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New methods are required to analyze stochastic 
dynamical systems.
New methods are required to analyze stochastic 
dynamical systems.

• Stochastic effects prevalent in many nanoscale phenomena
– Gene Regulatory Networks
– Interfacial chemistry (e.g. fuel cell catalytic reactions)

• Challenges with analysis of stochastic dynamical systems
– Dynamics inaccessible with conventional deterministic methods
– Robustness under inherent noise
– Presence of significant parametric and model uncertainty

• We are developing spectral analysis methods for stochastic 
reaction networks
– Sensitivity analysis based on non-intrusive spectral projection (NISP) 

method adapted from Uncertainty Quantification
– Reduced order modeling and dynamical analysis based on 

Karhunen-Loève decomposition



Spectral parametric sensitivity analysis in stochastic 
dynamical systems through response functions

• For the process X(λ), identify observables Yi of interest
• Prescribe appropriate perturbations to the λj of interest
• Propagate perturbations through the stochastic process 

to get response function Yi(λj)
– Non-Intrusive Spectral Projection (NISP) method based on 

Polynomial Chaos (PC) expansion methodology
– Relies on numerical integration using samples of observables 

at quadrature points
– Allows efficient massively-parallel evaluations

• Obtain sensitivity from this response function
• Readily extensible to predictability analysis



Application to viral kinetics model

• Intracellular kinetics of a model non-lytic
virus

• Deterministic models do not account for 
failed infections

• Viral production most sensitive to genome 
production (k3) and viral template decay 
reactions (k2)

Realizations of viral template population in cell 
after infection with one template molecule
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Sensitivity of viral production rate
to the 6 reaction rates



Spectral decomposition for reduced order modeling 
and dynamical analysis
• Behavior of system state X(t,ω) is a stochastic process
• The Karhunen-Loève (KL) decomposition represents 

X(t,ω) in terms of the eigenfunctions of its covariance 
function

– Xk(t) : orthonormal eigenfunctions of the covariance function
– λk : corresponding eigenvalues
– ξk : uncorrelated, zero-mean, unit-variance random variables
– Covariance function obtained from sampled system trajectories

• “modes” (λk)1/2Xk(t) contain essential process information
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Reduced order modeling of bi-stable systemReduced order modeling of bi-stable system

• Prototype model for bi-stable systems such as 
biochemical switches

• Bifurcation point at X ≈250 in deterministic system
• The Karhunen-Loève decomposition with 10 modes 

represents the large scale dynamics of the system well

Approximation of 2 realizations
by reduced order modelRealizations of detailed model

Schlögl model (Gillespie, 1992)
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