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Magneto-hydrodynamics transport

« MHD — B field is advected
with fluid flow

—ICF capsule
—Z pinch
— Solar wind
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Plasma resistance

- Plasma is not a perfect conductor .\V

 Electrons scattering timescale:

— <1ns in laser plasmas

Los Alamos National Laboratory
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Actually there should be an order
1 ‘transport coefficient’ here
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Things are more complicated...

Strong B field affects the resistance - Braginskii MHD

Resistance depends on direction of B
e|B|T
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J is deflected away from direction of E
a.J = ():'||(J.B)B +bx (e, Jxb—apd).
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Electron heat flux is also deflected
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e|B|T
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Me

B field insulates and
deflects the heat flow

So even weak B fields
indirectly affect
hydrodynamics

C. Walsh et al. Phys. Rev.
Lett. 118, 155001 (2017)
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The final jigsaw piece - Thermoelectric term

* Coulomb collisions lead to an additional thermoelectric E field term

 Faster electrons from hotter region are less collisional
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Don’t panic! It can be written in an (almost) simple form

Advection of B with Resistive Resistivity gradient
a modified velocity difoSilon of B term /

0B 9
E:Vx(uBXB)—I—DV B—-VD x (V x B)

— + —Vﬁn(Z) X VT,
NeE€ &
- '\
Pressure term leads to L
. Thermoelectric gives a new
Biermann source term .
Z-gradient source term

C. Walsh et al. Phys. J. Sadler et al. Phys.
Plasmas 27, 022103 (2020) Plasmas 27, 072707 (2020)
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All of the difficult Braginskii terms just modify the B

field advection velocity

|deal advection Resistance modifies Hall term Also now a
NG | 3 Ixbh cross-Hall term
up =u— (1 +0d;)— + o
Ne€ Ne€

— WLLVTC - fy/\LVTC X B, —

Me Me

/ Also a cross-Nernst
B advected down Temperature gradients term along isotherms
(Nernst Advection)

- L =\ QA =\ BA
Writing this simple new form 01 (x,Z) = —, YL(x, Z) = —,
requires defining new X X
transport coefficients: S Z) = 2", Z) = b =Py

X X
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Problem with the existing transport coefficients

 Many ExMHD codes (Hydra, Gorgon etc.)

use transport coefﬁ(:lents from Epperlein + Cross-gradient Nernst
Haines, Phys. Fluids 29, 1029 (1986) coefficient
. Bix+8B) 5 _ 4
= _ —pPL
L Wb by + b)Y W 2) = ”X
- We tried to calculate the new coefficients ™ F = ;
using their fits w0tk xxxxxxx
— It compares badly to full kinetic ( Lo E_X"X — Epperlein+Haines
— So most ExMHD simulations have hugely over- o . 1)
estimated the cross-Nernst advection 10" L e 1 ]
10 10 10 10 10
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Effect of the new fit functions in 2D Gorgon simulations

Old Coefficients: | i . ~ Lineouts of field strength along y
Using Epperlein % o
¥ . Q 50 (C)
|, + Haines 2%
N coefficient fits, s
TR e ' |B| was out by 2
R . factor ~ 2 or o
[288 g . more in some o
1150 .g - . ° |
[0 = By regions!! 5. (=Old Coefficients
0 — New Coefficients: s 20l - New Coefficients
-0 0 166 265 3¢5 4e5 565 665
1 :g o _(b) il Distance (m)
tiiﬁ’emg . ! =
poam— Their relative error for 5, was low, but their
functional form was wrong.
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B field post-processing of xRAGE hydro code - ICF

Density Average Z Temperature Fusion rate
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The new Z gradient source term makes a difference

Z (um)

Biermann +
Z gradient
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New thermomagnetic instability

» By re-casting these equations, we T B field due to
glso fqt_md a new ExMHD - _ transverse T
instability g M| perturbation

- = |[" and Z gradient

» Opposing Z and T gradients
create B field

— This B field then deflects the heat
flow, increasing the T perturbation

éVﬁH (Z) X VT,

100———————

~ 80 |
» 60 - |
c 40l Growth in ICF T
= 20[fusionplasma "\ -

O 2 4 o6 8 10 12 14

James Sadler et al., Phys. Plasmas ( Submitted 2020 ) 1
K (um™")
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New thermomagnetic instability - Simulations

* We setup 2D ExMHD code

i | - 3
with anti-parallel T, Z gradients = o
* In practice, the Nernst | 22 NoNernst
advection stabilizes it 2°t(ps) 30 40 50
0.5
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ORLrNWPAUIO
| | | |
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| | |
2
| | |
o
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Fast alpha particles change the diffusion of contaminants

« Carbon jet enters the hot-spot
due to fill tube + fluid instabilities

* Not much fusion within mix jet
 Large alpha flux into jet

 This changes the Ohm’s law
« E field drives extra ion diffusion

e Carbon diffusion increases
radiative loss, bad for yield

Density Average Z Temperature Fusion rate
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Alpha induced current

 Alphas stream into the mix region

, _ Fusion rate
* They dump energy. It is radiated away and 60 | | 10

wasted (d) | o
40 |- — 8 T:
« However, this alpha current also changes 4B °'°E
the plasma E field and ion diffusion 6
14 s X
]
« What is this current? 1f?* =
—Yield = 1078, t,,,n=100ps ry, = 30 microns N 2 §
_talpha= 10p3 —40 !l . z

- => nalpha = Y* 1:alpha/ 1:burn/ V =1022¢cm _60 | | o
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What is the collisionally induced current?

 Fast alphas collide with electrons,
driving a current .

— Brian Appelbe et al. did some nice

Fokker-Planck kinetic simulations -3~ B.Appelbe et al. Phys. A
4t Plasmas 26, 102704 (2019) —opaniclel
—5F \
J=Jo+1. T
* We said J,pn, = 1070 A/m?
=Ja+ n Fdea = n Ja » Using Spitzer resistivity from
XRAGE simulation
V.P, 3 —E=10°V/m in H region
1€ e —E=108V/m in colder C region

— Other terms are ~10°V/m
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Monte-Carlo numerical calculations

» 1D setup similar to the carbon jet in xXRAGE simulation
» Alpha particles with classical stopping power and fusion rate

» Using the HED plasma diffusion model of K. Molvig et al. Phys. Plasmas 21, 092709 (2014)
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Conclusions

« The Epperlein + Haines transport coefficients have a subtle problem

— Gives artificial discontinuities and dissipation
— Our new fits fix these problems: arXiv:2009.04562

* B fields around the hot-spot reach 5kT
— Z-gradient source term is important around mix jets
— Heat flux is insulated/deflected

* There is a new MHD instability caused by Z gradients (e.g. mix jet)
—In practice, Nernst advection stabilizes it

 Alpha particles stream into mix jets, increasing the E field
— This increases the diffusion of mix. It looks like a small effect

Work funded by LANL LDRD-DR 20180040DR from groups T-2 and P-24
and the Center for Nonlinear Studies
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