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| ' uChemLab™

Hand-held chemical analysis system that uses three microfabricated stages.
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- ‘ Chemical Selectivity at Each Stage is Driven by Phase
Partitioning of Analytes

« Partitioning between phases is driven by difference in Gibbs free energy of the
molecules in each phase — but ignore kinetics at your own risk!

K=C/C, = exp[-AG/RT]

Where Cs = Concentration in surface coating
Cv = vapor concentration

AG, = Gibbs free energy of solvation in coating
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Preconcentrator

Thermally Isolated Heater Provides Rapid and Low Novel Sol-Gel Techniques Provide Thin

Power Thermal Desorption of Analyte Collected Film Adsorbents with High Uptake and
into Thin Film Adsorbent Chemical Selectivity
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Rapid Thermal Desorption from
Micromachined Preconcentrator

Tailored Surface Chemistry
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‘ Planar Preconcentrator: Example

Carboxen/PDMS coating on planar
PC

Target compound exposure, FID
detection

Desired preconcentration: ~1000x
Results:

« “Best” preconcentration at lower
loading concentration

« Preconcentration effectiveness
can vary by orders of magnitude at
nearly constant concentration,
depending on operating
parameters
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' Improving the micro Preconcentrator

E Beam Spot Magn WD ———— 1mm v
00kV 30 2bx 17.3 Saffron SA4-01 5/4/04 4

» Microfabricated structures can be designed to increase capture efficiency
and adsorption capacity, while matching flow impedance to micro GCs.

* These low thermal mass structures are combined with high surface
area coating materials with tailored porosity and chemical functionality.
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Preconcentrator Coatings Provide Chemical Selectivity

*Selective preconcentration reduces the possibility of
oversaturation (overload) of low-volume-ratio GC stationary

phases, improving separation and lowering false alarm rates.
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Separation Strategies using the GC Column

» Separation strategies involve the interaction of the analyte and the
column coating or stationary phase

* GC column stationary phase: PDMS coating linked to Si-OH
terminations on column suface through TEOS-based sol

T
Mobile I - O >
Phase \ s|l n
CH;
Stationary
phase

Analytes are separated due
to slight differences in their
adsorption and desorption
rates

Analytes are repeatedly
adsorbed/desorbed as they
move through the column
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' Temperature Ramp Chromatography Enhances
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. The Goal: FAST Separations of Toxic Agents

3-methyl hexane
1,6-dichlorohexane

oluene
n-dodecane
1-decanol

DMMP
DEMP
DIMP

T

F

N

- CS,

* Mixture of 4 CWA surrogates and 4 interferent compounds
separated in less than 4 seconds.

» High speed separation uses fast carrier at high u as well as
temperature programming
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I Capillary GC Separations: Some concepts

- WHO CARES?

* Firefighters, police, emergency responders for
industrial accidents or terrorist attacks involving
chemical release.

 Soldiers on the ground who may be subject to
chemical attack.

» GC separation of compounds vastly improves
accuracy of chemical identification. Important if you
have to wear gas masks and protective clothing.

* If you have to put on a gas mask, you need to know
quickly.

» Separation EFFICIENCY and SPEED
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l Capillary GC Separations: Some concepts

Mobile phase

»
»

Theoretical plates:

Model column as series of
reservoirs, assuming
liquid-vapor equilibrium at
each step

Height equivalent to a theoretical plate, H: Length increment of a continuous column
that is required to establish equilibrium between vapor and the liquid wall coating.

H = f(r, d;, T, partition coefficient K, gas velocity u)

Goal: Minimize H vs. column length and time

Mobil

Phase nalyte
Statiomar 1 de= film thlckness
¥ phase r = column diameter

L= length () e



_ i Capillary GC Separations: Concept and terms

Gas flow velocity through the column: u (m/sec)

Retention time, tg : Time required for a compound to transit the column (sec)
Unretained peak transit time: t,, = (column length)/u

Retention factor (dimensionless): k = (tg — ty)/ty

The retention factor is a ratio of time spent in the stationary phase vs. time spent
in the gas phase. Depends on partition coefficient, K, and phase thickness df.
Also called a “capacity factor”.

For open tubular (round) columns, H vs. u (at constant T, r, df, and K) is described
by the Golay equation (1958):

H=B/u+ Cu

Where B and C are constants.

Note that at low values of u, 1/u is large, the B term dominates, and H increases.
At large values of u, the C term dominates and H again increases.
At some intermediate value of u, there will be a minimum in H (desired).
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I The Golay Equation: Some eye-glazing detail

H=B/u+ Cu

» B term describes peak broadening due to diffusion of the solute vapor in the
carrier gas:
B=2D,

Where D, = binary gas diffusion coefficient (cm?/sec)

 C term describes resistance to mass transport due to retention in the gas
phase (viscous drag) + resistance in the stationary phase (retention in soln.):

C = Cg + Cliq
C, = r2(1 + 6k + 11k2)/{24D (1 + k)2}
Ciiq = 2kdu/{3(1 + K)?Dy;c}

In the limit of small d; (thin films), C,;, becomes negligible.
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I The Golay Equation: Freshman Calculus

H=B/u+ Cu

* To find the maximum separation efficiency (minimum H), differentiate H with
respect to u and set equal to zero, assuming d; is small:
dH/du = -B/lu?+ C =0
So Uoptimal = (B/Cg) 7
= (4Dg/r)(1 + K)[3/(1 + 6k + 11k?)] "
So what? Smaller r requires faster u, but high flow is harder to achieve at

small r due to gas viscosity.

* To find the maximum efficiency of the column, substitute optimal value of u
back into the expression for H(u) and do some messy algebra:

H. ., =r{(1+6k+ 11k2)/3(1 + k)2}12
Small diameter columns (small r) minimize H if you can force the gas though

fast enough.
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Carrier Gas effects on GC efficiency
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‘Lowest viscosity carrier (hydrogen) allows for widest flow rate (pressure)
operating range, allowing best compromise in both H and plates/sec

« Shorter column and high flow rate = best separation at high speed
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LSU/ASTI’s current microFAST GC/ system:
Rapid separations using fast temperature programming
Speed and Broad Compound Rang

dual col and\heater bly

5 Replicate microFAST GC Analyses of Semivolatile Std.

90°C to 270°C @ 20°C/sec, one meter DB1701 Column
ZZE’E‘::;::E c14
C11

o 1 2 3 4 5 6 7 8 9 10

Seconds
microFAST GC
# Column Types:
analytical columns_ -100 to 320 micron ID
assembly -1 to 3 meters in length

-either open tubular or PLOT
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Round vs. HARM columns

* Flow restriction controlled by
height

\ Performance limited by
width
* \End effects

Film deposition often
results in thicker phases
in the corner

* Flow restriction and performance

limited by radius — Dead spaces in corners

e Film deposition is uniform

d d
V2d, + (V2 -1)r J2d,
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Fabricate Gas Chromatograph Columns

,
»‘ Deep Reactive lon Etching Capability used to

Anodically bonded
Pyrex lid
* 25 um walls

*100 X 400 um profile
*1 m length

Channel
Wall

* 1 cm? footprint
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15t 3 terms model column performance, 41" term connects column to system

Golay equation for Rectangular GC columns

2
2D fif. (1+9k+255K°)w” f,_ 2k (w+hfd; _ AW
H=—"+ > U +— > —u+ >
T 105(k+1Y D, f,  3(k+1 D L(k+1)
- / N— — N — . ~ S
Longitudinal Mass Transport in the Mass Transport in the Extra-Column
diffusion Mobile Phase Stationary Phase Band Broadening
U — average linear carrier gas velocity h — channel height

D, — binary diffusion coefficient in gas phase d; — stationary phase film thickness

f, —Giddings-Golay gas compression correction factor D, — binary diffusion coefficient in stationary phase

f, — Martin-dJames gas compression correction factor L — column length

k — retention factor At — time correlating to extra column band broadening

w — channel width
At = inlet (or outlet) volume, cm?

gas flow rate, cm?/sec
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Integration Driver: Modeled GC Band Broadening

Ahn and Brandani Model — Dec. 2005 T-programmed 8/8 separation

1 uL inlet
dead volume

1 uL outlet
dead volume

|deal

(column only)

LM

A A1\5A—A3N\35}\A4

0.5

1

1.5

2 2. : 4.5
Time (sec)

Inlet dead volume costs more than outlet dead volume due to

carrier gas compressibility: (cm3/sec) et = (CM3/SEC); et
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o~ Phase 2 Hybrid Chips

MEMS valves on PC chip limit inlet volume
H, inlet s

" S ”To sampling pump

4 M Y Y e
O T

/)7 To detector

Split Outlet

Valve arrays
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Valve 2 - SUMMIT™ design and fabrication

Valve size ~400 pm? Spring

Valve body Upper poly—Si

layer, which
defines the
valve orifice, 1s

Cross -
section cu.t away 1n the
micrograph
Valve orifice
Spring attachment Gas flow /

Valve body




Air flow rate, sccm

Example Data: Offset Check Valves

* These data show air flow
through a microfabricated

(] . .
. sampling valve, designed for a
3 - flow rate of 5 sccm at 5 psi
differential pressure.
* As the pressure increases, the
e check valve closes.
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Air pressure, psi
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l I
%ew Detectors for Micro GCs: Nanoparticle/organic
composites as chemiresistors

Nanoparticle

T

Conducting
Bridging Ligand

?

Bridging Ligand
Nonconducting

With Analyte /'\
W
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Laver by Laver Resistance Measurements on Glass

Sacrificial Cap . YO OOOC0OCO000
SH  sH N\ I\ Step 3
OH OH S50 ) ’
I I HS™ " Si(OMe); He S SH ,
glass » —Si—O—Si— - )
cl) cl) Repeat
Step 1 | | Step 2 ¢4 2&3 ¢ >
glass [ T T 1
glass glass

Au/DIH At/PE

Au/PE Pt/DIH

*Four point probe measurements of resistance were
made, showing decreasing resistance as layers build up
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Nanoparticle ‘ Arrays

Two quartz
nanoparticle IDT
chips covered by a R N~
fow lid
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' Initial Vapor sensing of DMMP using a
protected phenol

Our initial observations during exposure to DMMP show:
*Protected phenol-Au films have dramatically increased conduction (molecular electronic effect)
«Control ODT-Au films have a slight decrease in conduction (swelling)

104 J per detector channel per analysis!

DMMP vapor from Tenax PC using Boc Protected Phenol Molecule as Ch 1 and Ch
2 and ODT as Ch 3 and Ch 4 both with Au nanoparticles
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Additional Sensor Channel Candidates

N <9

Z7 TN *Phosphonate-selective
O \o?p s *Electron hopping?

_S
< R Swelling mechanism, nonpolar
CN S—
/ g § *Swelling mechanism
—S NC *Vary polarity, polarizability
*Changing partition coefficients adds
CN information to array response,

\ —S/M/\/\/S_ increasing analytical power

NP
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Pt + lodonium

Pt

Bias-driven lodonium Reduction Enables Selective
Deposition on Electrode Arrays
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The AFM image shows two isolated
Pt electrodes. lodonium molecules

were reduced on the right electrode
by application of a voltage.

Shawn M. Dirk, et al., Langmuir 21 (2005) 10899.
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Phase 2 MGA System

COTS H, control valves

<20 cm3

COTS air sampling
pump

PC w/MEMS
valves

GC chip

Detector chip
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‘ Development of Micro Analytical Vapor
Sensor Systems: Summary

 For high-consequence analyses, lowering false alarm rate is most important,
but...

* Military, domestic counterterrorism, and law enforcement users all want it
smaller, faster, lighter, cheaper, lower power, etc. ad nauseum

* We can build vapor detection systems based on microanalytical components,
that use gas chromatographic separation to achieve low false alarm rates.

* In order to make these faster, smaller, cheaper, and more sensitive, we need:
A switch from air carrier to hydrogen for the GC
* More sensitive, faster detectors
* New preconcentrators to more efficiently capture target compounds

« Valves and flow control to integrate the components
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