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Micro- and nano-scale devices can 
revolutionize engineering

Manufacturing micro-scale devices      
may require nano-scale assembly

But...such small scales challenge 
conventional engineering approaches

• Unexpected physical behaviors

• Experiments are difficult

• Intuition is suspect

• Can’t just scale down from macro-
scale

A bottom-up approach is required -
micro- and nano-enabled solutions

Profound implications for engineering 
education in the 21st century

“There’s plenty of room at the bottom.”
– Nobel Laureate Richard P. Feynman, 1959
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Physical Models Must Change as      
Length Scales Shrink

Moving from macro to micro to nano

– Gravity is overcome by adhesion   
(van der Waals, electrostatic)

– Surface and interfaces are critical

– Friction models break down

– Solids melt at lower temperatures

– Transport models break down

– Quantum effects emerge

– Ballistic transport of energy

– Increasingly coupled physics 
leads to highly nonlinear 
behavior

Modeling & simulation must play an 
integral role in system design

Scale changes above by a factor of ~105 -
between 1 meter and 1 nm is 109

View from the World to Sandia Labs



Welcome to the Noncontinuum World

Macro-scopic World Built from 
Smaller Constituents

• Gas transport by molecules

• Heat transport by phonons

Continuum World View

• Average over space

• Average over time

• Much of engineering science 
built on these assumptions

Micro- and Nano-Worlds

• System length scale shrinks 
to molecular scales

• Discrete physics important

• Example: gas molecules collide 
with walls more often than each 
other
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Macroscale surfaces have many 
contacting asperities – real 
contact area scales with load

Friction Behavior at the Micro-scale 
Depends on Discrete Contacts 

Single asperities friction exhibits 
effect of molecular interactions 

Measured Distribution of Summit Heights

No oxidation:  2.7 nm rms roughness 600 Å oxidation : 11.3 nm rms roughness)
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On the microscale, relatively 
small number of asperities 
interact - outliers initially 
dominate.
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Gas Damping Critical to Structural 
Response at the Micro-scale

Microscope

Resonance is 
high at 60 mTorr

but low at 
640Torr

Small gas gaps between structures 
and substrate generate large squeeze-
film effects...

Dynamic testing is challenging due 
to small time and length scales in 
controllable environments

Gas damping can change by orders of 
magnitude and exhibit strong pressure-
dependent nonlinearities

Fluid-structure interactions can be 
tailored for low losses or shock-
hardening of components

CPW Signal
Line Contact

Ground 
Resistor

Anchor Metal Contacting 
Switch



Fluid Response Dominated by 
Noncontinuum Effects

Time snap-shots using 2-D  
Direct Simulation Monte Carlo
24-hours on 8,000 processors!

Molecular mean free path  (~0.1 m at 
ambient) comparable to gap between 
beam and substrate  (~2 m)

Transient noncontinuum flows are 
modeled using individual molecules with 
probabilistic framework



Think Discretely…

Gas Motion – Noncontinuum
Continuum models predict no flow!

Microscale heat transfer involves discrete “particles” 

• Molecules in gases and phonons in solids travel ballistically 
• Noncontinuum behavior, qualitatively different from macroscale 

Beam Temperature Predictions Continuum = 750 
K, Noncontinuum = 900 K

Microscale Thermal Actuator
Beams move shuttle under resistive heating

Model of Heated Beam and Gas
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A Growing Reliance on
Simulation and Science in Engineering

Forensics

Exploration

Improved 
Performance

Innovative 
Solutions

GOAL: Transform component design with 
micro-scale enabled modeling and 
simulation and collective innovation

Silicon Switch RF Switches

Micro-Mirror

Optical Switches



MEMS Design Challenges

Conventional Production Process Relies 
on  Cast, Cut, Shape, Assemble in 3-D

MEMS Production Based on Deposit,  
Polish, Pattern, Etch, Repeat…in 2.5-D

MEMS production is an automated 2 month process, so model-based 
design verification is essential prior to initiating fabrication.

Process Resolution

•Line Width 1m +/- 5%

•Film thickness 1.5-2.25 m +/-15%

•Surface Roughness 3-7nm rms

•Sidewalls Roughness 10-20 nm:



Early MEMs Used Iterative 
Development Cycle

Hardware-intensive test cycle used to optimize 
the micro-engine – an early MEMS product

Debris caused poor reliability

Little understanding of wear mechanisms 

Drove research into micro-scale science and 
engineering!

10 mRubbing Surfaces

Debris

Before

After 477,000 cycles 



SiRES – Silicon Reentry Switch

Set Point Distribution (nominal 12g)
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Late-cycle use of modeling and 
simulation to optimize g-switch 
design (still top-down)

Low damping and process uncertainty 
led to poor performance – earlier use of 
modeling would have helped!

Unit-To-Unit Variation

First demonstration of micro-scale 
enabled modeling and simulation for 
late-cycle design optimization



RF Switch for Long-Life and
Low-Loss Band Shifting 

High velocity closure resulted in long 
settling time and limited life time

Multi-physics and robust optimization 
using uncertainty models used to reduce 
settling time by 85% and increase life 
time by two orders of magnitude!

Dramatic design improvements –
additional gains possible by bottom-up 
approach to redesign based on coupled 
fluid-structural dynamics…



Nanoscale Grating 
Enables Nano-G Accelerometer

5 m

50 
nm

incident 
light

Carr et al., 
SNL

Light reflected off array is 
modulated by in-plane motion 
of grating

Enables extremely sensitive 
position detection: 160 fm/Hz1/2

Scientific concept has been turned       
into a nanoG accelerometer device              

(with target 40 nG sensitivity)



Nano-particle Assembly

• Disperse nanoparticles in films, fibers, monolithic bulk 

structures for material engineering

• Fluidization in liquid followed by traditional processing 

techniques (coating, casting, spinning) allows control of 

nano-building blocks at the macro-scale 

• Modeling and simulation of flow of dense suspensions to 

build process understanding and control

Championed consortium with industry for modeling and simulation R&D

rR

Dispersion Stability: 
melting of a bi-disperse lattice of nanoparticles

Dispersal and Flow Coating into Functional Films



New Micro-scale Motor Designs
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Moving to the microscale increases 
importance of surfaces, allowing 
new actuator designs

Nanotractor relies on electro-
static attraction between 
closely separated surfaces



Satellite Component Temperature 
Control with MEMS Louvers

2592 SUMMiT V™ Die 
w/ Buried Interconnects

4x4” Johns Hopkins/APL
Thermal Regulator

3 NASA/Goodard
ST5 Microsats

Launced 3/22/06

Experimental 
satellites monitor 

space weather

"This is the first time a fully 
space-qualified device of this 
type has ever been flown, and 
the first to be flown on the 
outside of a satellite.“

- Ann Darrin 

Applied Physics Laboratory Program Manager



Summary

• Micro- and nano-scales introduce 
complex physics 

• Need ground-up approach that 
takes advantage of micro-scale 
physics 

• Provide “micro-enabled solutions”

• Need “scale aware” modeling tools

• Modeling included as integral part 
of product realization cycle

• A new breed of engineer requires 
rethinking of engineering 
education
• Multidisciplinary

• Multiscale

• Collaborative teams

MESA

Optimized 
MEMS Devices


