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Overview

2

Primary work here at Sandia

« Background information on carbon and ta-C films
« Realization and measurement of MEMS oscillators
 Results

e Future work

Other Research activities (w/ primary collaborators)

* RF Switch mechanics (C. Dyck)

* Microfluidic MEMS pressure transducer (T. Michalske)
« Low-force contacting metal surfaces (M. Baker)
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Motivation

A

MEMS structures can be applied in:

* Sensors (corrosion, biological)
* Frequency standard (LM shared vision proposal)
* Accelerometers (D. Carr)

« RF MEMS switches (C. Dyck)
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' Carbon

graphite

http://www.phy.mtu.edu/~jaszczak/graphiteover.html

ﬁ : diamond
%Eﬁ http://www.amnh.org/exhibitions/diamonds/structure.html

100% 3-fold carbon, delocalized = electrons

C60

http://www.fhi-berlin.mpg.de/th/personal/hermann/Cnclusters.gif

100% 4-fold carbon, wide gap semiconductor

100% 3-fold carbon, molecular solid il
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Tetrahedrally-coordinated
amorphous carbon films

« ~80% 4-fold, 20% 3-fold

« 3-fold atoms cluster into chain-
like structures (limited by
kinetics)

C plasma

-

/aSer
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~N

»

“‘growth by
subplantation”

7
graphite target
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_ -
' Compositionally stable
} after stress relief

13C¢ MAS NMR 4-fold carbon
< (82%)

3-fold carbon

Unannealed

4-fold carbon
(82%)

650 °C 3 min

Alam et al., PRB 67, '03. 'I‘

Sandia National Laboratories




;’

Compositionally stable after
high temperature annealing

visible Raman
shows only very
minor structural
changes in ta-C
with annealing

= 4-fold/3-fold ratio
IS not changed

Normalized Intensity (A.U.)
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Compositionally stable after
high temperature annealing

>Y

transmission EELS
shows no increase In
3-fold carbon with
annealing up to 1020°C

Normalized Intensity (A.U.)

280

650 C

i «| L900C
__\w: L

N020 C

285 200 295 300 305

Electron Energy Loss (eV)

L\
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' Thermal properties

of ta-C films

Material Property Value Units

Heat Capacity per unit Volume (C) | 1.83x10° | (Jim® K)

Thermal Condudtivity (x) 3 W/m K)

Density (p) 3050 (kgfra®)
Young's Modulus (E) 631 (GPa)

Spedific Heat Capacity (Cp) 600 (kg K)
Gruneisen's Constant (g) 1.37 none

Thermal Expansion Coeffecient (@) | 1.67 x 107 K1
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o~ Device realization :
*‘ surface micromachining

- - g?é'St aluminum
I polysilicon

oxide

]

4
—

fl'l Sandia National Laboratories




Device realization :
bulk micromachining

Resist aluminum
ta-C

silicon ‘

silicon nitride

4
—)
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Cantilevers

p tlwf

D. Carr, B.E.N. Keeler (1769)
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Free-Free beams

NODAL SOLUTION
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Torsional oscillators

NODAL SOLUTION
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‘ Measurement

Laser Deflection Laser Interference
i AB i L e
spectrum split photodetector RF out
anal yzer - DC spectrum
power supply analyzer

20x objedtive,
NA=035
]f[ ’

[] photo-
s L in  detector

Hel'de Laszer

beam

expander JL

lens  lens

tunable
- |aser

mirrer A=632 nm

Fiezoelectric
actuator

D. Carr, B.E.N. Keeler (1769)
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Typical spectral response
and curve fitting
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Typical quality factors
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Clamping loss limited?

(t=1pm)—»

|
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45 clamping
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H. Hosaka, K. Itao, and S. Kuroda, Sens. Actuators A 49, 87 (1995).

0, ~034—

lamping
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V
f ' Limited by thermoelastic
}' dissipation?

0. - 1
B2’
transvetgﬁ_seig gnode: (T = o’TE |
4pC,

m 2f /1 F
compression Q(f) — f 0

1+(f/F)*

7K
2pCpt2.

I

T. V. Roszhart, in Tech. Dig. Solid-State Sens. Actuator Workshop, Hilton Head, SC 1990, pp. 13-16.
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Limited by thermoelastic

dissipation?
106 ----- T -\; T 1
5 I
i
: I
L 10° kb \. _
% 'iE-D
>
9 10° £ \ E
© —]
O . i
g f ' 'I . f { (] i &
'5 10° E Cantilevers (t =1 pm) -
§ * In-Plane Free-Free Beams (t = 0.5 um)
» In-Plane Cantilevers (t = 75 nm)
v In-Plane Cantllevers (t=150 nm)
102 1 . Lol ' Ll .

10° 10~ 10" 10°
Relative Frequency (f/F )

l'l'l Sandia National Laboratories




Limited by phonon phonon

bulk vibration

v

<>
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Plausible explanation
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Similar to other

amorphous materials
"Material Q
near universal behavior [ta-C 3.3 x 10° (high T)
in dissipation in SIO, 1.9x 102
amorphous materials at | 5892 2.8 x 107
B,O, 76 x 10
low temperature Se T8 %103
described by a flat As,S, 45x 103
distribution of “tunneling | €9GeAs; 5.3 x10°
states” Polycarbonate 2.1 x 103
Polymethylmethacrylate | 1.1 x 10°
Polystyrene 0.8 x 10°

A/

Topp & Cahill, Z. Phys. B 101, '96; Braginsky et al.,
Systems with Small Dissipation (1985).

L\
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Explore higher E, by
measuring at higher T

Vacuum Chamber
11 -E,
- =—¢€Xp
T T, k,T
Piezoelectric Ceramic
actuator stanldoff Saffiple
v l l
T T \ viewport
| | \\
Fire brick Shielded Thermocouple

button heater

!I'l Sandia National Laboratories




Data at elevated
temperature
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' More defects with larger

activation energies

Cantilevers ) Torsional Oscillators
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‘ Summary of dissipation

At room temperature, similar Qs over large frequency range

Oscillators don’t appear to be limited by:

*Clamping losses
*Thermoelastic Dissipation
*Phonon-phonon interactions

Possible broad spectrum of defects limiting Q

Behave similar to other amorphous materials at lower temperature

Higher concentrations of defects, limiting Q, at higher activation energies
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Resonant Frequency (kHz)

Extract Young's modulus

Extract Young's Modulus
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Extract shear modulus
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A

Temperature dependence
of Young's modulus
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Temperature dependence
of the shear modulus

Shear Modulus (GPa)
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Young's Modulus after higher
temperature annealing
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Young's modulus after higher
temperature annealing

Percent Change in Modulus
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'
}.‘ Summary of mechanical properties

« Extracted both Young's and Shear Moduli
« Determined the temperature dependence of both E and G

« The film experiences a permanent mechanical change
above 700C
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‘ Other Research Activities

Folded beams

*RF Switch mechanics (C. Dyck)

30
Flow Rate (ul/min)

Low-force contacting metal surfaces (M. Baker)
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RF Switch mechanics

Folded beams

meﬁ X = F Electrostatic F Spring
Electrostatic pad
2
g,AV
Dimples under tabs F, Electrostatic — 2
2(g —x)
B Switch
= lx —
Dimple g Dimple
A
Transmission Actuation Pad  Transmission
Line In Line Out

Alumina Substrate

ﬂ! Sandia National Laboratories




RF Switch mechanics
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RF Switch mechanics
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‘ RF Switch mechanics

“~ 160 T T T T T T T T -20
Voltage - :
140 4 -30
120 _--40 -
VA S ool .50 3
E K . (1]
s 80 60 <
VH ““;’ 60 {70 8
s ;
= if -80 £)
Act | Coast | Hold | 0 <
¢ ¢ ¢ .
t 0 - -100
C > I 1
tA 1:H Time 2 s o 5 10 15 20 25-1 10
Time (ps)
2
ko™ [ dx
7 — o Electrostatic

l'I'I Sandia National Laboratories




RF Switch mechanics
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Microfluidic MEMS
Terry Michalske (1040/CINT/etc) Pressure transducer

E N EEEN Channels
RN\ ea =

Surface Shear =9 Pa Plates
\

Reservoir

dP

5/ :’_\ Flow \>b
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Microfluidic MEMS
pressure transducer

Holder for
device wafer

Bonded Silicon and
glass wafer stack

— with devices in

| microfluidic channels

Optical Interrogation

Laser Deflection of the plate
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Microfluidic MEMS
pressure transducer
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Microfluidic MEMS

pressure transducer
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‘ Cantilevers as Sensors
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Low-force contacting metal

surfaces

Contact Resistance (Q)
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Low-force contacting metal
surfaces

Cycled in Vacuum
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Low-force contacting metal
surfaces
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Questions?

'},'
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‘I Film deposition

« Room temperature deposition

« Stress relief can be achieved by furnace annealing or
room temperature laser annealing

* Very pure films (contaminants of H, O, N < ppm levels)
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RF Switch mechanics
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RF Switch mechanics
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