

Stochastic Dynamical Systems: Spectral Methods for the Analysis of Dynamics and Predictability

Bert Debusschere, Habib Najm

Sandia National Laboratories, Livermore, CA

Olivier Le Maître

Université d'Evry, Val d'Essonne, France

bjdebus@sandia.gov

Supported by the DOE office of Mathematical,
Information and Computational Sciences

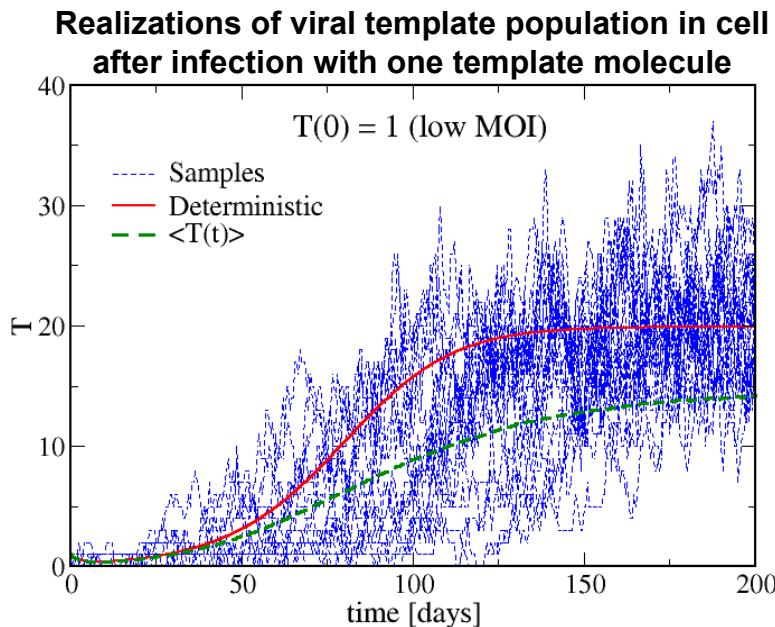
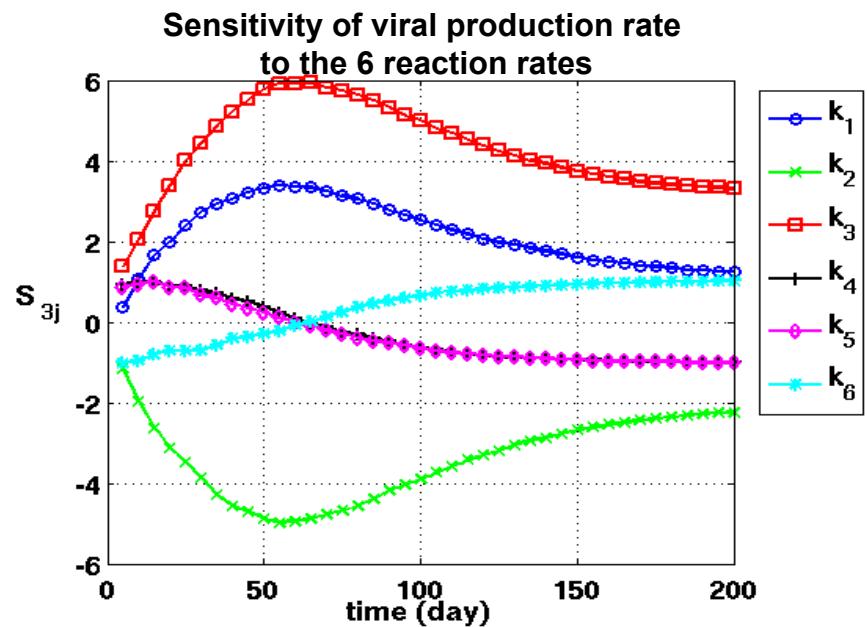
New methods are required to analyze stochastic dynamical systems.

- Stochastic effects prevalent in many nanoscale phenomena
 - Gene Regulatory Networks
 - Interfacial chemistry (e.g. fuel cell catalytic reactions)
- Challenges with analysis of stochastic dynamical systems
 - Dynamics inaccessible with conventional deterministic methods
 - Robustness under inherent noise
 - Presence of significant parametric and model uncertainty
- We are developing spectral analysis methods for stochastic reaction networks
 - Sensitivity analysis based on non-intrusive spectral projection (NISP) method adapted from Uncertainty Quantification
 - Reduced order modeling and dynamical analysis based on Karhunen-Loève decomposition

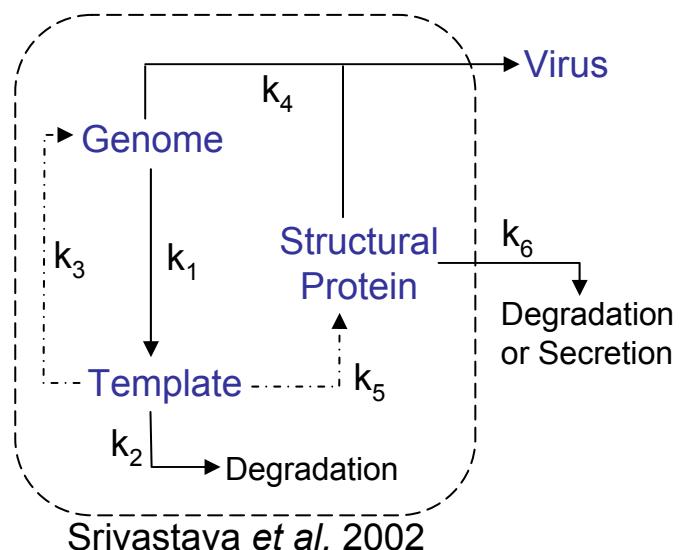
Spectral parametric sensitivity analysis in stochastic dynamical systems through response functions

- For the process $\mathbf{X}(\lambda)$, identify observables Y_i of interest
- Prescribe appropriate perturbations to the λ_j of interest
- Propagate perturbations through the stochastic process to get response function $Y_i(\lambda_j)$
 - Non-Intrusive Spectral Projection (NISP) method based on Polynomial Chaos (PC) expansion methodology
 - Relies on numerical integration using samples of observables at quadrature points
 - Allows efficient massively-parallel evaluations
- Obtain sensitivity from this response function
- Readily extensible to predictability analysis

Application to viral kinetics model



- Intracellular kinetics of a model non-lytic virus
- Deterministic models do not account for failed infections
- Viral production most sensitive to genome production (k_3) and viral template decay reactions (k_2)



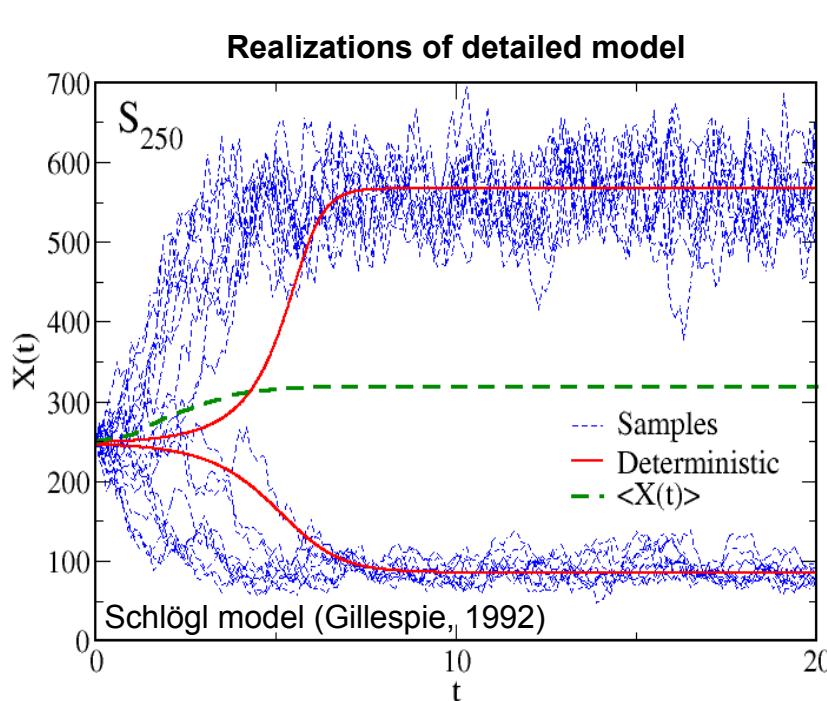
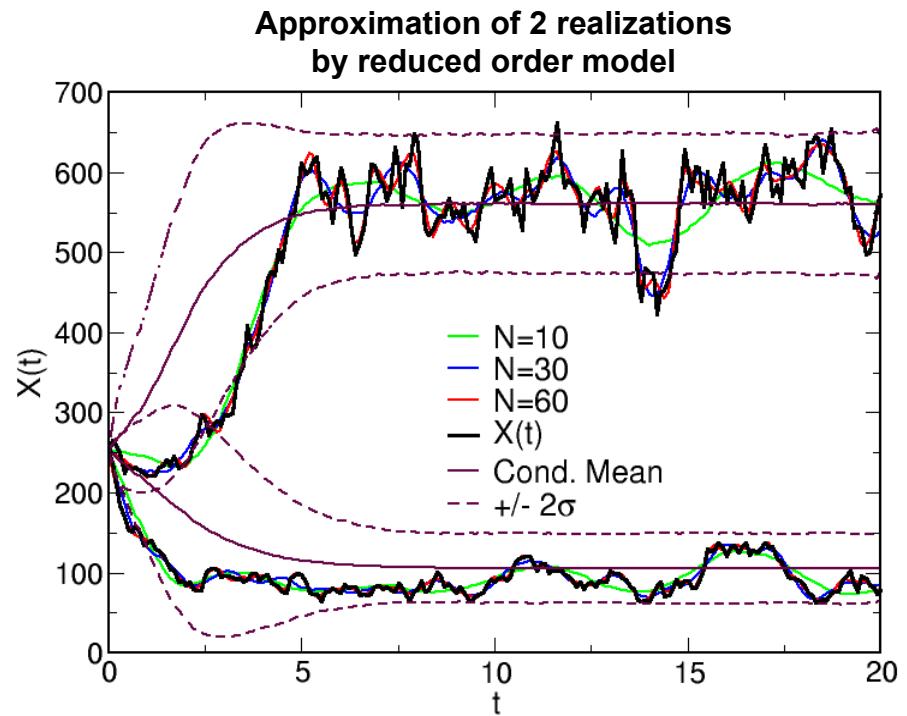
Spectral decomposition for reduced order modeling and dynamical analysis

- Behavior of system state $X(t, \omega)$ is a stochastic process
- The Karhunen-Loève (KL) decomposition represents $X(t, \omega)$ in terms of the eigenfunctions of its covariance function

$$X(t, \omega) = \langle X \rangle + \sum_{k=1}^{\infty} \sqrt{\lambda_k} X_k(t) \xi_k \quad t \in [T_0, T_1]$$

- $X_k(t)$: orthonormal eigenfunctions of the covariance function
- λ_k : corresponding eigenvalues
- ξ_k : uncorrelated, zero-mean, unit-variance random variables
- Covariance function obtained from sampled system trajectories
- “modes” $(\lambda_k)^{1/2} X_k(t)$ contain essential process information

Reduced order modeling of bi-stable system



- Prototype model for bi-stable systems such as biochemical switches
- Bifurcation point at $X \approx 250$ in deterministic system
- The Karhunen-Loève decomposition with 10 modes represents the large scale dynamics of the system well