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Motivation

rubber + compression

time

ooy 4 T

0-ring failsl

best case:
damaged electronics

~ O-ring cross-sections

| ned aged 15 years worst case:
KT Gillen
Challenger blows up




Map

rubber
elasticity

T
D
_—_—
problem




Rubber Elasticity (Atomistic)

Networks carry stress

Fel _ E - '}2
kBT 2 chains _<r;‘2>0

&) crossining

Changes in the average chain dimensions affect the stress



Rubber Elasticity (Continuum

G= material-specific modulus p~hydrostatic pressure

Changes in sample dimensions affect the stress

stretched sample. [T )
_ 4 entropic effect




Map

rubber

elasticity

?




Goal: Predict Material Properties for Engineering Applications
-

atomic

oxygen

solution nanoscopic

macroscopic ,
reaction

— diffusion

mesoscopic

Good predictions at the macroscopic level require
knowledge of chemistry and physics at smaller levels!



Problem: Processes of Interest SEan Multigle Scales

Hierarchical Approach
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Angstrom Distance Meters



Strategy

years

MD Simulations

Time

Coarse-Grained Model
Controlled Reactions

Controlled
Deformation History

Stress Contributions
Crosslinks
Entanglements
Stress Transfer

Empirical
force fields

10 %5s

ab initio,
DFT,
HF

Angstrom Distance Meters

-450 MPa
Constitutive -350
Model 250
Finite Element -190
Calculations - 50
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Coarse-grained polymers
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MD sttem SEecifics

500 chains, 500 sites each, 20 reactive sites/chain

p=085 SlteS/VO|Ume B 7
T°=1.0 .

. Equilibrate
. React

. Equilibrate
. Deform

. Equilibrate
. React

. Equilibrate
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Stress from MD

Calculate stress components from pressure components
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Independent Network prothesis

Crosslink second network

Crosslink first network

stress=0

Stress ohly from
first network

Reaction and strain histories are coupled



Intermittent: hold unstrained,
periodic check of strained stress

Experimental Data for INH
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Permanent Set from MD

Uniaxial extension
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Slip-tube mode
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Entanglements

Trapped entanglements also contribute to stress



Independent Network Hypothesis (Revisited)

Crosslink second network Scission first network

Crosslink first network

stress=0

Stress only from Stress from both first
first network and second networks

Sample retains memory of crosslinking and strain history



MD Simulation with Scission
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General Constitutive Model

crosslinks entanglements

W(A2,.2,) = éwc(v,fﬁ,ax//xxk,x [ g g 1 D | HW, (Vi A 2y 2,
| e B
oS80 ) 3o S Rubinstein Panyuke

stress transfer functions

Flory Trans. Faraday Soc. 56, 722 (1960)
Fricker Proc. R. Soc. Lond. A. 335, 267 (1973)

P stage i crosslinks removed in stage |
" total number of crosslinks added up through stage j

Use independent network hypothesis to formulate strain energy.
Use common form of principal stretches.



Entanglement Network

Sample most likely between 30% and 300% of original dimensions

Slip-tube model - : y
computationally demanding fit strain energy Uig g;s;lg?é ZJE[;QSZE
for arbitrary strain for expected deformations
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Rubinstein,Panyukov
Macromolecules 35, 6670 (2002)

MD shows that only first stage networks trap entanglements




Comparing W to Experiment
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Strain energies were fit to 0.3 <{A,,\,,A,} <3 (arbitrary deformation)
Good agreement found between prediction and experiment
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Finite Element

Final stress 80% higher using ® JEEIctER stage 2 stage 3
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Simultaneous Crosslinking and Scission
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Relative rates of scission and crosslinking

make a large difference in the resulting stress




rubber
elasticity




Experimental Kinetics

Butyl o-rings with accelerated aging

; g Predicted results (75 kJ extrapolation) at 23°C, years
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Gillen et al. Polym. Degrad. Stab. 82, 25 (2003)

Arrhenius relation changes slope at moderate temperature




Future Work

Kinetic data

years

Time

10-15

possible
difficult With

to obtain

Angstrom Distance Meters

parameterize

with polypropylene




Summar

Rubber Elasticity
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future work

e crosslinks

e entanglements

e coupled strain-reaction
histories



