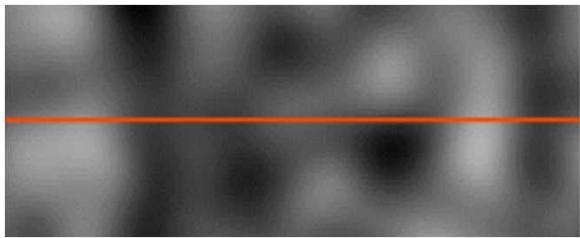


TECHNICAL EXCHANGE



Flame Propagation and Burgers Turbulence: The Theoretical Connection

Jackson R. Mayo
Mentor: Alan R. Kerstein
Department 8351

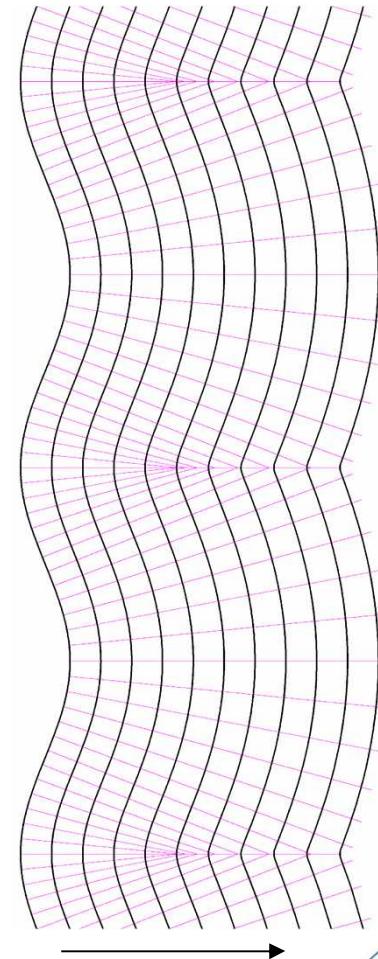
11 September 2006

Acknowledgments

- Alan R. Kerstein suggested this problem and provided invaluable guidance
- Conversations with others in Department 8351 were helpful
 - The U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000.

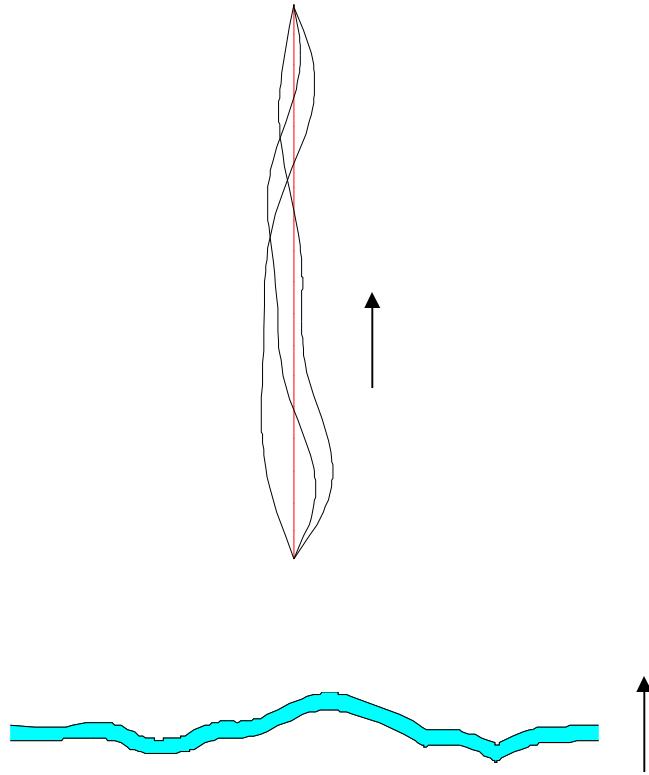
Huygens' principle idealizes the physics of front propagation

- Many phenomena (light, sound, combustion) spread at a characteristic speed
- At each instant t , a “front” marks the farthest progress
- The front comprises points to which the fastest path (first passage) takes time t
- The leading paths are “rays” perpendicular to the front
- Initial concave regions shrink to “cusps” that consume rays and flatten the front



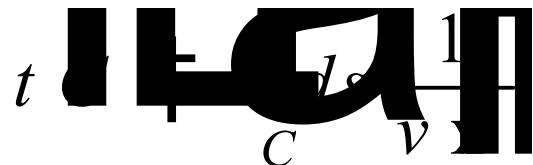
Medium fluctuations wrinkle the front, allowing faster passage

- First argument: Straight paths take (on average) the same time as in a uniform medium; allowing curved paths to take advantage of fluctuations can only shorten the average first-passage time
- Second argument: A wrinkled front has greater surface area and thus sweeps over more volume per unit time, resulting in faster propagation



Refraction and advection: Equivalent when weak, distinct when strong

- Refraction: A “quenched” medium with local speed $v(\mathbf{x})$



- Advection: Propagation at fixed speed u_L in the local comoving frame of a fluid; for weak flow ($|\mathbf{u}| \ll u_L$) the effective local speed is

$$v = u_L + u_{\parallel}$$



Application to premixed combustion neglects thermal expansion and diffusive-thermal instability

In turbulent combustion, strong advection is primary, but weak also matters

- For laminar flame speed u_L and flow intensity u' , dimensional analysis constrains the turbulent flame speed

$$u_T \neq u_L F \frac{u'}{u_L}, \text{Re}, \dots$$

- Strong advection: Intuition and experiment show $F \propto u'/u_L$ and $u_T \propto u'$ for $u'/u_L \rightarrow \infty$
- The dependence on dimensionless flow parameters (Re, ...) is not well understood
- Weak advection is a testing ground for flow-structure dependence
- A general flame-speed theory should match results obtained in the weak limit
- The weak limit's equivalence to other problems provides additional insights and tests

Weakly perturbed fronts relate to Burgers' compressible fluid model

- Take a near-uniform medium with $1/\nu = 1 + \sigma(\mathbf{x})$ and a near-straight path $\mathbf{x}_\perp(x_{\parallel})$
- Up to a constant, t is the action for a classical particle in the potential $-\sigma$
- First passage \leftrightarrow least action: The particles (rays) follow Newton's law $d^2\mathbf{x}_\perp/dx_{\parallel}^2 = \nabla_\perp \sigma$ until they collide and disappear at shocks (cusps)
- Thus Huygens propagation is equivalent to a pressure-free fluid obeying the inviscid Burgers equation
- The Burgers fluid lives in one fewer spatial dimension than we started
- Because the front “tilt” is the Burgers velocity \mathbf{w} , the speedup (increase in surface area) is the Burgers energy density $w^2/2$

Adding a small viscosity is useful physically and mathematically

- The viscous Burgers equation smooths the shocks, returning to the inviscid limit at high Reynolds number

$$w + \nabla \times \tilde{N}_1 \cdot \nabla + \tilde{N}_1^2 w + \tilde{N}_1 s$$

- Finite ν modifies Huygens propagation in a physical way, corresponding to finite wavelength (optics/acoustics) or Markstein length (flamelets)
- To describe Huygens propagation, we must take $\nu \rightarrow 0$ before the weak-perturbation limit; ν can be considered a mathematical regulator
- Formal advantage: The viscous Burgers equation relates to the Schrödinger equation for a quantum-mechanical wave function, which Feynman solved with an integral over *all* possible particle paths

“Path integrals” accumulate not only paths but medium realizations

- When the viscous Burgers equation is solved using a Feynman path integral, the least-action (fastest) path C^* is a “saddle point”

$$D \exp \frac{t}{2n} \mathbf{U} \mathbf{T} \mathbf{U} \exp \frac{t}{2n} \mathbf{U} \cdots$$

$$t \mathbf{C}^* \mathbf{U} \mathbf{C}_i$$

- The relation becomes exact as $\nu \rightarrow 0$

$$t \mathbf{U}^* \mathbf{U}_1 \mathbf{U}_2 \cdots \mathbf{U}_M D \exp \frac{t}{2n} \mathbf{U} \cdots$$

- We must next average $t(C^*)$ over the ensemble of random media

$$A^* \mathbf{U} \mathbf{U} \mathbf{U} D t \mathbf{U}_M^*$$



Strategy: Reduce first passage to the white-noise Burgers equation, then analyze this equation

Analysis steps

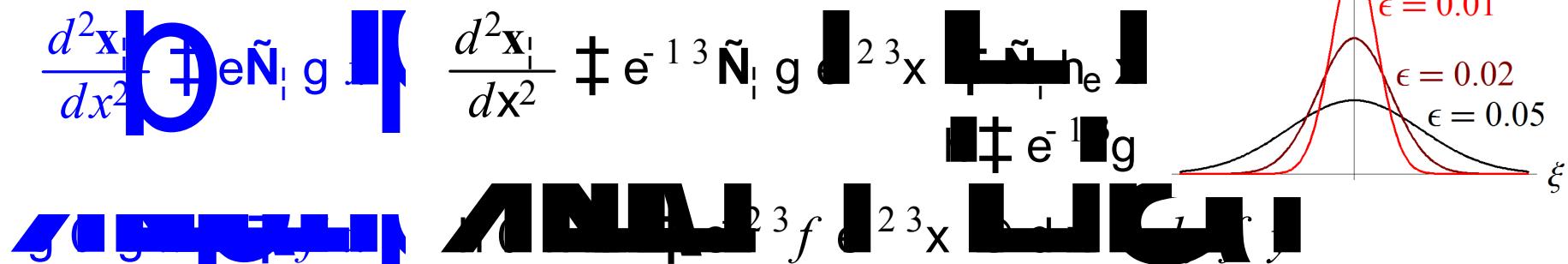
- Show that weak-perturbation first passage follows a white-noise process that fixes the dependence on the noise amplitude ϵ
- Analyze the noise-spectrum dependence by applying the replica method to the white-noise Burgers equation

Previous contributions

- White (1984) obtained white-noise ray deflections, but did not account for ray disappearance at cusps
- Kerstein and Ashurst (1992) argued heuristically that $O(\epsilon)$ fluctuations speed up front propagation by $O(\epsilon^{4/3})$
- Blum (1994) explicitly applied the replica method to an equivalent “directed polymer”
- Fedotov (1995) formally applied the replica method to weak-advection first passage, but assumed white noise *a priori*

A front rushes through weak perturbations and sees white noise

- Intuition: For advection, instead of $u' \rightarrow 0$, equivalently take $u_L \rightarrow \infty$; then each fluctuation affects the front briefly, and white noise is obtained
- Derivation: In [Newton's law](#), rescale the fluctuations $\sigma(\mathbf{x}) \rightarrow \epsilon \gamma(\mathbf{x})$ and the longitudinal coordinate $x_{\parallel} \rightarrow \epsilon^{-2/3} \xi$



- The noise is now white in the “slow time” ξ but correlated in the space \mathbf{x}_{\perp}
- Only the second moment matters since white noise is Gaussian
- The viscosity rescales as $\nu_{\text{old}} \rightarrow \epsilon^{2/3} \nu_{\text{new}}$; the white-noise and zero-viscosity limits are now interchangeable by a nontrivial rigorous result

“Directed polymers” provide a thermal interpretation of the model

- Apply rescaling to the travel time (renaming $x_\perp \rightarrow x$) and find the speedup δ

$$-d \neq \frac{t}{l} - 1 \neq \frac{e^{2/3}}{l}$$

- The path integral gives the *first-passage* speedup Δ

$$-D \neq -e^{4/3} \frac{2n}{l} \ln \frac{D}{A} \neq -e^{4/3} \frac{T \ln Z}{l}$$

- Thus $-\Delta$ is $\epsilon^{4/3}$ times the equilibrium free energy per unit length of a directed polymer (path) in the random potential η at temperature $T = 2\nu$

Strategy: Reduce first passage to the white-noise Burgers equation, then analyze this equation

Analysis steps

- Show that weak-perturbation first passage follows a white-noise process that fixes the dependence on the noise amplitude ϵ
- Analyze the noise-spectrum dependence by applying the replica method to the white-noise Burgers equation

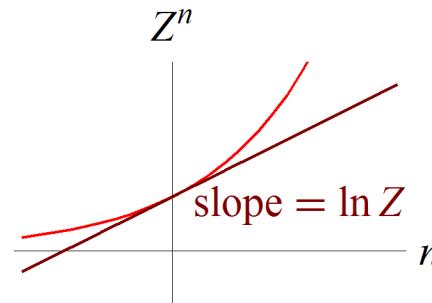
Previous contributions

- White (1984) obtained white-noise ray deflections, but did not account for ray disappearance at cusps
- Kerstein and Ashurst (1992) argued heuristically that $O(\epsilon)$ fluctuations speed up front propagation by $O(\epsilon^{4/3})$
- Blum (1994) explicitly applied the replica method to an equivalent “directed polymer”
- Fedotov (1995) formally applied the replica method to weak-advection first passage, but assumed white noise *a priori*

A “replicated” path integral allows exact averaging over the noise

- The ensemble average $\langle \Delta \rangle$ involves $\langle \ln Z \rangle$, an intractable quantity
- An identity comes to the rescue

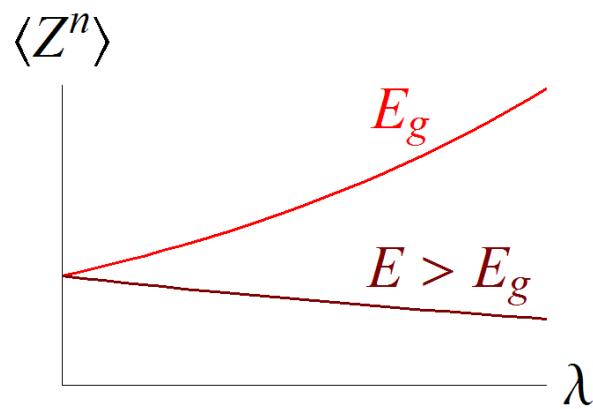
$$\ln Z \neq \lim_{n \rightarrow 0} \frac{Z^n - 1}{n}$$



- Since Z^n depends on the noise η exponentially, we can average using the Gaussian identity $\langle \exp \eta \rangle = \exp(\langle \eta^2 \rangle/2)$
- The n th power introduces n “replicas” of the polymer, which interact after averaging (indices a, b, c range over the n replicas)

The calculation reduces to the quantum mechanics of zero particles

- The quantity $\langle Z^n \rangle$ is the Feynman path integral for n nonrelativistic quantum particles with *static* pair potential $-V/4\nu$ (and $\hbar = 2\nu$)
- The wave function evolves by the “imaginary-time” Schrödinger equation and projects onto the ground state (energy $E_g < 0$) as $\lambda \rightarrow \infty$



$$\begin{aligned} \langle Z^n \rangle &= \lim_{n \rightarrow 0} \frac{1}{2n} \lim_{n \rightarrow 0} \frac{E_g}{n} \\ \langle Z^n \rangle &= - \frac{1}{4} e^{1/3} \lim_{n \rightarrow 0} \frac{E_g}{n} \end{aligned}$$

- We cannot numerically simulate $n \rightarrow 0$ particles; we must somehow analytically continue from positive integer n

A special variational method gives a bound on the answer

- General quantum variational method (used in atomic/molecular physics): Invent an arbitrary family of “trial” wave functions $|\psi\rangle$ and minimize $\langle\psi|H|\psi\rangle$; the result is an upper bound on the ground-state energy E_g
- If the family is expressed analytically in n , we can continue $\langle\psi|H|\psi\rangle$ to $n = 0$ particles

Counterintuitive, nonrigorous operations in the $n \rightarrow 0$ limit:

- There are now negative degrees of freedom; we *maximize* $\langle\psi|H|\psi\rangle$ to obtain a *lower* bound on E_g and thus an upper bound on the speedup $\langle\Delta\rangle$
- We use Gaussian trial wave functions that break the permutation symmetry among n replicas by dividing them into blocks and possibly sub-blocks, sub-sub-blocks, etc. (Parisi hierarchical symmetry breaking)

Explicit formulas generalize replica bounds to arbitrary spectra

- The general variational analysis is complex but becomes tractable in the inviscid limit ($\nu \rightarrow 0$) corresponding to Huygens propagation
- Take a noise spectrum $D(k)$ in N transverse dimensions [$D(k) \leftrightarrow V(x)$]
- “One-step” replica symmetry breaking yields the simplest bound

$$\frac{\sqrt{2\pi}}{2^{10/3}} \epsilon^{4/3} N^{1/3} \int_{-\infty}^{\infty} dk \int_{-\infty}^{\infty} dk' D(k) D(k')$$

- “Full” symmetry breaking often gives a tighter bound for $N = 1$ [the expression is valid below a critical N that can be calculated given $D(k)$]

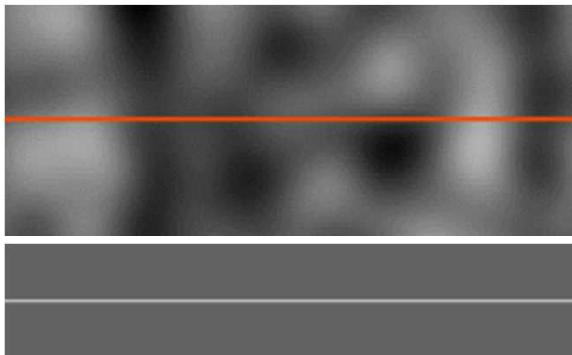
$$\frac{\sqrt{2\pi}}{2^{10/3}} \epsilon^{4/3} N^{1/3} \int_0^{\infty} dk \int_0^{\infty} dk' e^{-zk^2/2} D(k) D(k')$$

- The special form of these bounds for a “Gaussian” medium correlator $\langle \sigma(\mathbf{x})\sigma(\mathbf{x} + \mathbf{r}) \rangle = \epsilon^2 \exp(-r^2/a^2)$ is implied by Blum (1994)—one-step: $\langle \Delta \rangle \leq 1.744 \epsilon^{4/3} N^{2/3}$; full ($N = 1$): $\langle \Delta \rangle \leq 1.714 \epsilon^{4/3}$

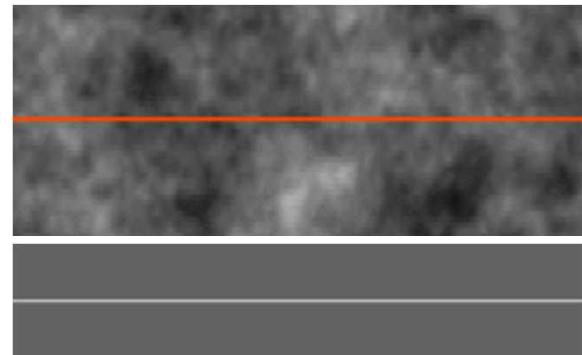
Multiscale media can produce divergent forcing but finite speedup

- For $N = 1$ and a 2D “exponential” correlator $\langle \sigma \sigma \rangle = \epsilon^2 \exp(-r/a)$, the Burgers force spectrum is $k^2 D(k) \sim 1/k$ and so its integral, the rate of energy input (and thus dissipation), is divergent at $k \rightarrow \infty$
- The “one-step” upper bound on the Burgers energy density $\langle \Delta \rangle$ is also divergent (uninformative), but “full” breaking gives $\langle \Delta \rangle \leq 2.038 \epsilon^{4/3}$
- The infinite dissipation rate requires an infinite density of cusps
- The same considerations apply to weak advection by developed Navier–Stokes turbulence (corresponding to Burgers forcing $\sim 1/k^{2/3}$); the speedup remains finite as $\text{Re} \rightarrow \infty$, despite cusp densification

Gaussian

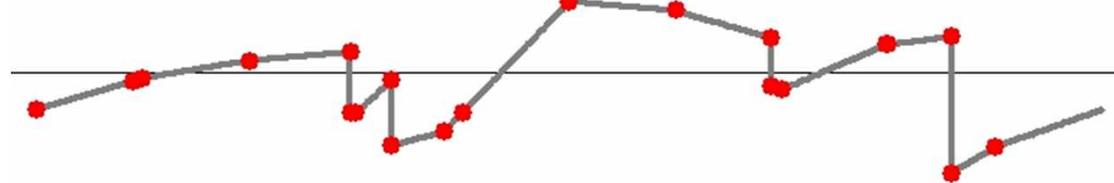


Exponential

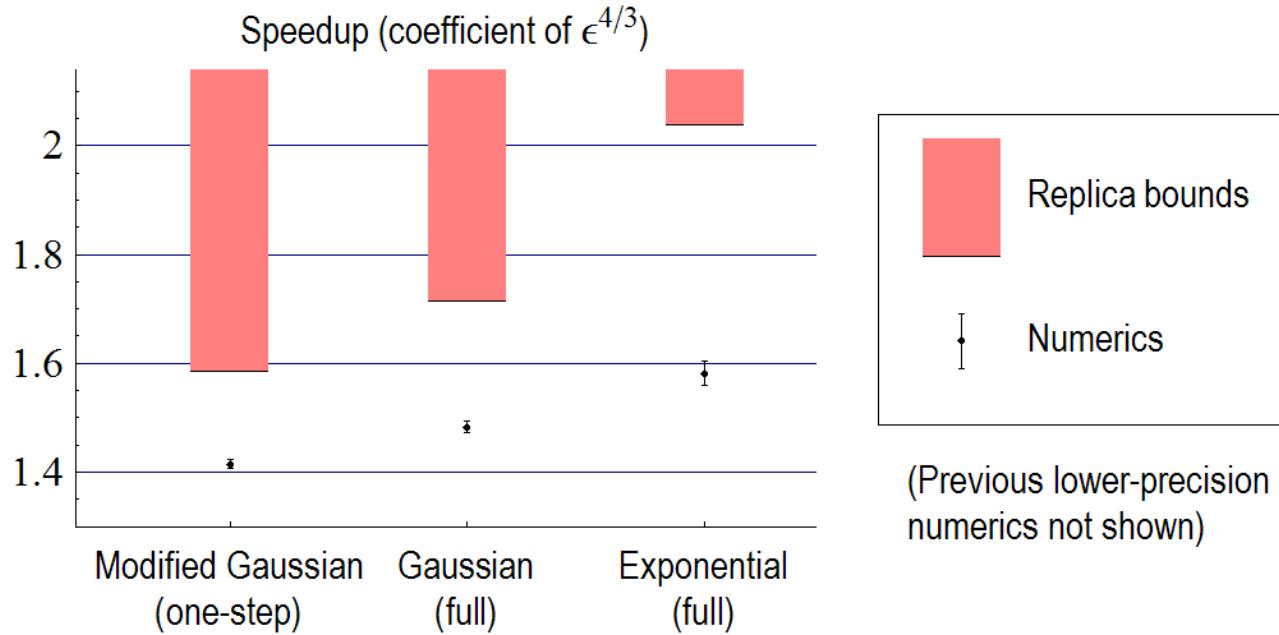


A Lagrangian numerical method allows systematic testing of replica results for 2D propagation

- For $N = 1$, represent an inviscid Burgers velocity field by piecewise linear sections, with discontinuities at shocks
- Evolve freely (retaining exact piecewise linearity) for a timestep, then “kick” the fluid with an impulsive force
- The force is synthesized from a given spectrum and taken as piecewise linear on a fixed grid
- The number of marker points increases as kicks occur, but stabilizes as shocks form and merge
- Convergence of the steady-state energy density is observed with the timestep, the forcing grid, and the length of the periodic domain



Numerical simulations confirm that 2D replica bounds are valid and reasonably sharp



- The modified Gaussian is an alternate smooth medium [$D(k) \sim k^2 \exp(-k^2)$] for which one-step symmetry breaking applies
- We find significant and consistent dependence on the perturbation spectrum for fixed ϵ
- The agreement raises confidence in replica predictions for 3D

Synopsis: Links among diverse realms of physics contribute to the analysis

Physical systems

Propagation of flames

↓ Weak perturbations

First passage of rays

↓ White noise

The Burgers equation

↓ Reinterpretation

Directed polymers

↓ Replicas

The Schrödinger equation

Branches of physics

Combustion

Geometrical optics

Fluid dynamics

Statistical mechanics

Quantum mechanics

Meanings of ν

Markstein length

Wavelength

Viscosity

Temperature

Planck's constant

Conclusion: Weak-perturbation first passage is now well understood theoretically

- A weakly perturbed Huygens front, such as a premixed flamelet, can be reduced to an inviscid Burgers fluid driven by white noise (or to the low-temperature limit of an equivalent directed polymer)
- The white-noise reduction applies to random media with arbitrary (even non-Gaussian) statistics, provided the central limit theorem is obeyed
- In the process, the $\epsilon^{4/3}$ scaling of the front speedup is extracted
- The coefficient of $\epsilon^{4/3}$ for a given perturbation spectrum can be bounded above using the replica method—an illustration of the versatility of field theory
- Replica results for 2D propagation match within $\sim 20\%$ the speedup values obtained numerically
- The success of the replica method implies direct applications to weakly random optics and acoustics (e.g., seismology)

Conclusion: The results contribute to understanding of turbulent combustion

- Because of the white-noise reduction, weakly random propagation senses only the second moment of fluctuations
- Even so, the magnitude of the speedup is nonuniversal and depends on the perturbation spectrum
- Strong advection of premixed flamelets exhibits no such reduction and should be even less universal, depending on arbitrary moments of the flow
- A general flame-speed theory should capture this nonuniversality and reproduce our results at weak perturbations
- The widely used flame-speed theory of Yakhot (1988) predicts universality for both strong and weak advection, and predicts ϵ^2 instead of $\epsilon^{4/3}$ dependence on weak perturbations
- Our analysis of the weak-perturbation limit can provide both inspiration and quantitative guidance for improved modeling of turbulent combustion