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Huygens’ principle idealizes the physics of
front propagation
Huygens’ principle idealizes the physics of
front propagation

• Many phenomena (light, sound, combustion) 
spread at a characteristic speed

• At each instant t, a “front” marks the farthest 
progress

• The front comprises points to which the 
fastest path (first passage) takes time t

• The leading paths are “rays” perpendicular 
to the front

• Initial concave regions shrink to “cusps” that 
consume rays and flatten the front



Medium fluctuations wrinkle the front, allowing 
faster passage
Medium fluctuations wrinkle the front, allowing 
faster passage

• First argument: Straight paths take 
(on average) the same time as in a 
uniform medium; allowing curved 
paths to take advantage of 
fluctuations can only shorten the 
average first-passage time

• Second argument: A wrinkled front 
has greater surface area and thus 
sweeps over more volume per unit 
time, resulting in faster propagation



Refraction and advection: Equivalent when weak, 
distinct when strong
Refraction and advection: Equivalent when weak, 
distinct when strong

• Refraction: A “quenched” 

medium with local speed vx

• Advection: Propagation at 

fixed speed uL in the local 
comoving frame of a fluid;

for weak flow (u  uL)

the effective local speed is

v  uL  u

tHCL‡à
C
ds

1

vHxLWeakly random 
optics/acoustics/
solid combustion

Weak advection of 
premixed flamelets

Strongly random 
optics/acoustics/
solid combustion

Strong advection of 
premixed flamelets

Application to premixed combustion 
neglects thermal expansion and 
diffusive-thermal instability



In turbulent combustion, strong advection is 
primary, but weak also matters
In turbulent combustion, strong advection is 
primary, but weak also matters

• For laminar flame speed uL and flow intensity u, dimensional analysis 
constrains the turbulent flame speed

• Strong advection: Intuition and experiment show F  uuL and
uT  u for uuL 

• The dependence on dimensionless flow parameters (Re, …) is not well 
understood

• Weak advection is a testing ground for flow-structure dependence
• A general flame-speed theory should match results obtained in the

weak limit
• The weak limit’s equivalence to other problems provides additional 

insights and tests

uT ‡ uL FJu¢

uL
, Re, …N



Weakly perturbed fronts relate to Burgers’ 
compressible fluid model
Weakly perturbed fronts relate to Burgers’ 
compressible fluid model

• Take a near-uniform medium with 1v 1  x and a near-straight 
path xx

• Up to a constant, t is the action for a classical particle in the potential 
• First passage  least action: The particles (rays) follow Newton’s law

dxdx
  until they collide and disappear at shocks (cusps)

• Thus Huygens propagation is equivalent to a pressure-free fluid obeying 
the inviscid Burgers equation

• The Burgers fluid lives in one fewer spatial dimension than we started

• Because the front “tilt” is the Burgers velocity w, the speedup (increase
in surface area) is the Burgers energy density w2

t ‡àds
1

vHxL>àd xþ@1 + 1
2 x¦

¢HxþL¤2 + sHxLD



Adding a small viscosity is useful physically
and mathematically
Adding a small viscosity is useful physically
and mathematically

• The viscous Burgers equation smooths the shocks, returning to the 
inviscid limit at high Reynolds number

• Finite  modifies Huygens propagation in a
physical way, corresponding to finite wavelength
(optics/acoustics) or Markstein length (flamelets)

• To describe Huygens propagation, we must take  0 before the 
weak-perturbation limit;  can be considered a mathematical regulator

• Formal advantage: The viscous Burgers equation relates to the 
Schrödinger equation for a quantum-mechanical wave function, which 
Feynman solved with an integral over all possible particle paths

w +Hw×Ñ¦Lw ‡ nÑ¦
2 w + Ñ¦ s

faster slower



“Path integrals” accumulate not only paths but 
medium realizations
“Path integrals” accumulate not only paths but 
medium realizations

• When the viscous Burgers equation is solved
using a Feynman path integral, the least-action
(fastest) path C is a “saddle point”

• The relation becomes exact as  0

• We must next average tC over the
ensemble of random media

àDC expJ- tHCL
2n
N~ expJ- tHC*L

2n
N

tHC*L‡ lim
n®0
B- 2n lnàDC expJ- tHCL

2n
NF

XtHC*L\µàDM tHCM
*L

tHC*L< tHCiL



Strategy: Reduce first passage to the white-noise 
Burgers equation, then analyze this equation
Strategy: Reduce first passage to the white-noise 
Burgers equation, then analyze this equation

Analysis steps

• Show that weak-
perturbation first pas-
sage follows a white-
noise process that fixes 
the dependence on the 
noise amplitude 

• Analyze the noise-
spectrum dependence 
by applying the replica 
method to the white-
noise Burgers equation

Previous contributions

• White (1984) obtained white-noise ray 
deflections, but did not account for ray 
disappearance at cusps

• Kerstein and Ashurst (1992) argued 
heuristically that O fluctuations

speed up front propagation by O

• Blum (1994) explicitly applied the replica 
method to an equivalent “directed polymer”

• Fedotov (1995) formally applied the replica 
method to weak-advection first passage, 
but assumed white noise a priori



• Intuition: For advection, instead of u 0, equivalently take uL ; 
then each fluctuation affects the front briefly, and white noise is obtained

• Derivation: In Newton’s law, rescale the fluctuations x  x and 
the longitudinal coordinate x 

• The noise is now white in the “slow time”  but correlated in the space x
• Only the second moment matters since white noise is Gaussian

• The viscosity rescales as old  new; the white-noise and zero-
viscosity limits are now interchangeable by a nontrivial rigorous result

d2x¦

dx2
‡ e- 1 3Ñ¦ gHe- 2 3xL‡ Ñ¦ heHxLd2x¦

dxþ2 ‡ eÑ¦ gHxþL

A front rushes through weak perturbations and 
sees white noise
A front rushes through weak perturbations and 
sees white noise

Hh‡ e- 1 3gLXhH0LhHxL\‡ e- 2 3 fHe- 2 3xL® dHxLàdy fHyLXgH0LgHxþL\‡ fHxþL



• Apply rescaling to the travel time (renaming x x) and find the 
speedup 

• The path integral gives the first-passage speedup 

• Thus  is  times the equilibrium free energy per unit length of a 
directed polymer (path) in the random potential  at temperature T 2

‡ - e4 3 T ln Z

l

- D‡ - e4 3 2n

l
lnàDxHxLexp

ikjj- 1

2nà0 l

dx@12 x¢HxL¤2 + hHx, xHxLLDy{zz

“Directed polymers” provide a thermal 
interpretation of the model
“Directed polymers” provide a thermal 
interpretation of the model

t ‡à
0

l

d xþ@1 + 1
2 x¢HxþL¤2 + sHxþ, xHxþLLD

- d‡ t
l

- 1 ‡ e2 3

l à0 l

dx@12 x¢HxL¤2 + hHx, xHxLLDHl ‡ e2 3lL
(we recognize a thermodynamic partition function)



Strategy: Reduce first passage to the white-noise 
Burgers equation, then analyze this equation
Strategy: Reduce first passage to the white-noise 
Burgers equation, then analyze this equation

Analysis steps

• Show that weak-
perturbation first pas-
sage follows a white-
noise process that fixes 
the dependence on the 
noise amplitude 

• Analyze the noise-
spectrum dependence 
by applying the replica 
method to the white-
noise Burgers equation

Previous contributions

• White (1984) obtained white-noise ray 
deflections, but did not account for ray 
disappearance at cusps

• Kerstein and Ashurst (1992) argued 
heuristically that O fluctuations

speed up front propagation by O

• Blum (1994) explicitly applied the replica 
method to an equivalent “directed polymer”

• Fedotov (1995) formally applied the replica 
method to weak-advection first passage, 
but assumed white noise a priori



A “replicated” path integral allows exact averaging 
over the noise
A “replicated” path integral allows exact averaging 
over the noise

• The ensemble average  involves lnZ, an intractable quantity

• An identity comes to the rescue

• Since Zn depends on the noise  exponentially, we can average using 
the Gaussian identity exp  exp2

• The nth power introduces n “replicas” of the polymer, which interact 
after averaging (indices a,b,c range over the n replicas)

XhH0, 0LhHx, xL\‡ dHxLVH x¤L

ln Z ‡ lim
n®0

Zn - 1

n

XZn\‡àD8xcHxL<expB- 1

2nàdx
ikjjjj12âa  xa

¢¤2 -
1

4n
â
ab

VH xa - xb¤Ly{zzzzF



• The quantity Zn is the Feynman path integral for n nonrelativistic 

quantum particles with static pair potential V4 (and  2)

• The wave function evolves by the “imaginary-time” Schrödinger equation 
and projects onto the ground state (energy Eg  0) as 

• We cannot numerically simulate n  0 particles; we must somehow 
analytically continue from positive integer n

-XD\‡ e4 3 lim
n®0

EgHnL
n

The calculation reduces to the quantum mechanics 
of zero particles
The calculation reduces to the quantum mechanics 
of zero particles

XZn\µ exp
ikjj- EgHnLl

2n
y{zzXln Z\‡ -

l

2n
lim
n®0

EgHnL
n



A special variational method gives a bound on
the answer
A special variational method gives a bound on
the answer

• General quantum variational method (used in atomic/molecular physics): 
Invent an arbitrary family of “trial” wave functions  and minimize
 H ; the result is an upper bound on the ground-state energy Eg

• If the family is expressed analytically in n, we can continue  H 
to n  0 particles

Counterintuitive, nonrigorous operations in the n  0 limit:

• There are now negative degrees of freedom; we maximize  H 
to obtain a lower bound on Eg and thus an upper bound on the
speedup 

• We use Gaussian trial wave functions that break the permutation 
symmetry among n replicas by dividing them into blocks and possibly 
sub-blocks, sub-sub-blocks, etc. (Parisi hierarchical symmetry breaking)



Explicit formulas generalize replica bounds to 
arbitrary spectra
Explicit formulas generalize replica bounds to 
arbitrary spectra

• The general variational analysis is complex but becomes tractable in the 
inviscid limit ( 0) corresponding to Huygens propagation

• Take a noise spectrum Dk in N transverse dimensions [Dk Vx]
• “One-step” replica symmetry breaking yields the simplest bound

• “Full” symmetry breaking often gives a tighter bound for N  1 [the 
expression is valid below a critical N that can be calculated given Dk]

• The special form of these bounds for a “Gaussian” medium correlator 
xx  r  expra is implied by Blum (1994)—

one-step:   1.744N; full (N  1):   1.714

XD\£ 3

25 3
e4 3N1 3ikjjàd NkH2pLN DHkLy{zz1 3ikjjàd NkH2pLN k2 DHkLy{zz1 3

XD\£ 3

210 3
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¥

d z
ikjjàd NkH2pLN k4e- zk2 2 DHkLy{zz2 3



Multiscale media can produce divergent forcing 
but finite speedup
Multiscale media can produce divergent forcing 
but finite speedup

• For N 1 and a 2D “exponential” correlator   expra, 
the Burgers force spectrum is kDk  1k and so its integral, the 
rate of energy input (and thus dissipation), is divergent at k 

• The “one-step” upper bound on the Burgers energy density  is also 
divergent (uninformative), but “full” breaking gives   2.038

• The infinite dissipation rate requires an infinite density of cusps
• The same considerations apply to weak advection by developed Navier–

Stokes turbulence (corresponding to Burgers forcing  1k); the 
speedup remains finite as Re , despite cusp densification

Gaussian Exponential



A Lagrangian numerical method allows systematic 
testing of replica results for 2D propagation
A Lagrangian numerical method allows systematic 
testing of replica results for 2D propagation

• For N  1, represent an inviscid Burgers velocity field by 
piecewise linear sections, with discontinuities at shocks

• Evolve freely (retaining exact piecewise linearity) for a timestep, 
then “kick” the fluid with an impulsive force

• The force is synthesized from a given spectrum and taken as 
piecewise linear on a fixed grid

• The number of marker points increases as kicks occur, but 
stabilizes as shocks form and merge

• Convergence of the steady-state energy density is observed with 
the timestep, the forcing grid, and the length of the periodic domain



Numerical simulations confirm that 2D replica 
bounds are valid and reasonably sharp
Numerical simulations confirm that 2D replica 
bounds are valid and reasonably sharp

• The modified Gaussian is an alternate smooth medium [Dk 
kexpk] for which one-step symmetry breaking applies

• We find significant and consistent dependence on the perturbation 
spectrum for fixed 

• The agreement raises confidence in replica predictions for 3D



Synopsis: Links among diverse realms of physics 
contribute to the analysis
Synopsis: Links among diverse realms of physics 
contribute to the analysis

Physical systems Branches of physics Meanings of 

Propagation of flames Combustion Markstein length

First passage of rays Geometrical optics Wavelength

The Burgers equation Fluid dynamics Viscosity

Directed polymers Statistical mechanics Temperature

The Schrödinger equation Quantum mechanics Planck’s constant

Weak perturbations

White noise

Reinterpretation

Replicas



Conclusion: Weak-perturbation first passage
is now well understood theoretically
Conclusion: Weak-perturbation first passage
is now well understood theoretically

• A weakly perturbed Huygens front, such as a premixed flamelet, can
be reduced to an inviscid Burgers fluid driven by white noise (or to the 
low-temperature limit of an equivalent directed polymer)

• The white-noise reduction applies to random media with arbitrary (even 
non-Gaussian) statistics, provided the central limit theorem is obeyed

• In the process, the  scaling of the front speedup is extracted

• The coefficient of  for a given perturbation spectrum can be 
bounded above using the replica method—an illustration of the 
versatility of field theory

• Replica results for 2D propagation match within  20% the speedup 
values obtained numerically

• The success of the replica method implies direct applications to weakly 
random optics and acoustics (e.g., seismology)



Conclusion: The results contribute to 
understanding of turbulent combustion
Conclusion: The results contribute to 
understanding of turbulent combustion

• Because of the white-noise reduction, weakly random propagation senses 
only the second moment of fluctuations

• Even so, the magnitude of the speedup is nonuniversal and depends on 
the perturbation spectrum

• Strong advection of premixed flamelets exhibits no such reduction and 
should be even less universal, depending on arbitrary moments of the flow

• A general flame-speed theory should capture this nonuniversality and 
reproduce our results at weak perturbations

• The widely used flame-speed theory of Yakhot (1988) predicts universality 
for both strong and weak advection, and predicts  instead of 

dependence on weak perturbations

• Our analysis of the weak-perturbation limit can provide both inspiration 
and quantitative guidance for improved modeling of turbulent combustion


