controlled experiment are shown in Fig. 34 where the triaxial
(XY Z) random excitations with their accompanying ensemble spectra are shown along with
the 8-triaxial accelerometer responses (24-channels) on the surface and periphery of the
structural object and ensemble spectra. The question to be answered is whether or not the
multichannel deconvolution technique using an inverse filter is capable for extracting these
excitations from the noisy accelerometer array data. We investigate this problem in two-
phases: XY Z-data sets individually (8 directional outputs and 1-input) and the combined
measurement array directly (24-outputs and 3-excitations). The simpler XY Z-data sets are
investigated first followed by the combination or batch data.

The design procedure is to: (1) Calibration: design the MIMO-inverse filter using the
state-space subspace identification method constrained for stable solutions only; (2) Applica-
tion: process the incoming accelerometer measurements with ΣINV to extract the excitations.
The performance metrics that can be used are: the percentage of model fit (Fit %) to the
data and its corresponding mean-squared error (MSE). This procedure is applied, starting
with the individual XY Z-directional data sets where the results for the X-channel data
is shown in Fig. 35(a) where the estimated excitation (red dots) is overlaid on the actual
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(initial) excitation (turquoise) with the subspace “fit” using a 25-mode model to the data is
at 44.4% and the MSE at 0.29. The optimality tests (zero-mean/white) indicate an optimal
subspace design as Z-M/W-T: 0.009/4.9%. Note that since the excitations are random sig-
nals, then a reasonable comparison is the power spectra as shown in (c). It is clear that the
design spectrum (red-filled) has captured the prominent spectral characteristics of the origi-
nal excitation. The application of the inverse filter to another section of noisy measurement
data (8-channels) also demonstrates the robustness of this approach, since the extracted
excitation spectrum (green) also captures the salient features of the original excitation data
(turquoise). The resonant peaks (red list) and the identified modal peaks (red squares) are
also shown overlaid on the spectral plots.

The multichannel deconvolution results for the Y -channel data shown in Fig. 36. Again
the estimated excitation (red dots) is overlaid on the actual (initial) excitation (turquoise)
where the subspace “fit” using a 25-mode model to the data is at 55.8% and the MSE
0.17—somewhat better than that of the X-channel. The optimality tests (zero-mean/white)
indicate an optimal subspace design as Z-M/W-T: 0.006/4.7% with slightly better statistics
as well.

Finally for the individual directional data, the multichannel deconvolution of the Z-
channel data is depicted in Fig. 37 as above. The results are better than those of the
previous individual channel data primarily because of a higher directional sensitivity (better
SNR) to the induced vibrations. In this case, the the subspace “fit” again using a 25-mode
model to the data is at 66.0% (best) and the smallest MSE of 0.11—somewhat better than
that of the other channels. The optimality tests (zero-mean/white) indicate an optimal
subspace design as Z-M/W-T: 0.003/6.6% (slightly larger %).

Next we consider the “batch” of all of the sensors combined as a MIMO-system of 3-
excitations (inputs) and 24-responses (outputs) of Fig. 34. The inverse filter design results
as a MIMO-system is shown in Fig. 38 where the overlaid fits and Z-M/W-T are shown.
Here the subspace “fits” using a 20-mode model to the excitation data are at (35%,33%,31%)
and the respective MSE at 1.25 not as good as the individual XY Z-channel results. The
optimality tests (zero-mean/white) were also not quite as good for an optimal subspace
design as Z-M/W-T: (0.005/7.6%; 0.003/8.3%; 0.005/7.7%). This could be because a lower
SNR for the combination of batch channels as well as the fact that individual deconvolvers
were design directly from each excitation separately. Next the inverse filter was applied
directly to the 24-channel response data with the results shown in Fig. 39 depicting the
deconvolution of each of the raw excitation channels (dotted blue,green,red). The similarity
of the channel excitation spectra (solid blue,green,red) is quite good and clearly captures the
major frequencies (list) available from the subspace identification.

This completes the discussion of the results of applying the MIMO deconvolution tech-
nique using the multichannel inverse filter subspace design as compare to the individual
channel designs. Even though the individual designs indicate a slightly superior perfor-
mance, the batch design option may prove to be quite adequate in some applications. Thus,
both methods provide reasonable solutions to the multichannel deconvolution problem on
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real data.

7 Summary

Transporting critical structural objects of high interest is a viable problem from the initial
shipping/packaging and subsequent vibrational response inflicted during actual transport by
rail, highway, sea or air. This leads to the need to extract any of the potential excitation
incurred in order to assess the potential damage an assess subsequent structural failure lead-
ing to a deconvolution problem from the signal processing perspective. The multichannel
or multiple input/multiple output (MIMO) deconvolution problem for transporting critical
test objects is investigated here by developing a shaping or inverse filter design based on a
state-space (subspace) identification technique. The inverse filter is designed during calibra-
tion tests and applied to noisy multichannel accelerometer measurement data demonstrating
a reliable and timely approach to solving this critical problem.

The overall object of this effort is to extract and analyze the corresponding input (shock)
excitations that could be incorporated into an Impulse-Event simulation model under devel-
opment [17]. In order to achieve the objective, input excitation extraction, a multichannel
identification method (N4SID) is briefly discussed along with a recursive-in-time spectro-
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Figure 35: Test Object X-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 44.4%, MSE = 0.29). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.009/4.9%).
(c) Deconvolution spectra: Excitation (turquoise), inverse filtered application (green) and
design deconvolution (red) including peak frequency estimates (list).
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Figure 36: Test Object Y-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 55.8%, MSE = 0.17). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.006/4.7%).
(c) Deconvolution spectra: Excitation (turquoise), inverse filtered application (green) and
design deconvolution (red) including peak frequency estimates (list).
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Figure 37: Test Object Z-Channel Data (8-Measurements,1-Excitation): (a) Design: Recov-
ery (multichannel) subspace estimates (Order = 25-modes, Fit = 66.0%, MSE = 0.11). (b)
Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are: (No. 1: 0.003/6.6%).
(c) Deconvolution spectra: Excitation (turquoise), inverse filtered application (green) and
design deconvolution (red) including peak frequency estimates (list).
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Figure 38: Test Object DESIGN: Inverse Filter Design (3-Channels) for Excitation Recovery
(Deconvolution). (a) Design: Recovery (multichannel) subspace (Order = 20-modes, Fits =
35%,33%,31%) estimates (blue,red,green) with corresponding raw excitation data to match
(blue,red,green)) and Performance: Zero-Mean/Whiteness optimality tests: Z-M/W-T are:
(No. 1: 0.005/7.6%), (No. 2: 0.003/8.3%), (No. 3: 0.005/7.7%).
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Figure 39: Test Object Inverse Filter Design Spectra: Raw excitation (blue,red,green-dotted)
spectra (3-Channels) and recovered (deconvolved) excitation (blue,green,red) spectral esti-
mates including peak frequency estimates (list).
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gram estimator and single channel deconvolver using a so-called Wiener mean-squared error
technique [14].

After discussing the classical multichannel representation of a vibrating structure and
its accompanying state-space characterization, the Impact Problem is introduced along with
a set of potential excitation signals gathered from a variety of shipments. A canonical
3-mode,1 − 3-excitation problem was developed to illustrate the approach and provide a
quantitative measure to evaluate its deconvolution performance. It is shown that indeed the
inverse filter design and application is capable of performing quite well on synthesized data
ranging from HAMMER strike transients and actual shipping roadway excitations: DROP,
HAZARD and ROAD.

Next a Mass Simulation Experiment was performed employing a large concrete block as
the synthesized test object that was packaged and shipped in an instrumented tractor/trailer
vehicle along typical roadways to obtain both excitation and response signals for analysis
and performance evaluations. The basic idea is to extract shock and vibration excitation
signals that test objects experience during a typical transport scenario. During test object
transport “known” shocks (drops) occur and are processed along with minor shocks during
various segments of travel yielding valuable data sets. The results are again quite good
enabling a successful extraction of the excitation inputs.

Finally, the vibrational response of an actual structural test object was investigated
with recorded random excitation inputs from a shaker test. Again the results are quite
encouraging indicating that the shaping or inverse filter design and application provide a
meaningful methodology that can be applied to extract random transient excitations during
transport of critical structural test objects to assess potential damage and ensure reliable
operation.

This method of “transport” testing has added-value providing yet another capability
beyond simulation, shaker and laboratory tests. This approach can be used to validate pro-
cessing methods and custom electronics designed to solve the Impact-Event or Drop Problem
monitoring, detecting and localizing potential structural test object failure mechanisms.

8 Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors would
like to recognize Mr. H. Teng and Mr. S. Franco for providing the data sets for the mass
simulation and test object shaker data along with Mr. J. Case, B. Illingworth and J. Cook
for helpful discussion on the problem throughout this effort.

55



APPENDIX A: Subspace Impulse Response Estimation

The development of multiple input/multiple output subspace techniques are investigated
to identify or extract the “black-box” multichannel impulse response of the overall acoustic
system from noisy vibrational measurements. The advantage of this multichannel identifier is
that it incorporates all of the mutual/cross coupling information into the processor providing
a reasonable “fit” enabling an excellent extraction of the resonant frequencies (see Refr. [19]-
[23] for more details). Such a representation provides us with a reasonably accurate response
required to perform the deconvolution of the shock excitation—the primary purpose of this
effort.

The main objective of subspace techniques is to extract an extended observability matrix
directly from the acquired data first, followed by the state-space, system model second. The
underlying mathematical foundation that enables these extractions is projection theory. The
primary idea, when applied to this problem, is to perform projections in a Hilbert space
occupied by random vectors. That is, if yf (t) is a random vector (finite) of future outputs
and yp(t) a random vector of past outputs, then the projection of the “future output data
onto the past output data” Pyf |yp is invoked by applying the projection operator onto the
past output data space to the future output data.

This idea of projecting a vector onto a subspace spanned by another vector can be
extended to projecting a row space of a matrix onto the row space of another matrix. [19]-
[23] Invoking oblique projections of the row space of future data Yf onto the row space of
past data Yp enables us to extract both the extended observability matrix as well as the
estimated state vectors by applying a singular value decomposition (SVD) operation, that
is, (see Refer. 18 for details)

PYf |Yp = OkX̂k =
(
UNxΣ

1/2
Nx

)
︸ ︷︷ ︸

ONx

(
(Σ′Nx

)1/2V ′Nx

)
︸ ︷︷ ︸

X̂k

(23)

where UNx and V ′Nx
are the respective left and right orthogonal matrices of the SVD per-

formed on a data matrix [21].
This technique also requires a “shifted” projection PY−

f
|Y+

p
to extract the model. Here

the operator projects shifted future data Y−f as a row and incorporates it into the past output
data array such that Yp → Y+

p . This projection, coupled with the first enables the extraction
of estimated states, since it has been shown that [19]

PYf |Yp = Ok × X̂k and PY−
f
|Y+

p
= Ok−1 × X̂k+1 [Projections] (24)

where Ok−1 is the observability matrix with the last block row removed.
With this in mind, both states can be extracted directly from the projections using

pseudo-inversion (#) to obtain
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X̂k = O#
k ×PYf |Yp = Ok×X̂k and X̂k+1 = O#

k−1×PY−
f
|Y+

p
= Ok−1×X̂k+1 [States]

(25)
With these states of a so-called Kalman filter [21] now available from the SVD and

pseudo-inversions, the underlying “batch” state-space (innovations) model can be defined as

X̂k+1 = A X̂k + B Uk|k + ξωk

Ŷk|k = C X̂k + D Uk|k + ξνk
(26)

and the residuals or equivalently innovations sequence and its covariance are defined by

ξ :=

 ξωk

−−
ξνk

 ; and Rξξ := E{ξξ′} = E


 ξωk

−−
ξνk

 [ξωk
| ξνk

]′ (27)

More compactly, X̂k+1

−−−
Ŷk|k


︸ ︷︷ ︸

known

=

 A | B
− − −
C | D


 X̂k

−−−
Uk|k


︸ ︷︷ ︸

known

+

 ξωk

−−−
ξνk

 (28)

which can be solved as an estimation problem providing a least-squares solution as:

 Â | B̂
− − −
Ĉ | D̂

 =


 X̂k+1

−−−
Ŷk|k


 X̂k

−−−
Uk|k


′

 X̂k

−−−
Uk|k


 X̂k

−−−
Uk|k


′
−1

(29)

with the corresponding “least-squares” residual (innovations) covariances estimated by

R̂ξξ =

 KReeK
′ | KR1/2

ee

− − −
(KR1/2

ee )′ | Ree

 (30)

leading to

R̂ee ≈ Re
υυ [Innovations Covariance]

K̂ ≈ Re
ωυR̂

−1/2
ee [Kalman Gain]

(31)
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Thus, the full-solution of the stochastic realization problem, ΣINV = {Â, B̂, Ĉ, D̂, Re
ωω, Re

ωυ, R
e
υυ},

is obtained through the solution of these least-squares relations using the N4SID-method [19].
The is summarized below and subsequently applied to measured data to extract an acoustic
test object model.

Summarizing, the subspace algorithm (N4SID) is accomplished using the following steps
(see Fig. 40:

• Create the block Hankel matrix from the measured output sequence, {y(t)};

• Calculate the projection matrices PYf |Yp and PY−
f
|Y+

p
(shifted);

• Perform the SVD of the projection matrix to obtain the extended observability and
estimated state vector Xk;

• Perform the SVD of the “shifted” projection matrix to obtain the “shifted” observ-
ability and estimated state vector Xk+1;

• Extract the system matrix Â and output Ĉ matrices by solving the corresponding
least-squares problem;

• Calculate the reversed controllability matrix C←AB;

• Extract the input transmission matrix B̂e;

• Extract the input/output matrix D̂ from estimated output covariance Λ̂0;

• Estimate the set of noise source covariances {Re
WW , Re

V V , Re
WV } using the estimated

least-squares residuals covariance R̂ξξ; and

• Calculate Ree and Kp from the least-squares residuals.

completing the algorithm.
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Figure 40: Numerical Algorithm for Subspace Identification (N4SID) Algorithm: Diagram
and Calculations.
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APPENDIX B: Deconvolution Estimation: Wiener Least-Squares Processor

The classical method of solving the deconvolution problem is based an optimal (Wiener)
filter design minimizing a mean-squared error criterion [14]. It is possible to derive the
processor by using the commutative property of the convolution relation, that is,

y(t) = H(t) ∗ u(t) = u(t) ∗ H(t) (32)

The deconvolution problem is concerned with obtaining the “optimal” estimate of the exci-
tation u(t) given ({y(t)}, {H(t)}). The estimator is found by minimizing the mean-squared
error criterion given by

min
u
J (t) =

1

2
E{e2(t)} (33)

where e(t) := y(t)− ŷ(t) and

ŷ(t) = u(t) ∗ H(t) =
Nu∑
i=0

u(i)H(t− i) (34)

Following the standard approach of differentiating the cost and setting the result to
zero, leads to the so-called orthogonality condition given by

∂

∂u(j)
J (t) = E{e(t) ∂e(t)

∂u(j)
} = 0; for j = 0, · · · , Nu (35)

the error gradient is therefore

∂e(t)

∂u(j)
=

∂

∂u(j)
(y(t)− ŷ(t)) =

∂

∂u(j)

(
y(t)−

Nu∑
i=0

u(i)H(t− i)

)
= H(t− j) (36)

Substituting, the set of normal equations evolve as

Nu∑
i=0

u(i)RHH(i− j) = ryH(j) for j = 0, . . . , Nu (37)

Expanding this equation gives the set of vector-matrix relations

RHH(Nu)u(Nu) = ryH(Nu) (38)

where RHH ∈ R(Nu+1)×(Nu+1) is Toeplitz and can be solved in “batch” form as

û(Nu) = R−1
HH(Nu)ryH(Nu) (39)

or recursively with the well-known Levinson-Wiggins-Robinson (LWR) recursion [14].
Summarizing, the batch deconvolution approach is:
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Criterion: J = E{e2(t)}

Models:

Measurement: y(t) = H(t) ∗ u(t)

Signal: s(t) = −∑Nu
i=0 uiH(t− i)

Noise: Ree

Algorithm: û = R−1
HHryH

Quality: Ree(Nu)
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APPENDIX C: Spectrogram Estimation: Recursive ARMA Processor

In this appendix we discuss a recursive-in-time approach to instantaneous spectral esti-
mation or spectrogram enabling us to produce the desired spectrogram (amplitude vs. time
vs. frequency) for event detection of transient signals [14], [26]. We can parametrically
model the noisy measurement data by an instantaneous time-frequency representation spec-
ified by an autoregressive moving average ARMA scalar model. This model takes the general
difference equation form, ARMA(Na,Nc) given by

A(q−1, t)y(t) = C(q−1, t)ε(t) (40)

for the enhanced measurement, y(t), contaminated with zero-mean, white Gaussian noise,
ε ∼ N (0, σsε

2), with the corresponding instantaneous polynomials at the instant t defined
by

A(q−1, t) = 1 + a1(t)q
−1 + · · ·+ aNa(t)q

−Na

C(q−1, t) = co + c1(t)q
−1 + · · ·+ cNc(t)q

−Nc

(41)

Here the backward shift or delay operator is defined by, q−iy(t) := y(t− i) and therefore, we
can write Eq. 40 simply as

y(t) = −
Na∑
k=1

ak(t)y(t− k) +
Nc∑
k=0

ck(t)ε(t− k) (42)

If we take the DFT of the difference equation, then we obtain the instantaneous transfer
function (ignoring stochastic aspect)

H(ej2πf , t) =
Y (ej2πf , t)

E(ej2πf , t)
=

C(ej2πf , t)

A(ej2πf , t)
, (43)

or more appropriately the corresponding instantaneous power spectrum defined by

S(f, t) :=
∣∣∣H(ej2πf , t)

∣∣∣2 =

∣∣∣∣∣C(ej2πf , t)

A(ej2πf , t)

∣∣∣∣∣
2

(44)

So we see that if we use the parametric ARMA(Na,Nc) representation of the enhanced
measurement signal and transform it to the spectral domain, then we can obtain the instan-
taneous spectral estimate.

There are a wealth of adaptive ARMA algorithms available in the literature ([14], [26]),
but since we are primarily interested in estimating the spectrum at each time instant, we
confine our choices to those that are recursive-in-time enabling us to achieve our goal without
the loss of temporal resolution evolving from window-based methods such as the short-time
Fourier transform [14]. Recall that recursive-in-time algorithms take on the following generic
form:

62



Θ̂(t + 1) = Θ̂(t) + K(t)e(t) [parameter update]

e(t) = y(t)− ŷ(t) = y(t)− ϕ′(t)Θ̂(t) [prediction error]

ϕ(t) ≡ [y(t− 1) · · · y(t−Na − 1) | ê(t) · · · ê(t−Nc)] ,

Θ̂(t) ≡ [−â1(t− 1) · · · − âNa(t−Na − 1) | ĉo(t) · · · ĉNc(t−Nc)]
′

(45)

with K(t) the gain or weighting vector and the ∧ symbol defining the “best” (minimum
error variance) estimate at the specified time. There are also many variations and forms of
this basic recursion [14], but here we limit our application to the recursive prediction error
method (RPEM) based on a local Gauss-Newton optimization method.

Criterion: J (θ(t)) = E{e2(t)}

Models:

Signal: s(t) = −∑Na
i=1 aiy(t− i)

Measurement: y(t) = s(t) + n(t)

Noise: n̂(t) =
∑Nc

i=0 ciε(t− i)

Initial conditions: Θ(0)

Algorithm: Θ(t) = Θ(t− 1) + µK(t)e(t)

Quality: P (t) = (I −K(t)φ′(t))P (t− 1)/λ(t)
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