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Goals

Develop technique on the DICE pulser for accurate measurement
of compressive strength in aluminum under ramp loading
— Extend previous work developed for ICE on Z

— Apply to several metals and optical materials

Approach
— Demonstrate accurate quasi-isentropic loading data

— Extend to unloading measurements for compressive strength data
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Outline

# Background
¢ Loading technique
# Results

+ Work in progress
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Magnetic drive developed on Z for producing
smooth ramp waves to high pressure
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The DICE pulser produces smaller
currents over longer times

Peak current, 3.5 MA:
400 - 500 ns risetime;
peak pressure ~ 200 kbar

High-current pulser
(~2 shots per day)

Energy storage, eight 4-uF
capacitors, 80 kV max

Large sample dimensions,
~2-3x12-18 mm dia.
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Typical sample test configuration
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Current (MA)

Long pulses on DICE constrain
experimental configurations
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Design | ssues

Bottom-top wave interactions

Wave/diffusion front
Interactions

2-D side rarefactions
Non-constant peak pressure
Drive pressure uniformity

Interface bonds
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A drive configuration is being used that satisfies
these requirements on Al experiments

L3

Side Top Panels, 2 x 15 —-20 x 50 mm

+

Panel thickness, 2 mm

»

o) ~ 60-100 kbar

peak

50 mm

Free surfacci>
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Drive uniformity ~ 2% central portion

200-300 ns of unloading
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Approach is to first evaluate EOS
accuracy, then obtain strength data
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Demonstrate ability to reproduce EOS data on 6061-T6

Compare to previous Z work, Sesame EOS

Determine compressive strength from loading/unloading data

Compare to ICE studies (GDI, Z, Omega)

Improve method in future experiments

Evaluation of systematic errors

Better drive uniformity

Improved sample preparation methods
Higher peak pressures
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Recent results from free surface and window
experiments on 6061-T6 aluminum
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particle velocity U (km/s)
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In situ wave profiles can be analyzed to
provide continuous o—¢ along the loading path

Several methods used to analyze ramp wave results:
- Impedance matching density (g/cc)
- Lagrangian wave analysis
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Wave velocity, km/s

Measured results and comparison to other data

_ 6061-T6 aluminum
Wave velocity

Stress-strain
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 Agreement with other ICE data to within experimental errors

 Major contribution to the difference Sesame 3700 is material strength

» Other factors: viscous effects, systematic errors and EOS errors @ Sandia
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A goal is to estimate shear stresses
produced for uniaxial strain ramp loading

Uniaxial strain compression
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Several techniques have been developed to
study strength properties
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Elastic-plastic response produces specific
sighatures in wave structures

Hugoniot

o, = P +2/3Y

Longitudinal Stress, Oy

Plastic

Specific Volume, V

G.R. Fowles, J. Appl. Phys,, 1961

o Viscous
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c(up)

-~ 3x10°/ S

Sandia
National
Laboratories



Approach

- Develop a configuration for producing uniaxial strain loading
and unloading on DICE

Investigate wave profile techniques for probing strength
properties of Al for ramp loading (extension of Z work)

Compare analysis results using different methods

— Lagrangian wave analysis

— Characteristics code approaches (Rothman, Ekert, Davis)
— Backward analysis

Investigate effects of window properties

— E-P effects for unloading
— Results from different windows (sapphire, LiF, ..)
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Assumptions used to analyze unloading data

Response is rate-independent

A yield surface exists after loading and
can be measured as a transition from
guasi-elastic to plastic response

The yield function depends on some
measure of plastic strain or pressure

Plastic response can be approximated
by wave velocities after Q-E transition
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Determination of strength from shock
loading/unioading profiles
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Unloading wave profiles used to estimate
strength - redo
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Lagrangian analysis of loading and unloading
In ramp experiments

Wave velocity, km/s
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stress in several experiments
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Strength determination

Strength, GPa
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Comparison of strength data estimated from stress
difference to isentrope and unloading profiles

Strength of 6061-T6 for ramp loading
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DICE results are consistent with other strength

data for quasi-isentropic loading
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1-D numerical simulations profiles are being used
to simulate profiles for Lagrangian analysis
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Summary

Loading conditions on DICE are sufficient to obtain loading and
unloading and estimates of compressive strength

Compressive stress-strain curves obtained on aluminum are
consistent with other data

Estimates of strength are consistent with several other
methods, but inconsistent with strength determined from
difference to the isentrope

Strength measurements are difficult — coordinated effort with
different techniques is necessary to develop consistent models
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Next steps

¢ Improvements in experimental configuration
— Sample preparation techniques (diamond machining, glue bonds)
— Better pressure drive uniformity
— Shorter current risetimes
— Smoother current unloading

#+ Better understanding of unloading response
— Wave attenuation effects
— Effect of LiF properties
— Analysis methods for unfolding perturbed unloading profiles

# Studies of strength in several materials
— Effects of initial microstructure in aluminum
— LiF, sapphire (T. Ao)
— High impedance materials (vanadium, tantalum, tungsten)
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