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'

; | ' Dry Pressing Is A Common

Net-Shape Manufacturing Process

Net-Shape Manufacturing by Dry Pressing

Objective
Produce Net-Shape, Defect-Free Powder Compacts

Problems
Warping, Cracking, Capping, Laminations, Density Gradients

Problems Often Related to Powder Physical Characteristics & Properties

Solution
We use Characterization & Modeling to Develop
Science-Based Understanding & Control
of Ceramic Powders & Powder Compaction
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; ' Excessive Pressure, Springback, &

Compaction Ratio Produce Defects

Pressed & Sintered

PNZT
0.251n
End Capping Ring Capping Laminations Vertical Cracks
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Compact Relative Density (%0)

“ensny Gradients In A Powder
Compact Result From Pressure

60 —

55

50

45

40

35

30

94 wt% Alumgé r@gl i’?(ﬂ)%si)

ure (ksi)
15

Compaction Press
0 5 10
l :\
i ,./:r’*

e o *

69 MPa (10 ksi)

K
25 -

Ny,
>

138 MPa (20 ksi)

\/

i %
[ Z~/ B

| | | | | |
0 20 40 60
Compaction Press

Measured Powder Compaction Curve

| | | | |
80 100 120
ure (MPa)

e

A

Measured Density Gradients

2.2 cm Diameter x 3.5 cm Tall

@ Sandia
National
Laboratories



V; @ ariations In Compact Density

Result From Packing

Calculated Density Gradients

Computer-Simulated H ete rOgenel

2-D Particle Packing

11
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V

Mgglomerates/Packing Can Result

In Differential Sintering & Defects

Sintered 94% Al.0,
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Powder Characteristics Influence
All Three Stages Of Powder Pressing

1) Die Filling => Powder Flow & Packing
Particle/Granule Size Distribution & Shape

2) Pressing => Compaction Response & Density
Granule Density
Granule Deformation
Die Wall & Interparticle Friction

3. Ejection => Defects
Springback
Ejection Pressure/Compact Strength
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k - 'A PTC Was Used To Characterize
> - Powder Flow, Pressing, & Ejection

KZK Powder Testing Center (PTC)
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; @V Particle Size & Shape, And

Granulation Affect Flow & Packing

G Wb, o 4 B0 2
; e ,i;!.: L 3 o Rt P LY ks BX " . i g -

Chemically Synthesized PZT Spray-Dried 94% Alumina
Angle of Repose = 83° Angle of Repose = 34°

Bulk Density = 12.5% Bulk Density = 27.1%
Tap Density = 15.4% Tap Density = 29.2%

i
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e ' Smooth Spherical Granules
Flow and Pack Better

Powder Angle of Repose | Bulk Density | Tap Density | Hausner Ratio
(degrees) (%) (%)
94% Al,O3 374 27.94+0.19 29.82+0.18 1.07£0.01
99.5% Al,O3 28+1 32.48+0.31 34.43+£0.29 1.06£0.01
94% Al,O, 99.5 % ALO,

5

13 = _'glomerate Size (m) =122
4.2 = Particle Size (um) = 2.0 @ﬁaaggi:al
1.85 = Surface Area (m?/g) = 3.20 Laboratories
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- ' Particle/Agglomerate Size And
? Distribution Affect Packing & Defects

Nuclear Magnetic Resonance Imaging (NMRI) of Particle Packing
Monosized 3.2& 6.3 mm 3.2&12.7 mm

o i A Y -

Packing defects are created by:
- forming die walls
- large particles
- agglomerates

_Larger p_)arti_cles =
larger packing defects o Sandia

National
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“cking Defects Introduced During
le Filling Persist Throughout Processing

Spray-Dried 94% Alumina Pan-Granulated Alumina
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__ Defects Introduced In Die Filling
Are Not Eliminated During Pressing

NMRI in-situ compaction experiments
relative particle motion < 1 particle radius

_ IVIIXture ot IVIIXture ot
Monosized 32&6.3mm 3.2&12.7mm

750 Ib
500 Ib
250 Ib

No
load
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* | ' Modeling Provides Guidance
On How To Minimize Packing Defects

 There is a critical component
size to granule size ratio of 250:1

e The ratio is important for small
parts with a large surface area

Die Diameter (cm)
0 0.5 1 1.5 2 2.5 3

s O 1| » Granule sizing improve yields
=5%8F & . g of small parts
S 56} ’ _
Qb ¥  Packing models can be used to
= | - - P
£ sof tailor granule size distributions
5ot
2 ol e
£ 481 Y- AR =0.125
O 46t
0

Sandia
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Die Diameter/Average Granule Size Laboratories



P eramic Powders Are Granulated To

},’

Improve Flow, Packing, & Compaction

o _ ¢
Spray-Dried
Alumina Granules
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V
' Granule Hardness Influences

Flow, Packing, & Compaction

Green Density vs. Distance Across Compact

Hard Granules

Soft Granules

Medium Granules
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; 'Granule Density Can Be Measured

Using Mercury Intrusion Porosimetry

inter-granular —— intra-granular pores
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; “ranule Packing & Deformation

Influence Compaction & Density

Intragranular Pore

Intergranular Pore

Pressure

/ Pressure

Persistent ___| _
Interface ~J - Persistent
Intergranular

Pore

Pressed Compact

Reed (1988, 1995) '11
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; ' Granule Packing & Deformation

Influence Compaction & Density

Persistent
Interface

Reed (1988, 1995)
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Intergranular Pore

-Q‘ ..'

Pressed Compact

Pressure

/ Pressure
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S~ 'f he Compaction Curve Provides A

Measure Of Compaction Response

Region |

Compact density is
extremely sensitive to
variations in pressing
pressure.

Region 11
Most desirable region
for manufacturing.

Region 111
Compact density
relatively insensitive to
forming pressure.
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Appreciably With Granulation

; - ' Compaction Response Can Vary

Granulated 94% Al,O, Powder Compaction

Compact Relative Density (%)

Compaction Pressure (kpsi)
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_' | “ensity vs. Log Pressure Reveals
| hree Compaction Stages & A Breakpoint

Spray-Dried 94% Al,O, Powder Compaction
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", @PRemnants of Spray-Dried Al,O,
Granules Disappear At ~69 M

Pressed Surface

Fracture Surface

17.2 MPa 68.9 MPa 137.9 MPa -
2,500 psi 10,000 psi 20,000 psi lbortores
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Al,O, Granules Persist At 137.8

SN

Pressed Surface

Fracture Surface

| g b5 $&£‘

17.2 MPa 68.9 MPa 137.8 MPa Sandi
2,500 psi 10,000 psi 20,000 psi @ O



V

}

~ “ofter More Deformable Granules

Produce Stronger Powder Compacts

Strength (MPa)

Granulated 94% Al,O, Powder Compact Strength
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* - 'Strength Increases With Compact
' Density & Compaction Pressure

Powder Axial Tensile
Strength Strength
(MPa) (MPa)
94% Al,O; 1.5+0.1 6.4+0.2
99.5% Al,O3 6.4+0.2 4.4+0.0
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", @ Ejection Force & Springback
5 Increase With Pressing Pressure

Ceramic Powder Compaction Response

Compaction Pressure (kpsi)
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riction Determines How Pressure
Is Transmitted Through The Compact

;

P,=P,exp(-4/Dezepea) —— y

Uea=In(P,/P,)/(-2lrez) | p - 10000 pSI 10,000 psi 10,000 psi

o =tan g ,:IL\
Pa Py = 9 510 psi

6 065 psi
A ¥//
1B
H| P, 1,350 psi
I:’Z
L Transmitted pressure calculated for different
i H/D values (u = 0.25 and a. = 0.5)
I SN
< g
D Sandia

Janssen (1895) ﬂ'l {“%‘“rg?'-
aboratories




k ' Particle Size & Shape o
- Influence (Powder) Internal Friction

Intragranular Pore
Intergranular Pore

Pressure

Packed Spherical Granules Particle

Pressure

Sandia
Reed & Runk (1976) |‘|1 National
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V

# The Applied & Transmitted

Pressure Provide Information on 1 & o

Pa
/*\ Jansen’s Analysis
> P,=P,exp(-2/rezepea)
A b wea=In(P,/P,)/(-2/r*2)
Pl-' o=tan g

PZ

P>
N The PTC Slide Coefficient, n
~
In n=2r/z+In (P,/P,)

P.=aeP, In n/-4=p°a
Pp=HeaeP,

National

] o o '11 Sandia
U ~ die wall friction o ~ powder friction =27 taboratories



- ' Ceramic Powder Compaction Is

Described By A Cap-Plasticity Model

— 7
”~
Shear Failure Surface: C ///
. > B
Moving "Cap" .~
”
o \é’i._ Compaction |
l—|f-‘\ /, -
e ’ -
E /( ........ ~ \
/// The (3) .
o KR \
i : : . * 1
% ) e B Elastic Regime \“ \
d - "'d ................ by " (2) LI
* (1)—=
Mean Stress, 0, “m my

Model Features
» Stationary shear failure surface
- cohesion, d
- angle of internal friction, f.
o Elliptical Cap that moves
 An elastic regime circumscribed
by the two foregoing surfaces
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; ﬂ)wders Having A Larger Friction

Angle 3 Are More Difficult To Press

(3271

\

B

\

Mean Stress

Cap Model Jansen Model
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= ' Powders Were Characterized In
' Hydrostatic & Triaxial Compression

Triaxial Compression Tests
 2.54 cm dia. by 5.08 cm tall compacts

* Pressurized to target pressure (i.e., the
hydrostatic forming pressure)
hooe - Monitored sample strains

» Hydrostatic pressure looped at target
pressure
- Determined K

* Loaded axially (i.e., deviatoric stress)

» Completed periodic, axial
unload/reload loops
- Determined E, v
- Calculated G from K, E, & v

Sandia
m National

laboratories




k . € Mechanical Properties Were
}’ Determined From Stresses &
CHuvmasnna
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;I'I\/Iore Pressable 94% Al,O; Has A

Smaller Angle of Internal Friction, 3

20
10

20

40 60 80 100 120
Mean Stress (MPa)

Powder Cohesion Angle of internal friction Tan B
(MPa) (degrees)
94% Al,O 2.3 26.6 0.50
99.5% Al,O4 4.2 28.4 0.54
70 I I I I
00 99.5% Al 0
23
50 .
§ 40 94% Al O, |
T 30

®

Sandia
National
Laboratories



Harder To Press 99.5% Al O,
Is Stronger In Triaxial Compressmn

2

70 | | | | | | | |

60 [ ,=235MPa
50 -

"99.5% Al 0
2 3

°04% ALQ,
40 L
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30 |
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20 L
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oLl
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Axial Strain
@ Sandia
National
Laboratories




" ; ' Drucker-Prager Parameters Were

Determined To Support Modeling

94% Al,O,
lm | " | " | " | " | " | " | "
L 4 8 =0.45 Data fitted to Aydin et al. [1996,Eq
lm I 3v=n_43 --------- with a=0.224 and R=-1.81 -
L'
o« 8 =040 snnneanaa
W
120001 =
10000 =
2000 I -
5000 I -
| Shear Failure Sutface a
4000 | N -
2000 I e =
. |
ﬂ = [ ] [ ] = - [ ] = [ ] a) [ ] = [ ] =
0 2000 4000 6000 2000 10000 12000 14000 16000

Mean Stress (psi)
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_

; Wlodel Simulations Show Excellent

Agreement With Experimental Results

94% Alumina
Single-Action Uniaxially Pressed at 69 MPa e u=0.2

Density

Ultrasound Measured FE Model Predicted .
Density Gradients Density Gradients @ Sk
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€7 The Simulation (CPU) Time Also
Provides A Measure Of Pressability

FE Compaction Simulations
Cylindrical Compact

- 2.2 cm Dia x 6.7 compacted to 3.5 cm
» Single-Action, Top-Down Pressing
- 94% alumina - 747 CPUs - 10X
- 99.5% alumina-9919 CPUs  -13.3X
Bushing Compact

« Balanced, Dual-Action Pressing
- 94% alumina -1297CPUs - 1.7X
- 99.5% alumina - 154,200 CPU s - 206X
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", €@ Modeling & Simulation
Can Guide Die Design & Pressing

Cross sections of 3D Finite Element Method (FEM) compaction model simulations
predict the density gradients in a complex component geometry

friction low
* sharp I
corners high
* high aspect
ratios
Single-Action Pressing Dual-Action Pressing
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efects Are Produced If The Stress
}Path Intersects The Shear Failure Surface
e End Cap
Defect

Pressed & Sintered
Lead Zirconate Titanate

= |_ Shear Stress Map
= -45 psi

I 1000 nsi

FEM Simulation

3,12

Shear Failure Surface

Yielding
(Delamination)

Compaction
/ /gpringback
\V4 i

Mean Stress @ Sk

Volumetric

Compaction

Surface
"Cap"
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@7 Compaction Simulations Have
Linked Defects To Processing

Feedthrough Insulator Mesh
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V; ' 'Simulations Predict Stress And

ensity Gradients That Result In Cracks

: N T 94% Al,O4
5.6% Dual-Action,
Uniaxial Pressing

8.5%

10.3%

| Shear
Stress

........
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V

qefects Persist Throughout Processing

« Defects introduced during die filling

persist through compaction & Sintering
- control stickiness to optimize packing
- minimize bulk & tap density difference

o Particle packing models can be used to

anticipate & avoid packing defects
- 250:1 critical die size to granule size
- critical ratio is important for small parts
- granule sizing can improve yields
- use models to tailor size distributions
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T, @ Powder Pressibility Is Related
To Powder Characteristics/Properties

 Granule size, shape, & density affect

powder flow, packing, & compaction
- size ~ 50-400 pm
- spherical
- angle of repose < 40°
- granule density ~ 45-50%

» A combination of techniques Is required
to assess compaction response
- compaction response curve

- green compact strength
o - green compact microstructure

—amap. | * Powder pressibility can be assessed
| from compaction response and from
powder mechanical properties

- Hea=In PP,/ (-2/r«2z)
- angle of internal friction, 3

T o 01 o 02 om - strength in triaxial compression Son
. . ndia
Axial Strain National
Laboratories

6,6, (MPa)
S
o
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; | ' Compaction Response Can Be

Characterized, Predicted, & Controlled

N e | '« Ceramic Powder Compaction is
= 1o00] Described by a Cap Plasticity Model
=
= 1 * FE Modeling Accurately Predicts
wol X ] Density Gradients From Pressing
m’ <y * Modeling has been used to Establish
0 2000 4000 6000 8000 10000 12000 14000 16000

Mean Stress (psi) Guidelines to Improve Pressing

 Improved Understanding and Control
of Materials and Processing Will
Result in More Reproducible
Manufacturing
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