

Adjoint Discrete Scattering Models for Electron Dose Calculations

**Thomas Quirk
Sandia National Laboratories***

**Sandia Student Symposium 2006
Albuquerque, NM
August 1, 2006**

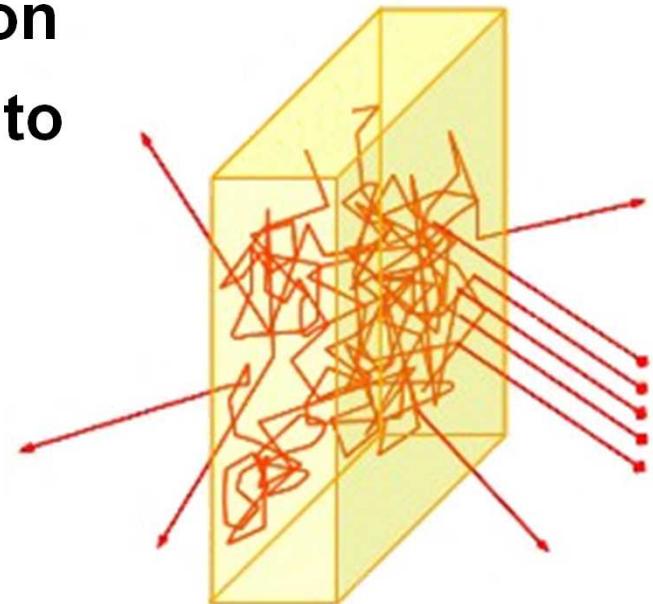
Overview

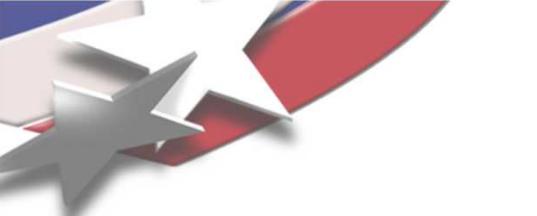
- Radiation Transport
- GBFP Method
 - Discrete Model
- Forward Transport
- Adjoint Transport
- Weight Correction
- Results

Monte Carlo Method

For either adjoint or forward calculations:

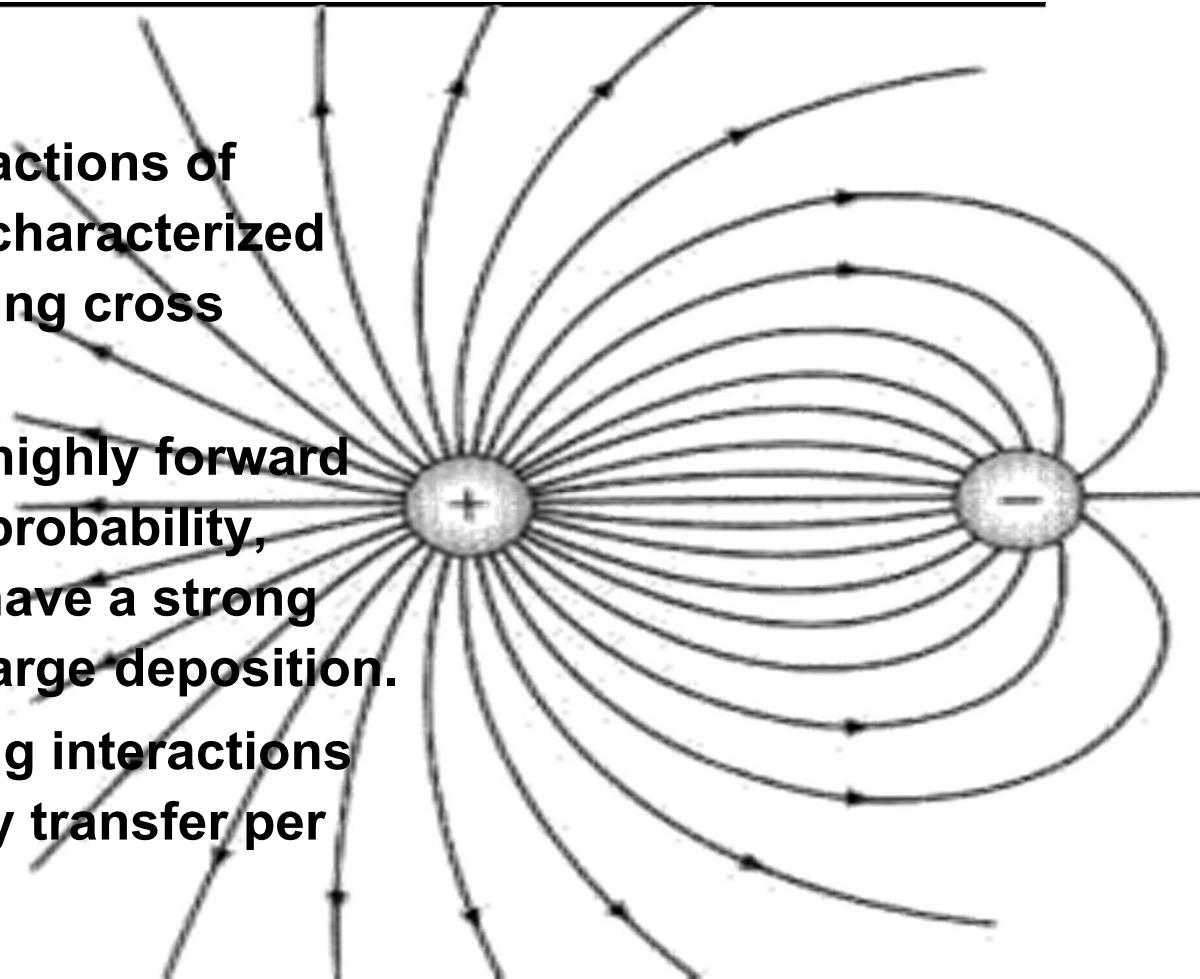
1. Sample a distance to interaction
2. Sample an isotope with which to interact
3. Sample type of interaction
4. Sample result of interaction
5. Adjust Particle/Tally Statistics
6. Repeat upon survival





Electron Transport

- The non-binary interactions of charged particles is characterized by large total scattering cross sections.
- Elastic scattering is highly forward peaked, but the low-probability, high-angle scatters have a strong impact on energy/charge deposition.
- Small-angle scattering interactions result in small energy transfer per interaction.



Forward Radiation Transport

Forward Linear Boltzmann Transport Equation:

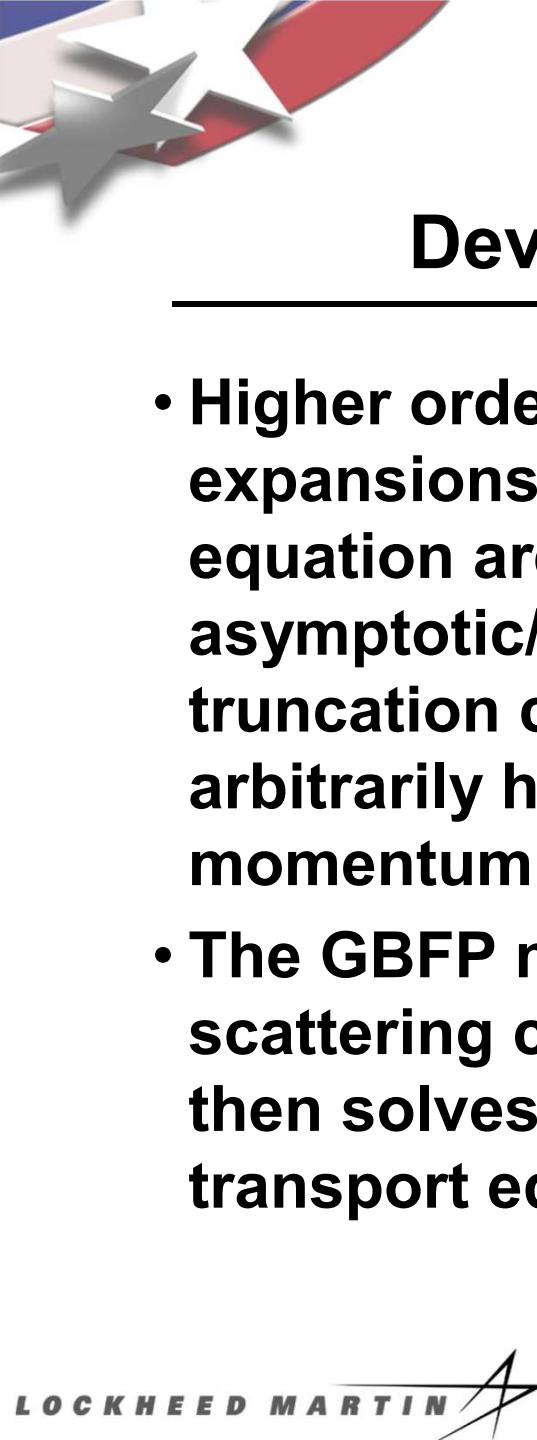
$$\vec{\Omega} \cdot \nabla \psi(\vec{r}, \vec{\Omega}, E) + [\sigma_{s,el}(\vec{r}, E) + \sigma_{s,in}(\vec{r}, E)] \psi(\vec{r}, \vec{\Omega}, E) = \\ \int_{4\pi} \sigma_{s,el}(\vec{r}, \vec{\Omega} \cdot \vec{\Omega}', E) \psi(\vec{r}, \vec{\Omega}', E) d\vec{\Omega}' + \int_0^\infty \sigma_{s,in}(\vec{r}, \vec{\Omega}, E' \rightarrow E) \psi(\vec{r}, \vec{\Omega}, E') dE'$$

Lewis theory suggests a direct correlation between preserving moments of the differential cross section (DCS) and the accuracy of the model as measured by space-angle moments of the infinite medium solution



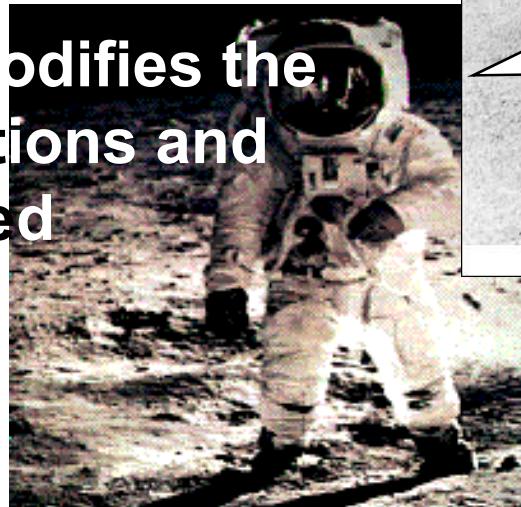
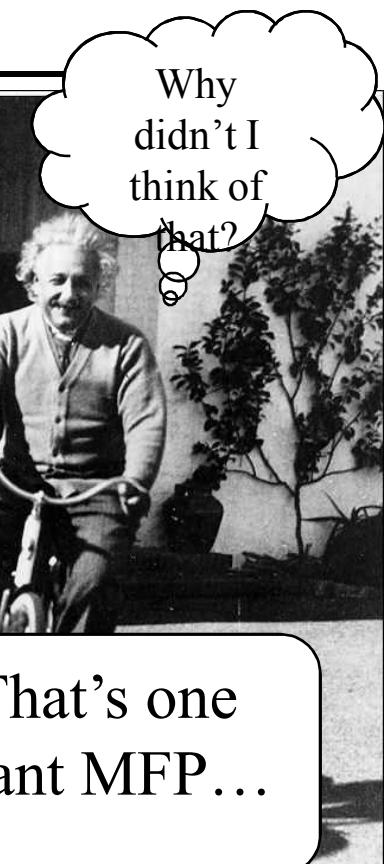
Momentum-Transfer Moments:

$$\sigma_n = 2\pi \int_{-1}^1 d\mu_0 (1-\mu)^n \sigma_s(\vec{r}, \mu_0, E)$$



Development of Forward GBFP

- Higher order Fokker-Planck expansions of the transport equation are asymptotic/unstable. No finite truncation can preserve arbitrarily higher-order momentum transfer moments.
- The GBFP method modifies the scattering cross sections and then solves a modified transport equation.



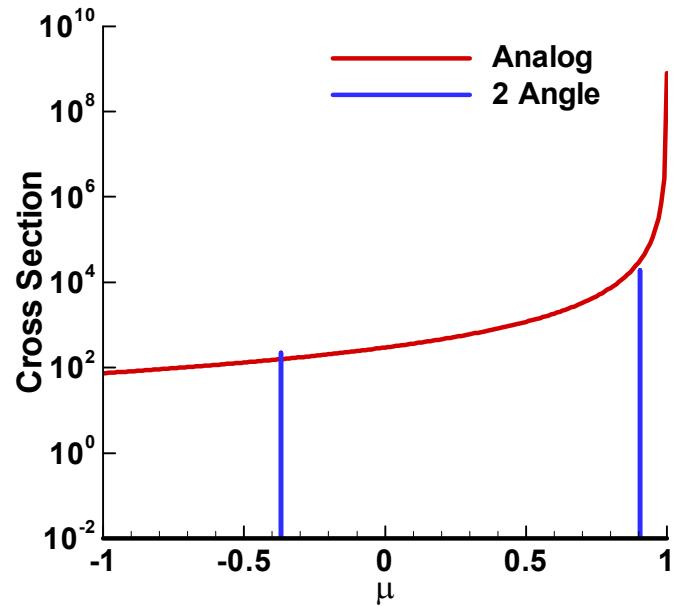
Discrete Model for Electron Scattering

The discrete scattering kernel is:

$$\tilde{\sigma}_s(\vec{r}, \mu_0, E) = \sum_{n=1}^N \frac{\alpha_n(\vec{r}, E)}{2\pi} \delta[\mu_0 - \xi_n(\vec{r}, E)]$$

α_n are amplitudes

ξ_n are scattering cosines



Requiring that α_n and ξ_n preserve $2N$ momentum transfer moments (σ_n , $n=1, \dots, 2N$) produces a nonlinear algebraic system, which is solved using Sloan's MORSE algorithm.

Sloan, D.P., "A New Multigroup Monte Carlo Scattering Algorithm for Neutral and Charged-Particle Boltzmann and Fokker-Planck Calculations," Technical Report SAND83-7094, Sandia National Laboratories (1983).

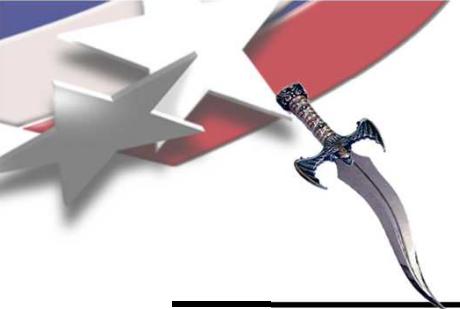
Discrete Model for Electron Scattering

ADVANTAGES

- Very fast, direct sampling
- Only requires moments (should be independent of DCS)
- Accuracy and speed depend on moment preservation, easily adjusted
- In practice, only 4-8 discrete angles provided excellent accuracy

DISADVANTAGES

- Ray effects may skew angular tallies/integrated quantities of interest



Adjoint Radiation Transport

Adjoint Linear Boltzmann Transport Equation:

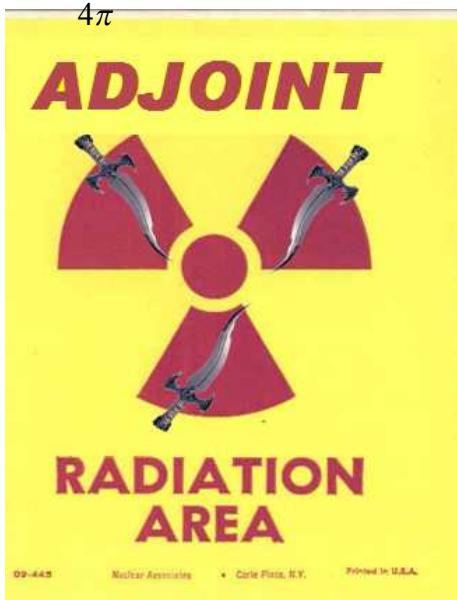
$$-\vec{\Omega} \cdot \nabla \psi^\dagger(\vec{r}, \vec{\Omega}, E) + [\sigma_{s,el}(\vec{r}, E) + \sigma_{s,in}(\vec{r}, E)] \psi^\dagger(\vec{r}, \vec{\Omega}, E) = \int_{4\pi} \sigma_{s,el}(\vec{r}, \vec{\Omega} \cdot \vec{\Omega}', E) \psi^\dagger(\vec{r}, \vec{\Omega}', E) d\vec{\Omega}' + \int_0^\infty \sigma_{s,in}(\vec{r}, \vec{\Omega}, E \rightarrow E') \psi^\dagger(\vec{r}, \vec{\Omega}, E') dE'$$

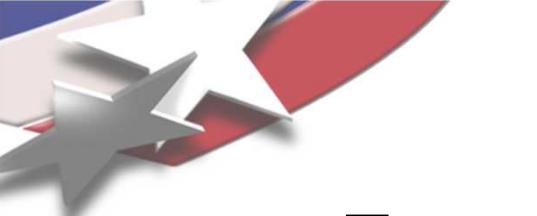
Anti-symmetry in the first operator makes the problem “backwards”

Notice the daggers, and the energetic changes

Angular DCS is unchanged by symmetry

Don't worry about boundary conditions...





Transforming the Adjoint Equation

- Differences stem in the total and DCS:

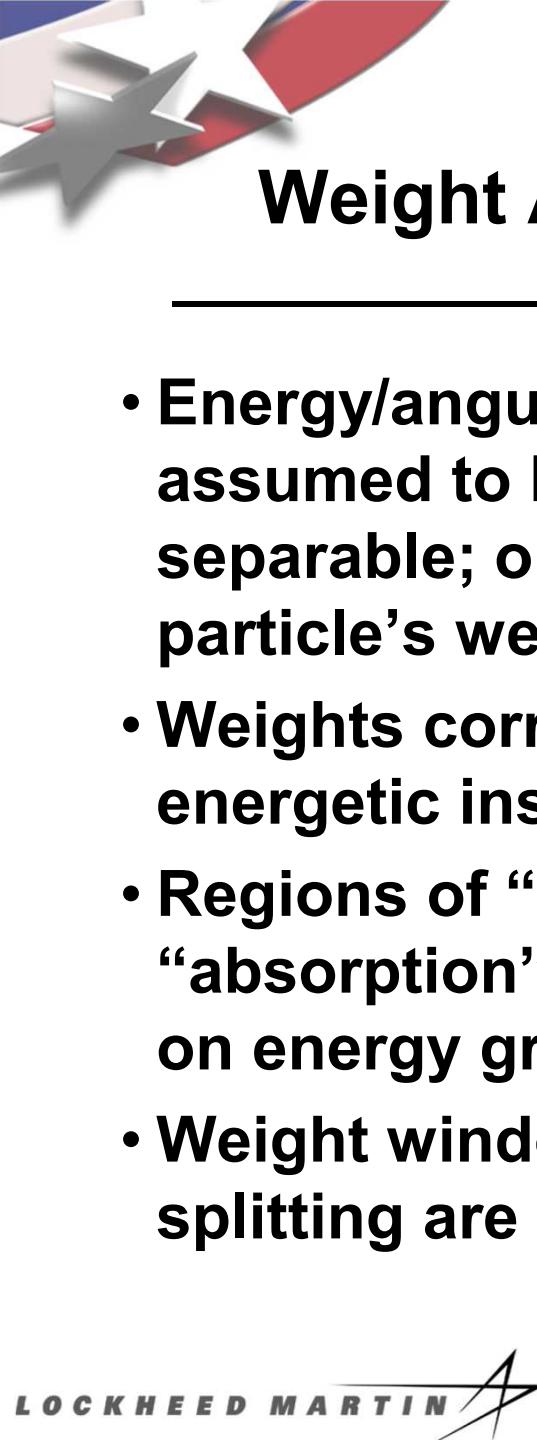
$$\sigma_{e,tot}(E) \neq \int_0^{\infty} \sigma_e(E \rightarrow E') \psi^\dagger(E') dE'$$

- Can the problem be made to look forward?
- Adjusting the DCS is akin to classical variance reduction techniques

YES

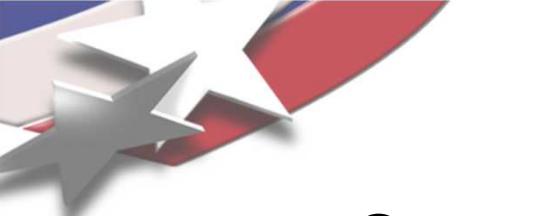
$$\int_0^{\infty} \sigma_e(E' \rightarrow E) \frac{\sigma_e(E \rightarrow E')}{\sigma_e(E' \rightarrow E)} dE'$$

↑
Sample Interaction ↑
Tally this weight

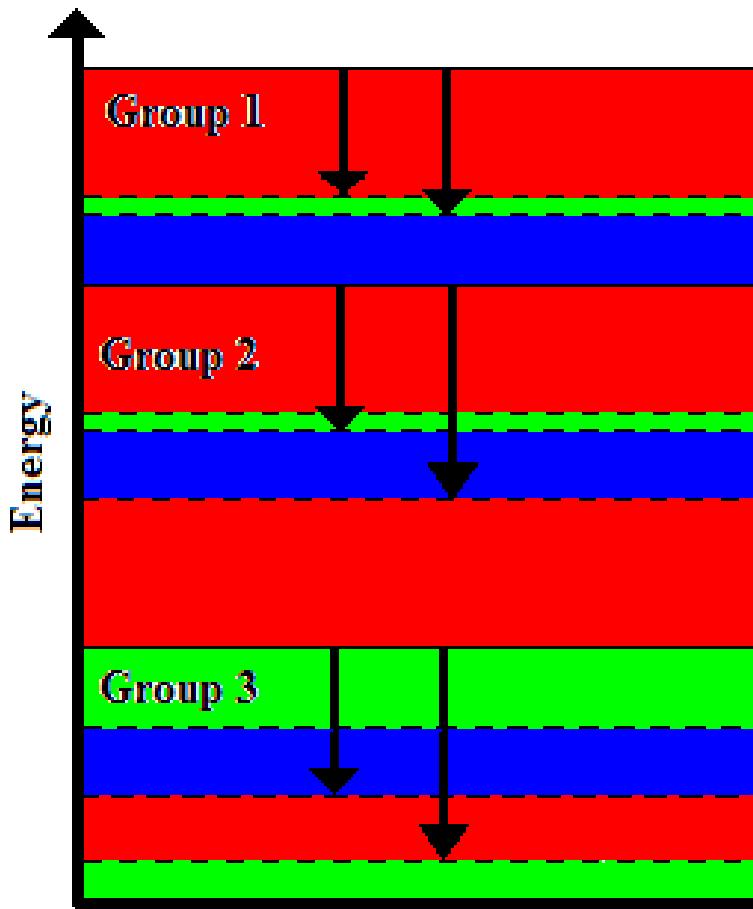
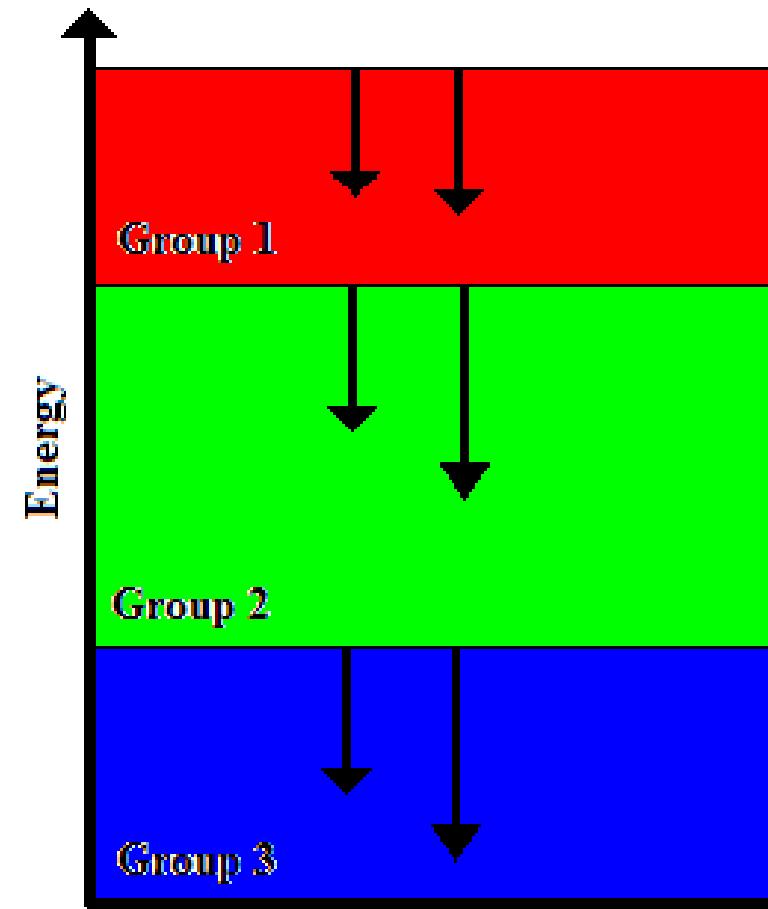


Weight Adjustments: The Key to GBFP[†]

- Energy/angular scattering are assumed to be independent and separable; only energy affects the particle's weight
- Weights corrections are ratio of energetic inscatter to outscatter
- Regions of “multiplication” and “absorption” both occur and depend on energy group structure
- Weight windows, Russian roulette, and splitting are some obvious next steps



Complexity of Adjoint Energy Grid

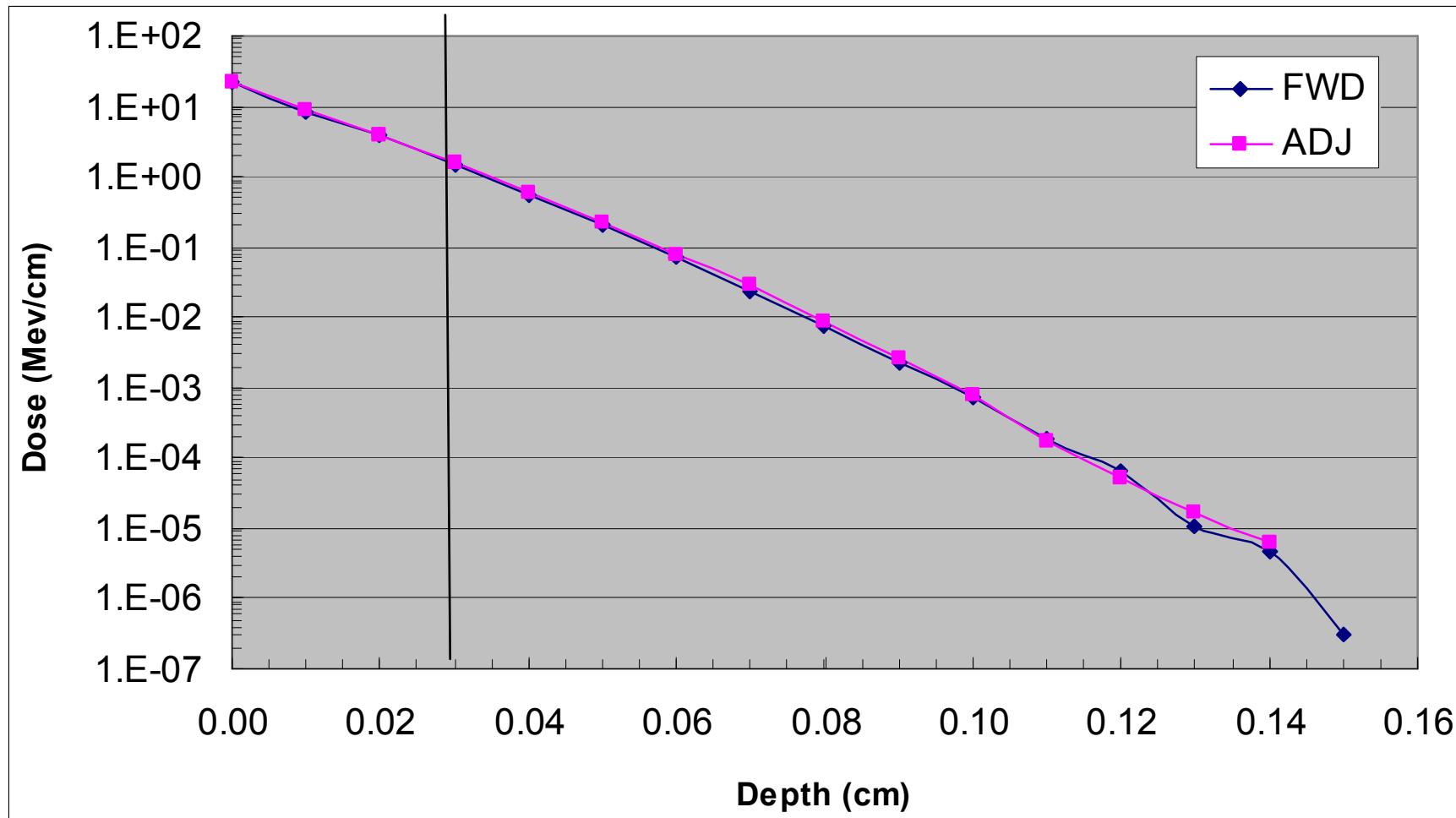


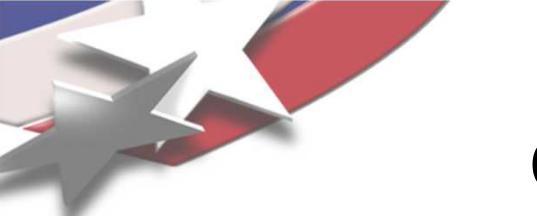
Test Problem

- **Slab geometry with source at left interface**
- **Two materials: 0.03 cm of Au followed by 0.47 cm of (*essentially* infinite) Si**
- **Source is isotropic in angle and uniform in energy [0, 1 MeV]**
(all histories in prescribed energy range are tallied equally)
- **Simulation used two discrete angles and one discrete energy**
- **Results generated using 10^6 histories**

Energy Deposition

Au/Si Slabs, 2 Angles, 1 Energy, 10^6 History, Uniform and Isotropic Source





Questions? Comments? Unequivocal praise?
