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Overview

Primary work here at Sandia

• Background information on carbon and ta-C films

• Realization and measurement of MEMS oscillators

• Results

• Future work

Other Research activities (w/ primary collaborators)

• RF Switch mechanics (C. Dyck)

• Microfluidic MEMS pressure transducer (T. Michalske)

• Low-force contacting metal surfaces (M. Baker)



Motivation

MEMS structures can be applied in:

• Sensors (corrosion, biological)

• Frequency standard (LM shared vision proposal)

• Accelerometers (D. Carr)

• RF MEMS switches (C. Dyck)



http://www.fhi-berlin.mpg.de/th/personal/hermann/Cnclusters.gif

http://www.phy.mtu.edu/~jaszczak/graphiteover.html

100% 3-fold carbon, delocalized  electrons

100% 4-fold carbon, wide gap semiconductor

http://www.amnh.org/exhibitions/diamonds/structure.html

graphite

diamond

100% 3-fold carbon, molecular solid

C60

Carbon



• ~ 80% 4-fold, 20% 3-fold

• 3-fold atoms cluster into chain-
like structures (limited by 
kinetics)

Tetrahedrally-coordinated 
amorphous carbon films

Theory, P. Schultz, Sandia

“growth by 
subplantation”

graphite target

sample

C plasma



13C MAS NMR

Unannealed

650 oC 3 min

4-fold carbon 
(82%)

3-fold carbon

•peaks narrow

•no change in ratio

Alam et al., PRB 67, ’03.

Compositionally stable
after stress relief

4-fold carbon 
(82%)



visible Raman 
shows only very 
minor structural 
changes in ta-C 
with annealing      
 4-fold/3-fold ratio 
is not changed

ta-C

458 nm

Compositionally stable after
high temperature annealing



~ 500 Å

ta-C 10,000 Å

transmission EELS 
shows no increase in  
3-fold carbon with 
annealing up to 1020ºC

Compositionally stable after
high temperature annealing



Thermal properties 
of ta-C films



Resist
ta-C
polysilicon
oxide
silicon

aluminum

Device realization :
surface micromachining



Device realization :
bulk micromachining

Resist
ta-C

silicon

silicon nitride

aluminum
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Measurement

Laser Deflection Laser Interference

D. Carr, B.E.N. Keeler (1769)
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Q = 5172 ± 437

Typical spectral response 
and curve fitting
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H. Hosaka, K. Itao, and S. Kuroda, Sens. Actuators A 49, 87 (1995).

Clamping loss limited?



heat flow

compression

tension
transverse mode:

Limited by thermoelastic 
dissipation?
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Limited by thermoelastic 
dissipation?



B. Braginsky, V. P. Mitrofanov, V. I. Panov, Systems with Small Dissipation

Limited by phonon phonon 
interactions?
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Material Q
ta-C 3.3 x 103 (high T)
SiO2 1.9 x 103

GeO2 2.8 x 103

B2O3 1.6 x 103

Se 1.8 x 103

As2S3 4.5 x 103

CdGeAs2 5.3 x 103

Polycarbonate 2.1 x 103

Polymethylmethacrylate 1.1 x 103

Polystyrene 0.8 x 103

• near universal behavior 
in dissipation in 
amorphous materials at 
low temperature

• described by a flat 
distribution of “tunneling 
states”

Topp & Cahill, Z. Phys. B 101, ’96; Braginsky et al., 
Systems with Small Dissipation (1985).

Similar to other 
amorphous materials



Piezoelectric
actuator

Fire brick

Ceramic 
standoff

Shielded 
button heater

Sample

Thermocouple

Vacuum 
viewport

Vacuum Chamber

Explore higher Ea by 
measuring at higher T
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Summary of dissipation

• At room temperature, similar Qs over large frequency range

• Oscillators don’t appear to be limited by:

•Clamping losses
•Thermoelastic Dissipation
•Phonon-phonon interactions

• Possible broad spectrum of defects limiting Q

• Behave similar to other amorphous materials at lower temperature

• Higher concentrations of defects, limiting Q, at higher activation energies



Extract Young’s modulus

Extract Young’s Modulus
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Extract shear modulus
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Temperature dependence 
of the shear modulus
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Young’s modulus after higher 
temperature annealing
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• Extracted both Young’s and Shear Moduli

• Determined the temperature dependence of both E and G

• The film experiences a permanent mechanical change 
above 700C

Summary of mechanical properties



Other Research Activities

•RF Switch mechanics (C. Dyck)

•Microfluidic MEMS pressure transducer (T. Michalske)

•Low-force contacting metal surfaces (M. Baker)

0 10 20 30 40

0

200

400

600

800

1000

1200

A
n

g
u

la
r 

D
e

fl
e

c
ti

o
n

 (


ra
d

)

Flow Rate ( l/min)

 Silicone oil =0.8cP
 Ethanol =1.1cP
 Isopropanol =2.3cP
 Silicone oil =4.6cP



RF Switch mechanics
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RF Switch mechanics



RF Switch mechanics
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RF Switch mechanics
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RF Switch mechanics
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Microfluidic MEMS 
pressure transducerTerry Michalske (1040/CINT/etc)
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Laser Deflection
Optical Interrogation 

of the plate

Bonded Silicon and
glass wafer stack 

with devices in
microfluidic channels

Holder for
device wafer
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Microfluidic MEMS 
pressure transducer
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Cantilevers as Sensors
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Low-force contacting metal 
surfaces
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Low-force contacting metal 
surfaces

Cycled in Vacuum



Low-force contacting metal 
surfaces
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Questions?



• Room temperature deposition

• Stress relief can be achieved by furnace annealing or 
room temperature laser annealing

• Very pure films (contaminants of H, O, N < ppm levels)

Film deposition
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RF Switch mechanics
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RF Switch mechanics
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