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We report on the development of machine learning models for classifying C100 superconducting radio-
frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson
Lab. CEBAF is a continuous-wave recirculating linac utilizing 418 SRF cavities to accelerate electrons up
to 12 GeV through five passes. Of these, 96 cavities (12 cryomodules) are designed with a digital low-level
rf system configured such that a cavity fault triggers waveform recordings of 17 rf signals for each of the
eight cavities in the cryomodule. Subject matter experts are able to analyze the collected time-series data
and identify which of the eight cavities faulted first and classify the type of fault. This information is used to
find trends and strategically deploy mitigations to problematic cryomodules. However, manually labeling
the data is laborious and time consuming. By leveraging machine learning, near real-time—rather than
postmortem—identification of the offending cavity and classification of the fault type has been
implemented. We discuss performance of the machine learning models during a recent physics run.
Results show the cavity identification and fault classification models have accuracies of 84.9% and 78.2%,
respectively.
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I. INTRODUCTION

The Continuous Electron Beam Accelerator Facility
(CEBAF) at Jefferson Laboratory is a continuous-wave
recirculating linac (see Fig. 1) [1,2]. In September 2017,
CEBAF completed an energy upgrade to extend its energy
reach from 6 to 12 GeV. To meet this milestone, 88 newly
designed cavities (representing 11 cryomodules) were
installed. Each cryomodule (comprised of eight seven-cell
cavities) is capable of 100 MVenergy gain and is regulated
with an associated digital low-level rf system (LLRF).
These are known as the C100 cryomodules.
As a nuclear physics user facility, CEBAF aims to

maximize beam availability to the four experimental
stations. Currently, the largest contributor to short machine
downtime trips (defined as events which are resolved in less
than 5 min) are caused by superconducting radio-frequency
(SRF) system faults. During 2019, there were an average of
4.1 rf trips per hour, which translated to 58 min of beam

time lost to rf recovery each day. The time lost in the
experimental halls is effectively greater, since data are
discarded 30 sec before the trip and 30 sec after recovery.
The C100 modules, in particular, were responsible for
nearly a quarter of the downtime due to short trips across
all accelerator subsystems. Presently, the only operational
parameter that operators can change in order to reduce the
trip rate is the cavity gradient, which means that the trip rate
is inversely related to CEBAF’s energy reach. Ideally,
sufficient gradient overhead would exist to meet the
demands of both tolerable trip rates and desired energy.
In practice, there is little to no overhead, and a compromise
between trip rate and energy reach must be reached.
In order to better understand the nature and frequency of

these faults, we developed a new data acquisition system
(DAQ)—by taking advantage of the digital LLRF system of
the C100s—that simultaneously records waveforms of 17
different rf signals for each of eight cavities in a cryomod-
ule. This process is triggered when the LLRF system for
any cavity in the cryomodule detects a fault condition.
Typically, these waveforms are recorded at 5 kHz as
compared to the conventional archived signals (up to
10 Hz). The stored waveform data provide sufficient
resolution that, off-line, a subject matter expert (SME)
can identify which cavity faulted first and the type of fault.
However, in order to provide near real-time feedback to
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control room operators, an online system that utilizes
machine learning to automatically identify (i) the cavity
that faulted first and (ii) the type of fault was developed
and a prototype system implemented prior to the fall 2019
physics run. In this paper, we outline the development of
the various system components and report on initial results.
This represents a type of prognostics problem—a class
of problems particularly important for accelerator faci-
lities [3]. Indeed, similar work at other facilities, tar-
geting different machine subsystems and using different
techniques, shows the promising potential of machine
learning [4,5,6].
In Sec. II, we further motivate this work, and subsequent

sections describe the various components that comprise the
machine learning system. Specifically, Sec. III describes
the data acquisition system, Sec. IV discusses the off-line
analysis and the critical step of labeling the data, and Sec. V
details how the machine learning models were developed
and implemented into a framework for online use. We
conclude with results from the winter 2020 physics run and
discuss future work.

II. MOTIVATION

The cavities in a C100 cryomodule have strong cavity-to-
cavity mechanical coupling. When a cavity is turned off or
the gradient is reduced, the change in length due to Lorentz
force detuning leads to changes in the length of adjacent

cavities. These effects are exacerbated by the mechanical
resonances of the structure. The result is that, when one
cavity trips off, the remaining seven cavities are affected
with several likely to trip fromvibrational-induced detuning.
This leads to an operational problemwith the C100 cavities,
namely, answering the question “which cavity tripped first?”
Identifying the offending cavity with existing software and
hardware is difficult to do automatically, because secondary
faults occur with delays on the order of milliseconds. While
control room operators have access to the raw waveform
data that are captured during a fault, correctly interpreting
the signals requires a subject matter expert.
Developing machine learning models to automatically

label fault events would immediately reduce the burden on
SMEs and the time-consuming task of inspecting and
labeling data manually. Having a labeled dataset is of
interest at two different timescales. On the one hand, near
real-time results after a fault event provide guidance to
control room operators for appropriate responses (i.e., one
type of fault might necessitate a reduction in the cavity
gradient, while another type of fault may indicate a larger
problem and require intervention from system experts). On
the other hand, using the aggregate statistics and breaking
down faults according to cryomodule and cavity provides
data-driven guidance for maintenance and/or upgrade
activities. We have already reaped the benefits of this latter
kind of analysis. For example, postmortem analysis of fault
data from the fall 2018 physics run indicated three
cryomodules in the south linac (2L24, 2L25, and 2L26)
were particularly susceptible to microphonic-based faults.
This provided the impetus to perform microphonics hard-
ening (installing tuner dampers) on these cryomodules
during a down cycle. As a result, in the following physics
run, there was a reduction in microphonics-based trip rates,
thereby allowing gradients to be increased in those cry-
omodules as well [7]. In another instance, results of manual
fault classification uncovered a firmware bug which caused
false trips of a type which represented approximately 40%
of the faults. Additionally, results were used to monitor
electronic quench fault types to better understand if there
was a need to periodically thermally cycle C100 cryomod-
ules to room temperature. Thus, both postfault and postrun
analysis by a SME is valuable. At present, only the latter is
possible and is a laborious and time-consuming process.

III. DATA ACQUISITION

For each C100 cavity fault, the newly developed data
acquisition system synchronously acquires timestamps and
saves waveform records of 17 different rf signals from
each of the eight cavities in the cryomodule. The data
acquisition system is comprised of two primary compo-
nents, the LLRF and experimental physics and industrial
control systems (EPICS), along with a collection of high-
level applications. These two components work together
to generate and store the data for off-line analysis and

FIG. 1. Schematic of the CEBAF accelerator showing the four
experimental halls (A, B, C, and D) and indicating the locations
of accelerating sections. The north and south linacs are comprised
of 25 cryomodules each. The five most downstream cryomodules
of each linac are populated by C100s. The remaining two
C100s are located in the injector with one additional one in the
north linac.
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inspection. An Altera field programmable gate array
(FPGA) is the signal processing engine within the
Jefferson Lab 12 GeV rf field control chassis (FCC) [8].
A waveform harvester was developed to capture rf time-
series signals after a fault and write them to a file for later
analysis. Each of the 17 harvested waveform signals is
8192 points long. The trigger is set such that approximately
94% of the recorded data precede the fault and 6% after. For
standard sample rates of 0.20 ms per sample (5 kHz), this
yields approximately 1535 ms of data before the fault.
These prefault data provide valuable information about the
root cause of the trip. After the data have been written to
network storage, the harvester calls an external executable.
Currently, the executable runs the cavity and fault machine
learning models and uploads the information to a central-
ized database via a waveform-specific web service. Finally,
all waveform-related data are kept online indefinitely,
backed up to tape daily, and after 90 days are compressed
to reduce online storage (see Fig. 2).

IV. DATA ANALYSIS AND LABELING

Since deployment of the data acquisition system in early
2018, an SME has labeled several thousand fault events
from C100 cavities. That is, time-series signals from
cavities have been assigned corresponding labels indicating
the first cavity to trip off and the fault type.
The topic of label reproducibility by the SME will be

addressed more fully in Sec. VI; however, it is worthwhile
to provide additional background regarding the SME and
labeling process, in general. The SME has over 30 years of
experience working with SRF cavities and is uniquely
qualified to label cavity faults given his work in developing
cavity rf systems, diagnostic systems for cavities and
cryomodules, and for his SRF operational experience in
operational machines and off-line test environments at
Jefferson Lab and other facilities, along with his exper-
imental studies investigating cavity faults (i.e., arcing,
thermal quenches, and microphonics). He has been the

sole labeler for the project. For the very first labeling
exercise (spring 2018), only five fault types were identified.
After analyzing data from many hundreds of fault events in
subsequent running periods, three additional fault types
were identified, yielding the labeled dataset used in this
paper with eight fault types. Because we recognize addi-
tional fault classes may be required as more data are
collected and analyzed, future labeling efforts will include
an “other” category for events which do not naturally match
preexisting fault types.
For the results in this paper, we consider a dataset

comprised of faults recorded during CEBAF beam oper-
ations between January 18, 2019, and March 9, 2020. The
dataset contains a total of 2375 labeled, C100 cavity fault
events. Each event is comprised of 17 time-series signals
per cavity for each of the eight cavities in the cryomodule.
Each signal contains 1638 ms of data sampled at 5 kHz.
Details of each signal are listed in the Appendix A. Figure 3
shows the distribution of faults by cavity, where the labels
(1,2,3,4,5,6,7,8) correspond to unique cavity locations
within a cryomodule and (0) corresponds to instances
where all cavities fault, or were turned off, simultaneously.
Figure 4 shows the distribution of faults by type.
Possible fault mechanisms are Microphonics, Quench_

100 ms, Controls_Fault, E_Quench, Quench_3 ms, Single_
Cav_Turn_Off, Heat_Riser_Choke, and Multi_Cav_Turn_
Off. Readers interested in a detailed analysis of the time-
domain signals and the criteria used for labeling each fault
class are directed to Ref. [7]. Below, we provide a brief
description of our current best understanding of the mecha-
nism underlying each fault type.
A microphonics fault is cause by detuning of the cavities,

generally due to the vibrational modes of the cavity string.
Because of the geometry of the structure, the center of the
string has a stiffer constraint, and cavities 4 and 5 generally
have higher frequency shifts and often will trip first [9].

FIG. 2. A schematic showing the data generation and storage
systems. A fault at a cavity triggers data collection at that cavity’s
FCC input or output controller (IOC), and the fault trigger is
propagated to neighboring FCC IOCs associated with the
cryomodule.

FIG. 3. Histogram showing the distribution of fault events by
cavity identification. Numbers 1–8 correspond to unique cavity
locations within a cryomodule, and cavity 0 corresponds to
instances where all cavities tripped off simultaneously.
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The 100 ms quench fault (“Quench_100 ms”) is assumed to
be a thermal quench that is initiated in the end group which
is conduction cooled. Detailed analysis done as part of the
design process indicated that the propagation time was
100 ms [10]. In these events, the propagation of the quench
is characterized by a single cavity having a substantial
change in cavity frequency as indicated by a change in the
relative phase between the forward rf power and the cavity
field (known as the detune phase). A 3 ms quench fault
(“Quench_3 ms”) is similar in nature albeit with a faster
shift in detune phase or an uncontrolled 1% reduction of
cavity gradient with timescales on the order of 1 ms. Both
the 100 and 3 ms quench faults may exhibit variation in
their characteristic timescales; nevertheless, it is not so
large that one fault could be mistaken for the other. An
electronic quench fault (“E_Quench”) refers to an event
that involves a gas discharge in the cavity [11]. In these
events, the accepted theory is that electrons are stripped off
of gas molecules and accelerated by cavity fields. The
initiating mechanism has been, and continues to be, an area
of investigation [9]. In such events, the stored energy in the
cavity, as indicated by the measured gradient, is depleted in
times on the order of 10 μs, which is much faster than is
possible with a thermal quench. More than 95% of the
electronic quenches occur in cavities 1 or 8. Unlike other
fault types, an interlock fault (“Single_Cav_Turn_Off”) is
not characterized by a perturbation in the cavity rf signals
prior to turning off. Therefore, it is labeled through a
process of eliminating other fault types. These faults can,
however, be correlated to a machine interlock turning off a
single cavity (e.g., vacuum faults in the rf waveguides, arc
test faults, rf window temperature interlocks, and klystron
interlocks). Initially, classifying these events required

looking at supplemental data in order to corroborate the
suspected mechanism and, therefore, fault type. However,
once a fault type was correlated to specific conditions,
mining supplemental data was no longer necessary. A
control fault has two or three underlying mechanisms and
can be attributed to the controls. One example source of this
fault is a perturbation in the 70 MHz master oscillator
signal which is used in the cavity’s field control chassis.
Another common example is the several-kilohertz oscil-
lation in the rf drive signal which occurs when the control
loop phase offset is not set to the proper value. Heat riser
choke faults (“Heat_Riser_Choke”) occur when there is a
pressure transient inside the cryomodule which can effect
multiple cavities either as a microphonicslike frequency
fluctuation or as a slow drift [12]. Unlike a microphonics
perturbation which builds up over several hundred milli-
seconds, a heat riser choke typically causes cavity fre-
quency shifts that turn on in a stepwise manner. A
multicavity turn-off fault (“Multi_Cav_Turn_Off”) occurs
when all eight of the cavities are turned off simultaneously
with no prior major variation in the rf signals. Typical
drivers for such events are when the operators turn the zone
off, when there is a beam line vacuum fault, or when there
is a fault in the high-power amplifier, which is an eight-
klystron assembly.
To better understand the labeling process, consider an

example of a microphonics-induced fault. Microphonics
describes time domain changes in the frequency of an SRF
cavity, generally when the cavity has been perturbed
externally. For cavities that have a large loaded Q, changes
in length of a few tens of nanometers cause sufficiently
large frequency shifts that cause problems. Typically,
cavities will vibrate at the modal resonance frequencies
of the mechanical structure. For the C100 cryomodules, the
modes are the 9.5–10.5 Hz full string mode, 20–21 Hz half
string mode, individual 40–45 Hz mode, and the 80–90 Hz
tuner stack mode [13]. The cavity vibrations can also be
excited by external sources such as 120 Hz from a vacuum
pump which may be attached to the insulating vacuum
vessel. Exciting the structure at any of these modal
resonances amplifies the excitation and may cause the
cavity to trip.
The rf signal that indicates detuning is the relative phase

between the forward power and the cavity gradient signal.
In CEBAF controls nomenclature, this signal is labeled
DETA2. Figure 5 depicts the waveforms for a microphon-
ics-induced trip. As indicated by the DETA2 signal, the
structure was vibrating in the 10 Hz full string mode. As the
mode built up, the rf drive (GASK) and forward power
signals (CRFP) increase to compensate for the perturbation.
Eventually, the control loop drive voltage signal for cavity 4
reached its maximum value of 10 and the drive phase got
lost. In this instance, the phase was such that it drove the
cavity gradient down faster than the natural decay time
of the system. Once cavity 4 tripped off, the remaining

FIG. 4. Histogram showing the distribution of fault events by
type. The data represent a total of 2375 unique C100 cavity fault
events.
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cavities were switched into self-excited loop mode—a
standard protocol with the C100 cavities used to speed
up recovery from a trip.
This example illustrates both the domain knowledge

required and the laborious nature of labeling fault events by
hand. Waveforms associated with the other fault types
described in this section are given in Appendix B. While
this kind of postmortem analysis is valuable, automating
the process for real-time identification of the offending
cavity and classification of the fault type would give control
room operators actionable information to optimize C100
SRF performance.

V. MACHINE LEARNING MODELS

Machine learning is particularly well suited for appli-
cations requiring pattern recognition [14]. The problem we
are seeking to solve is one of sequence classification. More
specifically, since we are dealing with a series of inputs
over time, it is a problem of time-series classification. And
because we have labeled examples to train the model, this
represents a class of supervised learning. In this section, we
briefly outline how the models were developed.

A. Data preprocessing

The values in the raw signal waveforms exhibit large
variations (orders of magnitude) between cavities and
among signal types within a single cavity. To ensure that
the objective function will be well behaved and to encour-
age faster convergence rates for gradient descent, we apply
time-series standardization using the z-score technique on
each waveform. The z-score function is shown in Eq. (1):

Xnorm ¼ X − μ

σ
; ð1Þ

where μ and σ are the mean and the standard deviation of X,
respectively.

B. Feature extraction

The primary challenge for machine learning applications
utilizing time-series data is feature extraction, in which
statistical parameters (or features) are computed from the
raw data signals. These features serve as an intermediate
representation of the data and are used as model inputs.
In order to reduce the computational load, features are
computed for only four of the 17 recorded rf signals per
cavity. These four signals are (GMES, GASK, CRFP,
DETA2) and were identified by SMEs as having the
highest predictive power for both cavity identification
and fault classification. The GMES signal is the calculated
accelerating gradient in the cavity, GASK is a representa-
tion of a signal in the FPGA proportional to the rf drive
voltage, CRFP is the measured forward power, and DETA2
is the relative phase between the rf voltage applied to the
cavity and the electric field minus an offset phase (the offset
phase is set such that DETA2 is zero when the resonant
frequency of the cavity equals the machine reference
frequency). Note that we utilize this set of common features
for both cavity identification and fault classification mod-
els. In this configuration, we perform feature extraction
once for each event and maintain two independent classi-
fiers trained for each task using the appropriate class labels.
This strategy reduces the computational burden otherwise
required to handle independent pipelines for each task
separately.

FIG. 5. Waveforms for a microphonics-induced fault. The plots display the forward power (top left), detune phase angle (top right), a
digital signal proportional to the drive voltage (bottom left), and the measured gradient (bottom right). (Only four of the eight cavities are
plotted for clarity.)
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These features can be a set of derived properties from the
data that essentially convert the temporal classification to a
more amenable static classification task [15]. These inter-
mediate representations could be a set of simple statistics
such as mean and variance, skewness, kurtosis, largest
peak, and number of zero crossings [16]. More descriptive
features such as autoregressive coefficients [17], among
others, may be required to obtain a more discriminatory
representation of data. An autoregressive (AR) model is a
linear predictive model where the next value of a time series
is estimated based on previous values of the same time
series using linear regression [18]. For instance, estimating
xðtÞ based on xðt−1Þ is given as

xðtÞ ¼ φ0 þ φ1xðt−1Þ þ ϵt; ð2Þ

where φ0 and φ1 are regression parameters of the model
and ϵt is white noise. The model in Eq. (2) is regarded as a
first-order autoregressive model [e.g., AR(1)] as the current
estimate is based only on the previous value of the time
series. The accuracy of the estimates may change based on
the amount of historical data we use for the estimation with
higher-order AR modeling. A generalization of Eq. (2) for
an AR model with order k is given by

xðtÞ ¼ φ0 þ
Xk

i¼1

φixðt−iÞ þ ϵt: ð3Þ

There are many ways to estimate the best parameters φ
for a given AR model, such as linear least squares methods.
We utilize the ar_model.AutoReg [19] function in the
PYTHON-based “statsmodels” library for the AR-based
feature extraction scheme. This function estimates the
AR parameters φ using the ordinary least squares method
[18]. The process of fitting a ARðkÞ model to a given time
series results in a set of parameters, Φ ¼ fφ0;φ1;…;φkg;
that best characterizes the waveform. These parameters
become the features for our machine learning models. We
select an AR model order of k ¼ 5 to fit rf waveforms, as a
compromise between feature length and model perfor-
mance. This results in 192 features (eight cavities per
event × four signals per cavity × six features per signal) for
each fault event. The same features are used for both cavity
identification and fault classification tasks.

C. Model evaluation

Prior to training, we split the 2375 labeled events into a
train (70%) and test (30%) set with stratification to ensure
that the train and test sets have approximately the same
percentage of samples of each target class as the complete
set. We withhold the test data as the unseen data that we use
for the final model evaluations. A variety of classification
models from the scikit-learn [20] library were trained,
including k-nearest neighbors, decision tree, support vec-
tor, and Gaussian naive Bayes. We also included ensemble

models such as the bagging classifier, random forest, extra
trees, and gradient boosting. Ensemble methods are a
machine learning technique that combines several base
models in order to produce one optimal predictive model
[21]. The basic idea is to combine the predictive power of
many “weak learners,” and in doing so the error can be
dramatically reduced. For each model we use k-fold cross-
validation to estimate the performance, ensuring the test
data remain untouched. The idea behind k-fold cross-
validation is to use training data to generate multiple mini
train-test splits and use these splits to tune the model [22].
In standard k-fold cross-validation, the data are partitioned
into k subsets, called folds. The algorithm is iteratively
trained on (k − 1) folds while using the remaining fold as
the test set. Training all of the models as described required
less than 5 min of compute time on a laptop (Intel Core i7
processor). Figures 6 and 7 display results of training
models for cavity identification and fault classification,

FIG. 6. Boxplots showing accuracy scores from a tenfold cross-
validation analysis of several algorithms for cavity identification.
The blue line denotes the median, the box spans the interquartile
range (IQR), and the upper (lower) whiskers indicate values 1.5 ×
IQR above (below) the upper (lower) box boundary, with data
beyond the whiskers represented as open markers. Ensemble
models (four rightmost boxplots) exhibit the best performance.

FIG. 7. Boxplots showing accuracy scores from a tenfold cross-
validation analysis of several algorithms for cavity fault classi-
fication. The blue line denotes the median, the box spans the
interquartile range (IQR), and the upper (lower) whiskers indicate
values 1.5 × IQR above (below) the upper (lower) box boundary,
with data beyond the whiskers represented as open markers.
Ensemble models (four rightmost boxplots) exhibit the best
performance.
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respectively. The accuracy plotted on the vertical axis refers
to the ability of the models to reproduce labels given in the
training set data. Note that the ensemble models generally
outperform the others.

D. Model selection and hyperparameter tuning

The random forest classifier was chosen to model both
the cavity identification and fault classification because of
its good performance (see Figs. 6 and 7) but also for its
robustness against overfitting—a concern when dealing
with smaller datasets. The next step is to optimize the
model through hyperparameter tuning. Hyperparameters
are parameters that are not directly learned but rather are
passed as arguments to the constructor of the estimator
classes. Rather than do a manual search of the parameter
space, we invoke GridSearchCV to automate the process of
scanning over specified parameter ranges. Specifically, in
the case of the random forest, we scan (n_estimators,
criterion, and bootstrap). Once again, we avoid evaluating
the model on the test data and take advantage of tenfold
cross-validation to estimate model performance, thereby
keeping the test set as a truly unseen dataset for final model
evaluation. The hyperparameters corresponding to the best
accuracy score define the final model and are given in
Table I.

E. Performance metrics

There are a multitude of metrics that can be used to
assess the performance of classification models. Initially,
the tenfold cross-validation score (based on training data) is
compared with predictions from the withheld test set. In
particular, we want to avoid to overfitting, marked by a
cross-validation score being much greater than the accuracy
derived from test data. Table II summarizes the results and
indicates that overfitting, and the inability of a model to
generalize learning to data outside the training set, is
avoided.

F. Accessibility

Making data publicly available is necessary to drive
innovation and progress. In an effort to make data findable,
accessible, interoperable, and reusable [23], the featurematrix
(2375 instances × 192 features per instance) and associated
cavity identification and fault classification labels used in this
publication are publicly available [24]. Furthermore, to make
the data more accessible to nondomain scientists, we follow
the guidance put forward by Ref. [25] and provide an
associated datasheet as documentation. Likewise, the saved
random forest models are also available [26]. Analogous to
the concept of datasheets for datasets, we follow the recom-
mendations of Ref. [27] and provide a “model card” for each
model, which describes characteristics such as the type of
model, intended use cases, and performance metrics.

G. System implementation

Following a C100 cavity fault event, software automati-
cally collects rf signals, saves the data to disk, and passes it
to the machine learning models. The entire workflow is
summarized in Algorithm 1.

Algorithm 1. Machine learning for online cavity and fault
recognition.

(i) Initialization
(a) Import relevant libraries in Python
(b) Load trained classifier models for cavity identification and
fault classification
(c) Read in the rf signals for current instance

For each cryomodule:
(ii) Preprocessing

(a) Check for missing waveforms and missing cavities (data
not recorded)
(b) Select the four representative waveforms (GMES, GASK,
CRFP, and DETA2) from each cavity and aggregate
(c) Standardize each waveform using “z-score” method in
Eq. (1)

(iii) Feature extraction
(a) Fit an AR(5) [Eq. (3)] model to each of the 32 waveforms
(b) Extract the parameters Φ ¼ fφ0;φ1;…;φ5g from each AR
model and aggregate to form a 6 × 32 ¼ 192 feature vector

(iv) Inference
(a) Apply trained cavity identification classifier to feature
vector and obtain output
(b) Apply trained fault classification classifier to feature vector
and obtain output
(c) Aggregate output for each cryomodule

End
(v) Report
(a) Save and display machine learning results to the operators

The outputs are stored in a database and presented to
operators via a web-based rf waveform viewer. Results can
be presented in a table, downloaded as a comma separated
file, or plotted graphically (see Fig. 8). Offline, a SME
labels the event, and these labels are used to compare the
model performance and to add to the training data for
additional retraining in the future.

TABLE I. Results of hyperparameter tuning for each random
forest model.

Cavity identification Fault classification

n_estimators 300 800
Criterion gini gini
Bootstrap False False

TABLE II. Cross-validation and accuracy scores for each
random forest model. The accuracy scores were generated by
applying the model on the withheld test dataset.

Cavity
identification

Fault
classification

Tenfold cross-validation (%) 87.97� 1.81 85.52� 3.65
Accuracy (test data) (%) 87.94 87.66
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VI. RESULTS

Machine learning models were deployed online and used
to analyze C100 cavity fault events fromMarch 10 to March
24, 2020—until CEBAF operations ended prematurely due
toCOVID-19.During that two-week period, 312 fault events
were labeled by the machine learning models as well as a
SME. The models identified the first cavity to fault and the
type of fault with accuracies of 84.9% and 78.2%, respec-
tively. The performance of the cavity identification model is
consistent with the performancemetrics in Table II; however,
the fault classification model underperforms. The models
correctly predicted both the cavity and fault for 73.1% of
the cases.
While these accuracies provide a general sense of how

well the models are performing, a more insightful metric for
classifier performance is the confusion matrix. A confusion
matrix summarizes the percentage of correct and incorrect
predictions by class. It provides an intuitive visualization for
which classes are mislabeled (where the model is “con-
fused”), thereby providing insight not only into the errors
being made but, more importantly, the types of errors being
made. A perfect model would show 0% on all off-diagonal
elements and 100% along the diagonal. Figures 9 and 10
show the confusion matrix for the cavity and fault model,
respectively. The precision and recall tables, another useful
metric, particularly for imbalanced datasets, are given in
Appendix C.
Several observations are immediately apparent: (i) The

cavity model has particular difficulty identifying cavities 3
and 7. This is not surprising, as these two cavities are the
least represented in the training data (see Fig. 3). (ii) The
fault model was unable to correctly classify heat riser choke
faults. Similar to the previous point, this fault has the
smallest number, by far, of training examples (see Fig. 4).

However, there are additional reasons for the model’s
confusion with regard to this particular fault that will be
discussed below. (iii) The fault model is easily confused by
controls faults. Discussions with a system expert confirm
that, with a few exceptions, it is typically difficult to under-
stand the underlying mechanism of controls faults from the
waveform data. This confirms that, when the labeling is
difficult, not surprisingly, it is often reflected in poor model
performance. (iv) During the two-week model testing in
March, therewere several clusters of eventswhere themodels
performed poorly and that warranted closer inspection.
These are discussed briefly below. (v) During the evening
of March 16, eight heat riser choke faults were identified in

FIG. 8. Partial screenshot showing a graphical summary of machine learning model predictions. Each plot window provides
information about the number of faults for an individual cryomodule (vertical axis). Fault types are color coded and displayed for each of
the eight cavities (horizontal axis).

FIG. 9. Confusion matrix showing performance of the deployed
cavity identification model on 312 fault events compared to the
labels provided by a subject matter expert.
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cavity 2 in cryomodule 1L23, which the fault model failed to
correctly label. These are relatively rare fault types, and
having a succession of them over a period of just a few
hours represents anomalous behavior. On closer examination
of the raw waveforms, the multiple faults are a product of
operators not allowing the rf system sufficient time to settle
from the previous fault before trying to recover the cavity.
Furthermore, the cavities that exhibited the characteristics
of a heat riser choke (cavities 2 or 3) were not the cause of
excess heat. Rather, itwas a thermal quench of cavity 1which
occurred several minutes earlier. The poor model perfor-
mance may be attributed to the fact that the characteristics of
the heat riser fault while recovering the cavity (as opposed to
the event occurring during normal beam operation) were not
well represented by the already limited training data for this
fault type. (vi) On March 18 at 8:02 a.m., all of the C100
cryomodules tripped off simultaneously. This highly unusual
event was quickly correlated to a central helium liquefier
(CHL) compressor configuration change. In this case, the
machine learning cavity model failed to identify the correct
cavity for each cryomodule trip. However, this is to be
expected, as theCHLevent created conditions in themachine
that were not represented in the training data and, therefore,
the model struggled. (vii) It is worth noting that, if these
events are neglected, the cavity model accuracy increases
to 86.6%.
Of the 312 events, therewere 84 instanceswhere themodel

disagreedwith the labels (either with the cavity identification
and/or the fault classification). These events were combined
with 84 random events where the model agreed with both
labels and submitted to a SME for relabeling. The accuracies
of the models assume the labels are ground truth, yet we
know there are errors associated with labeling. This was a
blind test in that theSMEwasnot given information about the

previous labels. The results of the exercisewere illuminating.
Of the 84 events where the model predictions matched the
initial labels, after relabeling by the same SME, of the 168
labels (84 events × two labels per event) only two were
labeled differently. On the other hand, of the 84 events where
the model predictions differed from the initial labels, the
SME relabeled 58 of the 168 labels differently. This result
underscores the fact that labeling for this task is difficult. It
requires significant experience and intuition about SRF
cavities operating with a beam to understand the complex
physical mechanisms that give rise to the data collected. And
even then, faults can manifest themselves in subtle, but
different, ways depending on details of the operating con-
ditions which can vary from run to run and even day to day
(i.e., vacuum conditions, gradient distribution, beam loss
patterns, and field emission).
When the new labels are compared to themachine learning

model predictions, we find that the agreement significantly
increases. Table III summarizes the accuracies of eachmodel
with each set of labels, original and relabeled. Because only a
subset (168 out of 312) of the eventswere relabeled,wemake
the assumption that events not relabeled (all of which agree
with the models) would remain unchanged. This is reason-
able given the 98.8% agreement of the SMEwhen relabeling
events where the model agreed the first time.
As a result of the relabeling, the models more closely

approach their anticipated performance (Table II). How-
ever, more fundamentally, we find that when the models
struggle it is because the subject matter expert struggles.
This is not surprising. If the SME is less certain about
particular kinds of events, it will manifest itself in the
training data and, therefore, what the model learns. The
model is only as good as the training data it is exposed to.
While the aim is to develop machine learning models

with accuracies as high as possible, it should be empha-
sized that, for this to be a valuable tool for machine
operators, the current level of performance is perfectly
acceptable. The system provides near real-time information
about C100 cavity faults that was previously unavailable.
Operators and system experts alike will utilize the infor-
mation presented to look for trends over time that would
necessitate a change in a cavity or cavities. In other words,
the effectiveness of the system does not depend on the
ability to accurately classify a single, standalone event.
When the models report consistent trips from the same

cavity in a cryomodule and of the same fault type, this
suggests that intervention by an operator or system expert is

TABLE III. Model accuracies as computed for the original set
of labels and after a subset of events—including all that disagreed
with the models—had been relabeled.

Original Relabeled

Cavity identification 84.9% 88.1%
Fault classification 78.2% 82.4%
Both 73.1% 78.2%

FIG. 10. Confusion matrix showing performance of the de-
ployed fault classification model on 312 fault events compared to
the labels provided by a subject matter expert.
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appropriate. Machine learning model predictions from the
two-week physics run clearly point to several cavities that
required attention (for this initial test, machine learning
predictions were not presented to operators). The cavity
identities, fault types, and suggested interventions are sum-
marized in Table IV. Together, these four cavities accounted
for 19.6% of the faults during the physics run. Applying the
appropriate intervention would have had a measurable effect
on beam availability to users.

VII. FUTURE WORK

Initial experience with a prototype machine learning
system has provided insights into opportunities to further
advance this work. These include: (i)Continue to collect and
label data.—In particular, retraining the models with addi-
tional data for cavities and fault types that are not currently
well represented is expected to increase accuracy. (ii) Use
unsupervised machine learning techniques to identify fault
types.—At present, a SME determines the fault classes.
Therefore, when presented with an unfamiliar pattern in the
data, it raises the question ofwhether it is a variant of a known
fault type or if it represents a completely new fault type.
Invoking clustering algorithms [28] may provide a data-
driven method for identifying the number of fault types
represented in the data and potentially reveal new fault types.
(iii) Replace current machine learning models with their
deep learning counterparts.—Deep learning is a subfield of
machine learning which is based on learning successive
layers of increasinglymeaningful representations of the data.
The primary advantage of methods based on learning data
representations is that it avoids the computationally costly
feature extraction step, thereby bypassing a bottleneck in our
current workflow. Rather than explicitly compute features,
the recorded data serve as the input, and the model learns the
necessary features for inference. (iii) Initial studies suggest
machine learning can extract information in the signals
preceding the fault for prediction, such that it may be
possible to design future SRF cavities and their associated
control systems with the ability to react quickly enough to
avoid the fault altogether [29]. A natural extension of this
work is to develop a data pipeline, workflow, and models to
stream continuous C100 rf data and provide real-time
predictions for impending faults. This represents a critical
step toward developing systems that could anticipate and
then apply corrective actions to avoid the fault.

VIII. SUMMARY

We have described an implementation ofmachine learning
models at CEBAF to automate the task of classifying C100
SRF cavity faults. The success of these models is a direct
consequence of collecting the appropriate data. The impor-
tance of having the right data, at the right time, cannot be
overemphasized. This would not have been possible without
the capabilities of a digital LLRF system, together with a
specially developed data acquisition system. Significant
investment was necessary to get a functional DAQ, requiring
the coordinated effort of multiple groups at the lab. Our
experience suggests that, for the potential ofmachine learning
to be fully realized at accelerator facilities, revisiting how and
when data are recorded may be required [e.g., modifications
to underlying control software to gather data in a way that
makes it amenable to machine learning (ML) [30] ].
In addition to collecting information-rich data, an equally

important contribution was the process of analyzing and
manually labeling the data. Although time consuming, the
labeling task is an effective way to identify trends and to
strategically deploy mitigations to problematic cryomodules
and to implement design changes in interlocks. By leverag-
ing machine learning to automate this process, we now have,
for the first time, that information available in near real-time.
The next physics run will provide an opportunity to

translate model predictions to actionable information for
machine operators. For instance, establish a list of guidelines
that connects model predictions with operator actions (e.g.,
“if fault typeX happensY times in the nextZminutes, reduce
cavity gradient by N MV=m”). This represents the natural
next step for this work; however, initial efforts were
hampered by the premature shutdown of CEBAF. In prin-
ciple, this could be automated in software; however, it is
important in this nascent stage of development for operators
to gain trust in the machine learning system and allow a
human operator to take the decisive action. To this end, we
prefer the phrase “augmented intelligence” (rather than
“artificial intelligence”) to describe the ML models, which
serves to emphasize that they provide information on time-
scales that were previously not possible, in order to guide
human decision making.
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APPENDIX A: RF SIGNALS AND DESCRIPTION

Table V gives a list of the 17 rf signals recorded by the
waveform harvester during each C100 cavity trip, along
with a brief description. The four signals used for feature
extraction and subsequent training of the machine learning
models are (GMES, GASK, CRFP, DETA2).

APPENDIX B: WAVEFORMS OF CAVITY
FAULT TYPES

Here we include waveforms of the other seven fault types
to complement Fig. 5 (microphonics-induced trip). They
are: controls fault (Fig. 11), electronic quench (Fig. 12),
heat riser choke (Fig. 13), 3 ms quench (Fig. 14), 100 ms
quench (Fig. 15), single cavity turn-off (Fig. 16), and multi-
cavity turn-off (Fig. 17). Refer to Section IV for a
description of the underlying mechanism of each. The
black trace in each plot corresponds to the cavity that
faulted first, with the exception of the multi-cavity turn off
(Fig. 17) wherein all cavities trip simultaneously. The fault

TABLE V. List of the 17 rf signals recorded during a cavity trip along with a brief description of each.

Signal name Description

IMES Probe in phase voltage magnitude [analog-to-digital converter (ADC) counts]
QMES Probe quadrature voltage magnitude (ADC counts)
GMES Measured gradient (MV/m)
PMES Measured phase (degrees)
IASK Drive signal in phase voltage magnitude (ADC counts)
QASK Drive voltage quadrature voltage (ADC counts)
GASK sqrtðIASK2 þ QASK2Þ × ð10=ADCmaximumÞ
PASK tan−1 ðIASK=QASKÞ
CRFP Forward power (kW)
CRFPP Forward power measured phase (degrees)
CRRP Reflected power (kW)
CRRPP Reflected power phase (degrees)
GLDE Gradient error (MV/m)
PLDE Phase error (degrees)
DETA2 Detune angle (CRFPP−PMES−TDOFF)
CFQE2 Cavity frequency error (degrees)
DFQES Discriminator frequency error

FIG. 11. Waveforms for a controls fault. The plots display the forward power (top left), detune phase angle (top right), a digital signal
proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted for
clarity. Note that the scale of the horizontal axis has been modified to begin 400 ms before the fault event.
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FIG. 12. Waveforms for an electronic quench. The plots display the forward power (top left), detune phase angle (top right), a digital
signal proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted
for clarity. Note that the scale of the horizontal axis has been modified to begin 200 ms before the fault event.

FIG. 13. Waveforms for a heat riser choke fault. The plots display the forward power (top left), detune phase angle (top right), a digital
signal proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted
for clarity.
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FIG. 14. Waveforms for a 3 ms quench. The plots display the forward power (top left), detune phase angle (top right), a digital signal
proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted for
clarity. Note that the scale of the horizontal axis has been modified to begin 100 ms before the fault event.

FIG. 15. Waveforms for a 100 ms quench. The plots display the forward power (top left), detune phase angle (top right), a digital signal
proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted for
clarity.
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event occurs at t ¼ 0 ms and unless noted otherwise, the
horizontal scale has been cropped to start 800 ms before,
and extend 100 ms after, the fault.

APPENDIX C: PRECISION AND
RECALL TABLES

Tables VI and VII display the precision and recall
tables for the cavity identification and fault classification

models, respectively. These are useful metrics, particu-
larly for imbalanced datasets, and complement the con-
fusion matrices in Figs. 9 and 10. Precision gives the
fraction of positive events that were predicted correctly
and is given by the ratio of true positives to the sum of
true positives and false positives. Recall is the fraction of
positive instances that are correctly detected and is given
by the ratio of true positives to the sum of true positives
and false negatives.

FIG. 16. Waveforms for a single-cavity turn-off. The plots display the forward power (top left), detune phase angle (top right), a digital
signal proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted
for clarity. Note that the vertical scale of the GASK signal has been modified.

FIG. 17. Waveforms for a multicavity turn-off. The plots display the forward power (top left), detune phase angle (top right), a digital
signal proportional to the drive voltage (bottom left), and the measured gradient (bottom right). Only four of the eight cavities are plotted
for clarity. Note that the vertical scale of the GASK signal has been modified.
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