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Abstract

Dust accumulation significantly affects the performance of photovoltaic modules and its impact can
be mitigated by various cleaning methods. Optimizing the cleaning frequency is essential to minimize
the soiling losses and, at the same time, the costs. However, the effectiveness of cleaning lowers with
time because of the reduced energy yield due to degradation. Additionally, economic factors such as
the escalation in electricity price and inflation can compound or counterbalance the effect of
degradation on the soiling mitigation profits. The present study analyzes the impact of degradation,
escalation in electricity price and inflation on the revenues and costs of cleanings and proposes a
methodology to maximize the profits of soiling mitigation of any system. The energy performance and
soiling losses of a 1 MW system installed in southern Spain were analyzed and integrated with
theoretical linear and nonlinear degradation rate patterns. The Levelized Cost of Energy and Net
Present Value were used as criteria to identify the optimum cleaning strategies. The results showed
that the two metrics convey distinct cleaning recommendations, as they are influenced by different
factors. For the given site, despite the degradation effects, the optimum cleaning frequency is found
to increase with time of operation.

Keywords: Soiling; Cleaning Frequency; Optimization; Photovoltaics; Degradation Rate; Economics.
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The optimum cleaning frequency of a PV system varies with time of operation. The
profitability of cleaning is affected by the PV degradation rate pattern and the variability of
electricity price and cleaning costs. This work analyzes the separation line that defines the
most cost effective cleaning frequency at each year of operation.
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The optimum cleaning schedule varies depending on time of operation and health state

Different cleaning schedules can be recommended based on the LCOE and NPV

PV degradation does not affect the LCOE based cleaning decision algorithm
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1. Introduction

Active monitoring of photovoltaic (PV) performance is critical for ensuring the highest energy yield
and profit, as it makes it possible to maximize the efficiency and the revenues of photovoltaic power
plants through improved operation and maintenance (O&M) strategies. The ability to accurately
predict the projected energy yield of such systems by also identifying trend-based performance losses
allows condition-based maintenance strategies, which are important for minimizing O&M costs and,
hence, improving the financial payback of a PV project.

Sources of performance loss can be either reversible (i.e., lost energy can be recovered by
maintenance) or irreversible (i.e., lost energy is unable to be recovered unless the component is
completely replaced) [1]. Examples of reversible performance loss include dust deposition (i.e. soiling),
snow, vegetation, fuse failures etc. whereas irreversible performance loss may occur due to several
degradation mechanisms such as discoloration, delamination, hot spots, cracks etc. In order to
account for the performance loss in PV power prediction models, a degradation rate value is usually
considered, which is either taken as an assumption or extracted from a statistical model [2,3]. Such
models, however, have no knowledge of whether the loss is due to reversible or irreversible effects.
Furthermore, routine maintenance due to reversible performance loss, such as cleaning frequency of
PV modules, is commonly executed at a fixed rate per year during the project’s lifetime.

Field data demonstrated that irreversible performance loss rates may not always be constant (i.e.,
linear) [4-6] due to a number of degradation modes that can occur during the initial and wear-out
phases of a PV system’s lifetime. Even when the same lifetime performance loss is assumed under
different linear and nonlinear degradation rate patterns, the economic impact will vary [4,5].
Therefore, due to the different paths of performance loss that could be observed, it is important to
optimize the maintenance strategies on a condition-based manner because the energy recovery and
corresponding financial gains will depend on the system’s health-state, inflation etc. In order to
achieve this, algorithms must be developed to respond quickly and intelligently to different
operational issues.

Soiling is one of the most common reversible performance losses experienced by PV modules, as it
can generally be removed by natural or artificial cleaning. Rainfall is the most frequent natural cleaning
process [7,8]. Artificial cleanings are performed by O&M operators or robots, and their cost depends
on a number of factors, which vary depending on the geographical location; even within the same
country [9]. If not mitigated, soiling can cause significant economic losses [10,11]. Furthermore, the
impact of soiling is likely to be more severe in future; this is due to the combination of increased
deployment of PV modules in regions characterized by high insolation and soiling and the improved
PV module efficiencies [9]. As such, soiling mitigation strategies must be optimized in order to
maximize the energy output of the system, while minimizing the cleaning expenses.

In 2010, Mani and Pillai listed some recommendations for soiling mitigation strategies based on the
climatic zone and the characteristics of the region where PV systems are located [12]. These are useful
guidelines, but the mitigation strategy should always be refined depending on the specific conditions
of each site [13,14]. Several cleaning optimization methods have been proposed in literature to
maximize the profits [15—18]. These are useful methods to determine the optimum cleaning schedule
at given conditions, but they do not consider that the “value” of recovered energy (i.e., difference in
revenue before and after cleaning) changes with time, mainly due to the system’s health state and, in
particular, degradation. Indeed, as discussed by Urrejola et al. [19], PV degradation lowers the energy
yield with time. This translates directly into a lower cash inflow and makes cleaning less effective with
the time of operation, considering that the impact of some economic parameters also changes. In
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particular, the rise of the cleaning costs caused by inflation can compound the impact of degradation,
because cleaning would become more expensive with time.

In addition, it should be considered that, in some countries, the electricity price is subject to a daily
market-based competition [20]. This means that the price of electricity sold by the PV system producer
to the grid may vary over time, depending on supply and demand. In these markets, an escalation in
the price of electricity can, at least partially, counterbalance the effects of degradation and rise in
cleaning costs, increasing revenues, and therefore incentivize the cleanings. Taking these factors into
account, along with the influence of discount rate, one could expect that the optimum cleaning
schedule that maximizes the revenues and minimizes the costs would vary with the year of operation.

In order to verify this hypothesis, a sensitivity analysis was performed to investigate the impact of
different PV degradation rate patterns on the profitability of cleaning schedules taking into account
the variability of economic parameters and soiling profiles extracted from a 1 MW PV plant in Spain.
A similar analysis was conducted on a PV system in Chile [19] taking into account fixed values for
electricity price and cleaning costs whereas the degradation rate was based on a fixed performance
loss value extracted from a 2-year period. A model to optimize the optimal cleaning schedule also
based on linear degradation and fixed electricity price and cleaning costs was recently presented by
Alvarez et al. [21]. In the present work, these economic parameters are realistically modeled to vary
annually, and the effects of their variation is thoroughly discussed. For the first time, different
degradation rate patterns are considered enabling the cleaning schedule optimization over time using
the levelized cost of electricity (LCOE) and net present value (NPV) metrics as criteria.

The paper is structured as follows. The methodologies to analyze the PV performance data, to extract
the soiling profile and to calculate the effects of different cleaning scenarios and degradation rate
patterns are described in 2.1. The economic parameters and equations are detailed in 2.2, whereas
the cleaning optimization process is described in 2.3. The results’ section is split into two subsections:
in 3.1, the cleaning frequency is optimized for every year of the PV plant operation considering
different linear degradation rate values and various inflation and electricity price scenarios whereas,
in 3.2, nonlinear degradation rate patterns are introduced and their effects on the profitability of
different cleaning frequencies are discussed.

2. Methodology

2.1. PV performance

The energy performance and soiling profiles considered in this study were extracted from a real PV
installation, whereas the degradation rate patterns were theoretical and based on previous
investigations [4,5,22]. The methodology used to process the performance timeseries is described in
2.1.1. Subsequently, the methodologies employed, and the assumptions made to calculate the soiling
loss profile and the optimal cleaning schedule are discussed in 2.1.2. Finally, the degradation profiles
modelled in this work are reported in 2.1.3.

2.1.1. PV data analysis

1-year of hourly data from a 1 MW system installed in the province of Granada, in Southern Spain,
were considered. The system consists of mono-crystalline modules facing South and mounted at a tilt
angle of 30°. The installed DC capacity is 961 kW and no inverter clipping was observed. The energy
yield and soiling profiles were extracted using the same methodology employed by Micheli et al. [23],
considering the weather data downloaded from MERRA-2 [24]. The following PV corrections, available
in the pvlib-python library [25], were employed to analyze the performance of the site:
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e The ASHRAE transmission model for the angular correction of incident light [26,27],
e Sandia PV Array Performance Model for the spectral and temperature corrections [28]. All
coefficients were sourced from the Sandia PV Module Database.

The absolute and relative air mass [29,30] were defined from the apparent zenith, calculated with the
solar position algorithm [31], and the MERRA-2 site air pressure.

2.1.2. Soiling extraction

Soiling is commonly quantified through two metrics: the soiling ratio and the soiling rate. The soiling
ratio expresses the ratio of the output of the soiled PV system to the output of the PV system without
soiling [32]. It has a value of 1 in clean conditions and decreases as soiling accumulates. The soiling
losses can be expressed as (1 - soiling ratio). On the other hand, the soiling rate quantifies the rate at
which soiling deposits on the PV modules and is calculated as the daily derate in soiling ratio (i.e. slope
of the soiling ratio profile), expressed in %/day and reported in negative values [33]. A soiling rate of
0%/day occurs when there is no soiling being deposited, and its value decreases as the soiling
deposition rate increases.

The daily soiling ratio values were extracted from the aforementioned performance data, considering
only the hours near noon on high-irradiance days [32]. To ensure relatively clear-sky conditions, only
data conditions when plane-of-array irradiance was > 700 W/m? was used. This threshold is higher
than that used previously [34,35], but it minimizes the noise in the soiling ratio estimation.

The soiling ratio profile is shown in Figure 1a. The investigated site is characterized by seasonal soiling,
with a long summer period of no rain exhibiting a peak power loss of 23% at the beginning of
September. This results in a soiling rate of -0.28%/day occurring from mid-June to the end of the
summer. A change in soiling rate occurred on June 22" due to a dust-laden wind [23,36].

The aim of this work was to analyze the optimum number of cleanings (i.e. cleaning frequency) that
would maximize the profits from soiling mitigation. To do that, it was necessary to understand the
extent of the soiling losses if no mitigation actions had been in place (worst-case scenario of no
cleaning) and therefore to extract the natural soiling profile of the site. For this reason, the effect of
the artificial cleaning event performed by the O&M team on August 5™ was removed. As such, the
positive shift in the soiling ratio profile on August 5" was eliminated by propagating the same soiling
rate (i.e., -0.28%/day) until the following rain event in September (see green line in Fig. 1a for natural
soiling profile). Similarly, artificial cleanings are modelled in a way to produce a sudden positive shift
in the soiling ratio profile, restoring its value to 1, but without a change in soiling rate (i.e., soiling rate
before cleaning is equal to soiling rate after cleaning). This decision is already employed in other
cleaning optimization studies [15,37] and is based on the assumption that cleaning washes off
deposited dust from the modules and does not have any effect on the external atmospheric conditions
that cause soiling deposition (such as suspended particle concentration, wind speed, relative humidity
[38,39]). Consensus has not yet been reached within the community regarding “grace periods” (i.e., a
fixed number of days following a cleaning event in which soiling does not deposit on the PV modules)
[15,33,40]. Therefore, soiling was assumed to accumulate on the PV surfaces immediately after a
cleaning event, without any “grace period” [37].

Ina “no cleaning performed” assumption (green line in Fig. 1a), it is estimated that the AC energy yield
of the system would have been 1691 kWh/kW, with an average soiling loss of 2.8%. This represents
the worst-case scenario, in which no mitigation is put in place to address soiling. The soiling profile in
this site can be considered as representative for southern Europe and a number of Southwestern US
States, including California, due to the combination of low and infrequent precipitation and elevated
levels of suspended dust, which are commonly observed during the summer months. Similar yearly
losses, in the order of 3 to 4% were reported for a number of studies worldwide [41-43]. Therefore,
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the results extracted from this study could be associated with installations exposed under similar
climatic locations elsewhere.

Ideally, if soiling was completely removed (i.e. soiling loss of 0%), the yield would have been
1748 kWh/kW. It should be noted that the energy yield variation is larger than the average soiling loss
because the highest dust deposition occurs in summer. This yield represents the best-case scenario
and is used as a baseline to quantify the benefits of different cleaning frequencies. Six potential
cleaning schedules were considered in this study and their effects on the soiling profile are shown in
Fig. 1b. The considered schedules include cleaning frequencies ranging from 0 to 5 times per year,
which are assumed to be performed on the dates that maximize the soiling ratio (i.e. minimize the
energy losses). Similar to the procedure described by Micheli et al. [40], for each frequency, a soiling
profile is modelled for each possible combination of cleaning dates . The dates that return the highest
average soiling ratio (i.e. the minimum annual losses) are the optimal cleaning dates for each given
cleaning frequency scenario. These six optimized soiling profiles are analyzed in the rest of the paper,
introducing the economic metrics and parameters described in Section 2.2, in order to identify the
most cost competitive cleaning frequency (i.e. the one that maximizes the difference between
revenues and cleaning costs). For the purposes of this study, the soiling profile was assumed to repeat
every year of operation and no change in soiling rate was considered after each cleaning [18,36].
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Fig. 1. (a) Soiling and performance profiles of a 1 MW power plant located in Granada, Spain. The black dots represent the
DC performance ratio normalized to the median value and the red line shows the extracted soiling profile including the August
5th cleaning event (marked with a yellow vertical line); the modeled soiling profile without considering any cleaning is also
displayed with green color. The blue vertical lines are the rainfall events whereas the change in soiling deposition rate is
marked with a grey vertical line. (b) Soiling profiles for optimized cleaning schedules with different frequencies ranging from
0 to 5 times per year. The average daily soiling ratios are also shown for each scenario.
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2.1.3. Performance degradation profiles

The aforementioned energy yield did not include the effect of degradation, which was modelled from
synthetic data. Five different performance loss patterns were considered as illustrated in Fig. 2. These
include:

A. Linear degradation of -1.0%/year,

B. Nonlinear: -0.5%/year initially followed by -1.5%/year,
C. Nonlinear: 0%/year initially followed by -2.0%/year,

D. Nonlinear: -1.5%/year initially followed by -0.5%/year,
E. Nonlinear: -2.0%/year initially followed by 0%/year.

All nonlinear degradation patterns assume that the rate changes in year 13 (out of 25 years of
operation). Similar to [4,5,22], the theoretical linear and nonlinear patterns were selected in a way to
reflect the same power loss at the end of the system's lifetime (i.e., 24% loss of power in year 25).
Although the patterns are normalized to cover a 25-year lifetime, they could represent early life
degradation modes such as light and elevated temperature induced degradation (LeTID) [44] observed
in Passivated Emitter and Rear Contact (i.e. PERC) PV modules, light induced degradation [45] in
crystalline silicon PV modules, and Staebler-Wronski [46] effects in amorphous silicon. Such types of
degradation occur at various time scales from a number of hours to years [4,5,22]. Furthermore,
depending on the degradation-regeneration cycle of LeTID, PERC modules could potentially exhibit
minimal to even positive “degradation” rate in the field [47].

For the purposes of this work, the various strings and inverters of the PV system are assumed to
degrade and soil at the same rate. Further studies will be conducted in future, as new data become
available, on the non-uniformity of soiling and degradation within a given site.
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Fig. 2. Theoretical degradation rate profiles considered in this study.

2.2. Economic metrics and parameters

The cleaning schedule optimization against different degradation scenarios was assessed using the
LCOE and NPV as criteria. Depending on the metric, the optimization was realized by selecting the
cleaning frequency that either minimized the LCOE or maximized the NPV (see 2.3). The values of the
economic metrics were calculated for each of the soiling profiles (Fig. 1b) and degradation rate
scenarios (Fig. 2), taking into account the cost of the corresponding cleaning and the revenues granted
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by the corresponding energy yield. The methodologies used to calculate each of the economic metrics
are independently discussed in the following subsections: 2.2.1 (LCOE) and 2.2.2 (NPV).

2.2.1. Levelized Cost of Electricity

The LCOE quantifies the unitary cost of each kWh of electricity generated, considering its entire
lifecycle and is defined as [48]:

OM, +n.,-CC,)-(1-T)- 1+, )" D,
C+Znm aQ+d)mr Zn 1(1+d)n T (1)

Z11\1]=1 Es(nc,n) fD (n)/(l + d)n

where C are the installation costs, OM, the yearly O&M costs, n., the number of yearly cleanings (i.e.
cleaning frequency on the year n), CC,, the initial Specific Cost of Cleaning (in €/W), T the income tax,
rom the annual escalation rate of O&M costs, d the discount rate, E; the soiling ratio—corrected energy
yield, fo(n) a factor taking into account the effect of degradation, D, is the annual tax depreciation for
the PV power plant. The values of the parameters used in (1) are reported in Table 1. In this analysis,
the annual escalation rate of the O&M costs was set to be equal to the inflation rate. Tax depreciation
allows recovering part of the investment cost through reduced taxes and has been assumed to be
linear and constant over a given period of time (Ng) [49]. It is acknowledged that the method used to
model tax depreciation (e.g. straight line or declining balance) can affect the analysis.

LCOE =

The soiling ratio—corrected energy yield, Es, used in (1), is calculated as:

365

Eo(en) = ) Tone(D) E(D) @

i=1

with rsnc being the soiling ratio for a nn number of yearly cleanings as shown in Fig. 1b and E is the
daily energy yield profile in no soiling conditions. Es has a value of 1748 kWh/kW/year in conditions of
no soiling and lowers to a minimum of 1691 kWh/kW/year when soiling and no cleaning are
considered. In this work, the degradation rate is assumed to affect the annual soiling ratio — corrected
energy yield, rather than the daily performance profiles and for this reason is present in (1) through
the factor fp and not in (2). Assuming linear degradation Rp, the factor fp can be calculated as:

fo(m) =1+ Rp)" (3)

On the other hand, if degradation rate is indeed nonlinear, the equations can be rewritten to take into
account the two different rates, Rp1 and Rpz (as shown in Fig. 2):

fo(m) = (1 +Rp)™ - (1 +Rp)™ (4)
where n; and n; are the number of years in which Rp: and Rp; occurred, respectively, and follow these
rules: n1+ny=n, n,=0if n < N/2, n1=N/2 if n > N/2.
The term CC,, used in (1) is referred to as “initial” because the cleaning cost varies with time according
to the escalation rate of the O&M costs (rom). In particular, it can be derived from the Surface Cleaning
Cost (CCs) following the methodology detailed in [9,23]:

CC
— ww Pore

cc [€]_Z”twe'1m (5)
Wilkwl ™ Ppc

type

where Ppcis the DC capacity (961 kW), and nyype and Pyype is the nameplate efficiency and power of the
installed PV modules.
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2.2.2. Net Present Value

The second metric used in this work to estimate the economics of various cleaning frequencies is the
Net Present Value (NPV). The NPV compares revenues and costs over the lifetime of the projects. An
investment is considered profitable when NPV > 0. In this work, the following equation has been
adopted:

NPV = —C + PV[I(N)] — PV[O(N)] (6)

where the present value of inflows PV[/(N)] and outflows PV[O(N)] over a project’s lifetime are defined
as:

PV[I(N)] = (7)

N n ng
pEs(en) (1=T) fo(m)- (1+7,) Dn
A+ adr +Z(1+d)" r

n=1

N n
pvio = Y (OMy +nen - CCy) - (1 =T) - (1 + Tom) -

1+d)n

where p is the price of electricity and r, the average annual rate of increase in the price. The price of
electricity is calculated as:

P = Ppre—tax " (1+VAT) (9)

where ppre-tax IS the initial price of electricity before taxes, and VAT is the value-added tax (21%). The
average yearly pre-tax price of electricity is affected by several factors and can vary with time and
location depending on the available supply and demand. Similar to the cleaning cost, p is considered
as an initial electricity price, because its value varies with the year of operation.

The majority of existing PV plants in Spain, where this investigation is conducted, sell their energy
directly to the electricity market. This direct sale of produced electricity has become extremely popular
- and profitable - for the past three years due to the combination of consistently high electricity prices
and falling costs of PV installations. Spanish banks have long experience in financing photovoltaic
projects and have been financing only those installations that sell their electricity on the market [50].
For these reasons, a varying electricity price has been taken into account as a primary scenario. In
particular, the value of r, was set equal to the average annual increase in electricity price in Spain for
the last 10 years [51,52]. Despite that, power purchase agreements (PPAs) are a common practice in
many countries and PPAs are effective in some new PV projects in Europe [53]. This scenario,
represented by an r, of 0%/year, is also discussed in the paper.

Table 1. Economic parameters used in this study and sourced from the literature for utility-scale PV systems in Spain. The
asterisk marks that the value has been converted from U.S. dollars, considering a 0.92 S/€ conversion factor.

Parameter Symbol Value Units References
Years of operation N 25 years
O&M costs, cleaning excluded oM, 15 €/kW/year | [48]*
Installation Costs C 700 €/kW [54]

2 .
Initial Surface Cleaning Cost CCs 0.09 ﬁgm /cleani [9]
Specific Cost of Cleaning CCuw 0.62 i€n/gW/cIean ;:;a)lculated from




279

280
281
282
283
284
285

286
287

288
289
290
291
292
293
294
295
296
297

298

299

300
301
302

Discount Rate d 6.4 %/year [48]
A I lati te of th

nnua' escala |on'ra e of the - 123 %/year [55]
operation and maintenance cost
Income Tax T 25 % [48]
Depreciation period Ng 20 years [49]
Average annual rate of increase in

4.4 9 1,52

the electricity price o 8 %/year (51,521
Value added tax VAT 21 % [49]
Initial pre-tax price of electricity Ppre-tax 0.04778 €/kWh [51,52]

2.3. Yearly Cleaning Frequency Optimization

The cleaning frequencies that minimize the LCOE and maximize the NPV were calculated in this work
for each year of the system’s lifetime. Compared to previous studies [19,21], where fixed numbers of
cleanings throughout the lifetime of the system were assumed, in this case, the optimum cleaning
frequency was varied with time due to performance degradation, electricity price, and O&M costs.
The cleaning frequency that minimized the LCOE in each n-year of operation was found using the
following formulation:

min<(0M” +Nen - CCY) - (1 =T) - (1 —7Typ) ) (10)

Eg (ncn) ’ fD (n)

with 0 £ nn < 5 and the values described in Table 1. Similarly, the cleaning frequency that maximized
the NPV in each n-year of operation was found using the following formulation:

ax (p-Es(nc,n)'(l—T)'fD(n)'(l"'rp)n _ (OMn+nc,n-ch)-(1—T)'<1+Tom>") (11)
A+d)" a+d)n

The cleaning frequencies returning the minimum LCOE and maximum NPV were found by comparing
the results of each potential cleaning scenario for every year of operation. Therefore, for each of the
25 years of operation, six values were calculated and compared to solve (10) and six additional values
were calculated and compared to solve (11). It should be highlighted that the cleaning frequency (n¢n)
does not affect the degradation rate (quantified in fp, see (3) and (4)), but it can only modify the soiling
profiles used to calculate E; (see (2)). Furthermore, performance degradation affects the profitability
of each cleaning, because it reduces the amount of energy that each cleaning can recover. Therefore,
one can expect lower profits after each cleaning as the PV system degrades. However, while the
energy recovery lowers with time, other parameters in (10) and (11) can influence the economic effect
of degradation on the cleaning frequency; these are being investigated in Section 3.

3. Results and Discussion

3.1. Yearly Schedule Optimization

In this section, the cleaning frequency that minimizes the LCOE and maximizes the NPV for each year
of the system’s lifetime is discussed assuming a linear degradation scenario. Compared to the previous
studies [19,21,23], where fixed numbers of cleanings throughout the system lifetime were assumed,
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in this case, the optimum cleaning frequency is allowed to vary with time due to performance
degradation, electricity price, and O&M costs. The results of this analysis for the two economic metrics
considered in this study are shown in Fig. 3. As expected, the optimum cleaning frequency indeed
changes with time. Under the given conditions, both metrics are found to favor more frequent
cleanings towards the end of the life of the system.
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Fig. 3. Optimum cleaning frequency as a function of LCOE and NPV, in presence of a linear degradation rate of -1%/year
(Scenario A).

To maximize NPV, it is recommended to switch to two cleanings/year in year 10, while to minimize
LCOE, the switch is recommended in year 22. The different results are due to the different structures
of the metrics. If (1) is solved for the cleaning cost, it is found that, in order to minimize the LCOE, the
switch from a schedule of n., cleanings/year to n.,+1 cleanings/year occurs in year n in which the
following criterion is met:

€
(1 + Tom)n - CCy [W]

Es(n,, +1)
( Es(n.,)

—1)-((1+d)n-%+0Mt,n-(1 +Tom)" - (1=T) = Dy - T+ [n < Na]) (12

1-1)

where E;(n., + 1) and Eg(n.,,) are the corresponding energy yields for n.,+1 and n., cleanings/year.
First, the equation shows that the LCOE-based cleaning decision is independent of the degradation
rate. This is due to the fact that the degradation has the same effect on the energy yields of the two
cleaning approaches. This finding should not lead to the misunderstanding that the degradation has
no impact on the LCOE. Simply, if the LCOE is used as an economic metric, the yearly cleaning schedule
would not change because of the degradation pattern. Second, for the effect of discounting, the cost
of cleanings in the calculation of the LCOE becomes less significant year-after-year compared to the
installation cost, which is the only non-discounted parameter in (1). This becomes even more
important if the annual tax depreciation is only valid for a number of years N4<N. For this reason,
cleanings toward the end of the PV system life have a lower economic impact on the LCOE and might
contribute to reducing its overall value.

On the other hand, when NPV is considered, switching from an n., to an n.n,+1 cleaning schedule
occurs when the cost of cleaning becomes lower than the profits made per unit of power recovered:

€ n
A+ 7r,)" - CCy [W] <p-(Es(ng,+1)—Es(n.,)) (1 +Rp)™- (1 + rp) (13)

As shown in the equation, the discount rate and the income taxes do not affect the cleaning decision
when NPV is used as the criterion. Also, the installation, fixed O&M costs and depreciation mechanism

11
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do not impact the cleaning decision, because they would not be affected by the different energy yields
and would have the same impact under any cleaning scenarios.

The optimum yearly cleaning frequency varies depending on the input parameters. The sensitivity
analysis taking into account the escalation rate of O&M costs and electricity prices for different
degradation rates (and patterns) is shown in Fig. 4. As can be seen, the switch in cleaning frequency
occurs when the value of recovered energy meets the cost of cleaning. According to (13), two
cleanings/year are more profitable when the value of the recovered energy = CCy - (1 + 15,,)",
otherwise one cleaning should be preferred. It should be noted that, under some conditions (e.g. rp =
0.0 %/year), no switch occurs, while in other cases, more than one switch might be recommended.

Profits from recovered power
Ra=-1.0%%}year, ro=4 48%/year & rom=1.23%year
Ra=0.0%/year, ra=0.0%/year & rom=-0.5%/year
Ra=-2 .0%year, r.=0.0%/yvear & ram=-0.5%/year
Ra=0.0%/year, ro=4.0%year & rom=-0 5%/year
Ra=-2 0%%iyear, ro=4 0%/year & rom=-0.5%/year
Ra=0.0%year, ro=0.0%/year & rom=3.0%/year
Ry=-2 .0%iyear, ro=0.0%/year & rom=3 .0%/year
Ra=0.0%year, ro=4.0%/year & rom=3.0%/year
Ry=-2 .0%iyear, ro=4.0%/year & ro.=3 .0%/year

1.4 4

1.2 4

1.0+

danediond

0.8

0.6

B i Y KT

i 0., "I-~...__
0.4 iT. -
Bo.g

Initial Specific Cost of Cleaning, CCw [€/kW]
Profits made per unit of recovered power [€/kW]

0.2 A

Year of Operation

Fig. 4. Sensitivity analysis of NPV taking into account changes in electricity price and O&M costs and in recovered energy
under different values of degradation rate. An additional cleaning is recommended when the profits are higher than the initial
cost of cleanings (grey dashed line). The r, = 0%/year (i.e. no changes in electricity price) condition is representative for sites
with a fixed PPA in place. In this graph, the NPV values are calculated by moving the term (1+rom)" from the left-hand side to
the denominator of the right-hand side of (13).

As can be seen in Fig. 4, the slope of the curve increases while (i) the degradation rate decreases, (ii)
the escalation rate of the O&M costs decreases or (iii) the escalation rate of the electricity price
increases. The initial price of electricity would not affect the slope but would only change the
intercept. It is important to highlight, that the slopes can be either positive or negative. A positive
slope occurs when cleanings become more profitable with time, as long as:

1+ 1,

Ryl <1-—
IRl 1+rp

(14)
These findings confirm that, even if the amount of energy recovered by cleaning decreases because

of degradation, the inflation and the variation in the cleaning costs can make it possible to profitably
increase cleaning frequency over time.
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For the PV site investigated in this work, a cleaning schedule with a variable number of cleanings/year
leads to an increment in NPV < 0.1% compared to the case in which the modules are always cleaned
twice a year. The benefits of this approach should be evaluated on a case-by-case basis, since the
magnitude of this variation changes depending on the severity of degradation rate and values of
discount rate.

Overall, the LCOE and NPV evaluate differently the costs and benefits of the various cleaning
schedules, because the parameters that influence the decision of whether to clean or not are different
(see (12) and (13)). It is interesting to note that the cleaning schedule that maximizes the profits is not
necessarily the one minimizing the cost of electricity and vice versa. At the given soiling conditions, an
LCOE-optimized cleaning schedule would cause a loss in profits of 0.1% compared to an NPV-optimized
cleaning. This loss becomes more substantial as soiling increases; e.g. if the soiling rates were
multiplied by a factor of 1.5x and 3x, the difference in profits would become 0.4% and 0.7%
respectively. In addition, this difference would become more significant for locations with higher
electricity prices. Indeed, higher electricity prices would incentivize more frequent cleanings, while
the LCOE recommendation would not change, since LCOE is not sensitive to electricity price.

3.2. Impact of Non-Linear vs. Linear Degradation Rates

The influence of linear degradation rate on the profitability of soiling mitigation was discussed in 3.1.
However, nonlinear degradation rates can have a strong impact on the LCOE and, hence, on the
profitability of a PV project [4,5]. The most profitable cleaning schedule changes depending on the
degradation rate because, given the same soiling ratio, the amount of recovered energy per cleaning
lowers. In this section, the analysis is repeated by taking into account the nonlinear degradation rate
scenarios exhibited in Fig. 2. Initially, a fixed number of cleanings/year are considered for the lifetime
of the system, whereas, in the second part of the section, the cleaning frequency is optimized every
year.

Fig. 5 illustrates the impact of the different degradation rate patterns on the LCOE and NPV as a
function of cleaning frequency. The two optimum cleaning strategies include the one with the lowest
cost of electricity for all the degradation rate scenarios and the one returning the highest profits (i.e.
maximum NPV).

Transitioning from a no-cleaning to a single annual cleaning approach leads to a decrease of 0.7% in
LCOE; independently of the degradation rate pattern. When NPV is used as a criterion, the twice a
year-cleaning scenario is the most profitable cleaning schedule for all the degradation scenarios but
the scenario E, which favors a one-cleaning approach. The differences between the one-cleaning and
two-cleaning approaches are limited in all the degradation scenarios. Overall, the optimum cleaning
frequency leads to profit raises of up to 2.7% in the case of NPV, when compared to the no-cleaning
approach (i.e. no soiling mitigation in place).
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Fig. 5. a) LCOE and b) NPV values depending on the cleaning frequency for various degradation rate scenarios. The optimum
cleaning schedule is the one that minimizes the LCOE and/or maximizes the NPV.

As shown in the previous section, the number of annual cleanings can be optimized every year. In this
analysis, the LCOE metric is neglected since (12) and Fig. 5 demonstrated that an LCOE-based cleaning
decision is not affected by the degradation rate value and/or pattern.

The cleaning frequencies were calculated and exhibited in Fig. 6 for the various degradation scenarios
in order to optimize the NPV. As expected, systems with the best performances (i.e. lower initial
degradation rates) require more frequent cleaning for longer periods, because cleaning tends to be
more profitable. These results are explained by Fig. 6b, where the evolution of the cleaning cost,
obtained as CC,, - (1 + 1,,,,)™, is compared to the revenue obtained by moving from a one-cleaning
to a two-cleaning scenario (right-hand side of (13)), which is affected by the degradation rate and by
the annual increase in electricity price. Overall, higher degradation rates lower the slopes of revenue
per cleaning. The switch in cleaning frequency occurs when the cost of cleaning line intercepts the
revenue per cleaning. The high initial degradation modelled in Scenario E keeps the revenue per
cleaning lower than the cost of cleaning for longer time, justifying a one-cleaning approach until year
14 of operation. On the other hand, conditions for a profitable additional cleaning are reached faster
in scenario C, because of the initial lack of degradation.
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Fig. 6. a) Cleaning frequencies that maximize NPV for different degradation scenarios and b) annual cost of cleaning per unit
of power and the trends of revenues per cleaning depending on the degradation rate scenario. An additional cleaning is
profitable when the revenue per cleaning is higher than the cost of cleaning.

The slopes of revenue per cleaning lines are positive as long as the degradation rate is lower than the
annual increase in electricity price, which is always true in the investigated case because of the high
electricity price escalation rate (4.48%/year). Each subplot in Fig. 7 shows the additional revenues and
costs of a second cleaning compared to a single cleaning scenario for the investigated site, and
demonstrates how the trends would change for a different value of rp. The red lines represent the
cleaning cost escalation rate, ranging from +2%/year (dashed line) to -2%/year (continuous line). The
latter scenario was considered because, given the expected increasing impact of soiling in future [9],
the development and wide-scale deployment of novel cleaning technologies could actually lower the
soiling mitigation costs.

The revenue per cleaning lines are flat when r,= Rp. As expected, the slopes become negative when
degradation rate becomes greater than the escalation rate in electricity price. This is the case for PV
sites under a power purchase agreement with a fixed price (i.e. rp,=0%/year, Fig. 7a). In these
conditions, the profits made by cleaning the modules lowers with time. A once/year cleaning scenario
would be recommended, unless the cost of cleaning lowered by 2.0%/year. In this case, Scenario C
would be the fastest in switching to a twice/year cleaning approach.

The theoretical examples demonstrated in Fig. 7 return either a fixed number of cleaning frequency
or a switch from one to two annual cleanings. In reality, a switch from twice a year cleaning frequency
to once a year might occur when the increase in cleaning cost is higher than the combined effect of
degradation rate and electricity price inflation.
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Fig. 7. Additional revenue per cleaning due to recovered energy (lines with markers) and additional cost of a second cleaning
(red lines) for different degradation and inflation (r.m) scenarios. Each plot takes into account a different escalation rate of
electricity price, rp. Plot (a) is representative for sites with a fixed PPA in place (r, = 0.0%/year).

4. Conclusions

This study investigated the impact of degradation rate patterns on soiling mitigation strategies taking
into account various economic metrics and parameters. In order to reduce the LCOE or increase the
NPV, the cleaning frequency can vary annually, since the cost of cleaning and value of recovered
energy may also change with time.

First, it is found that the degradation rate or pattern does not affect the cleaning frequency decision,
when optimized based on the LCOE. While different degradation scenarios do have an impact on the
absolute LCOE values, the cleaning strategy that minimizes the LCOE is independent of degradation.
On the other hand, the cleaning optimization algorithm based on the NPV neglects the discount rate,
income taxes and depreciation. This leads to different results for the two approaches and means that
a cleaning schedule that maximizes the profits could affect the cost of electricity and vice versa.
Because of the relatively low soiling rates at the investigated site, the NPV- and LCOE-based
approaches showed limited differences, which are expected to rise with an increase in soiling and
electricity prices. In addition, nonlinear degradation rate patterns can have an effect on the results of
the NPV optimization algorithm, because they can influence the annual revenue rates.

The investigated site is characterized by a significant seasonal soiling profile, with a maximum power
drop higher than 20% in summer, but an average energy loss lower than 3%. The results of the analysis
can be considered valid for climatic conditions similar to the Mediterranean region. Despite that, the
methodology presented in this work can be used to analyze soiling losses, identify the most
advantageous cleaning schedule and calculate the profitability of PV systems in any location. The
results of the sensitivity analysis are presented to show the variation of the trends depending on the
value of the input parameters: degradation, inflation rate, electricity price and cleaning cost. For this
reason, the benefits of a yearly optimized schedule should be considered on a case-by-case basis.
More investigations should be conducted in future to characterize the correlation between the
cleaning strategies and degradation rate for a larger number of sites that exhibit different soiling
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profiles. Future work will also include the impact of non-uniform soiling and degradation rates that
may occur across different inverters and strings within the same site.
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