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gens’ principle idealizes the physics of
ront propagation

» Many phenomena (light, sound, combustion)
spread at a characteristic speed

o Ateach instant ¢, a “front” marks the farthest
progress

* The front comprises points to which the
fastest path (first passage) takes time ¢

 The leading paths are “rays” perpendicular
to the front

« |nitial concave regions shrink to “cusps” that
consume rays and flatten the front
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edium fluctuations wrinkle the front, allowing
aster passage

* First argument: Straight paths take
(on average) the same time as in a
uniform medium; allowing curved
paths to take advantage of ]
fluctuations can only shorten the
average first-passage time

» Second argument: A wrinkled front

has greater surface area and thus —— N
sweeps over more volume per unit

time, resulting in faster propagation

—
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efraction and advection: Equivalent when ,We!{, --
- distinct when strong

Strongly random
optics/acoustics/
/ solid combustion

 Refraction: A “quenched”
medium with local speed v(X)
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Weakly random 1
optics/acoustics/
solid combustion

»  Advection: Propagation at Weak a‘i'jvﬁdior; C;f
fixed speed u; in the local promixed Hamerets »
comoving frame of a fluid; Strong advection of

for weak flow (|ll| < uy) premixed flamelets

the effective local speed is
v=us +u,
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Application to premixed combustion
neglects thermal expansion and
diffusive-thermal instability




~ primary, but weak also matters

rbulent combustion, strong advection is -

» For laminar flame speed u; and flow intensity #’, dimensional analysis
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constrains the turbulent flame speed ¢
ur :I: MLFURC,
ur

Strong advection: Intuition and experiment show F oc u’/u; and
upocu foru'fu; - oo

The dependence on dimensionless flow parameters (Re, ...) is not well
understood

Weak advection is a testing ground for flow-structure dependence

A general flame-speed theory should match results obtained in the
weak limit

The weak limit's equivalence to other problems provides additional
Insights and tests -




eakly perturbed fronts relate to Burgers’ -
compressible fluid model

* Take a near-uniform medium with 1/v = 1 + o°(x) and a near-straight
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Up to a constant, ¢ is the action for a classical particle in the potential —
First passage <> least action: The particles (rays) follow Newton’s law
cz’zyg/cz’)c”2 = V , o until they collide and disappear at shocks (cusps)

Thus Huygens propagation is equivalent to a pressure-free fluid obeying
the inviscid Burgers equation

The Burgers fluid lives in one fewer spatial dimension than we started

Because the front “tilt” is the Burgers velocity w, the speedup (increase
in surface area) is the Burgers energy density w /2
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dding a small viscosity is useful physically
and mathematically

 The viscous Burgers equation smooths the shocks, returning to the
inviscid limit at high Reynolds number

wt 'XN: H?W'F N: S

» Finite v modifies Huygens propagation in a faster | Slower
physical way, corresponding to finite wavelength T

(optics/acoustics) or Markstein length (flamelets) ——

 To describe Huygens propagation, we must take v — O before the
weak-perturbation limit; v can be considered a mathematical regulator
« Formal advantage: The viscous Burgers equation relates to the

Schrodinger equation for a quantum-mechanical wave function, which
Feynman solved with an integral over all possible particle paths
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Path integrals” accumulate not only paths but *
" medium realizations

 When the viscous Burgers equation is solved I
using a Feynman path integral, the least-action L

(fastest) path C™ is a “saddle point” r'\ \\L |
wMUL_. UL

e The relation becomes exactasv — 0

Il LG \.gll

« We must next average #(C™) over the
ensemble of random media
_ AWGLL
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rategy: Reduce first passage to the white-noise
urgers equation, then analyze this equation

Analysis steps

» Show that weak-
perturbation first pas-
sage follows a white-
noise process that fixes
the dependence on the

noise amplitude €

 Analyze the noise-
spectrum dependence
by applying the replica
method to the white-
noise Burgers equation
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Previous contributions

White (1984) obtained white-noise ray
deflections, but did not account for ray
disappearance at cusps

Kerstein and Ashurst (1992) argued
heuristically that O(e€) fluctuations

speed up front propagation by 0(64/ 3)
Blum (1994) explicitly applied the replica
method to an equivalent “directed polymer”

Fedotov (1995) formally applied the replica
method to weak-advection first passage,

but assumed white noise a priori
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A front rushes through weak perturbations and™
sees white noise

« Intuition: For advection, instead of 2" — 0, equivalently take 1; — oco;
then each fluctuation affects the front briefly, and white noise is obtained

« Derivation: In Newton’s law, rescale the fluctuations o-(x) — €y(x) and
the longitudinal coordinate x,, — e % 36

%GN:QI[ d;:(iz: :I:G_ISN: 9.23X h,kl
iIe'lg
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* The noise is now white in the “slow time” & but correlated in the space X,
* Only the second moment matters since white noise is Gaussian

* The viscosity rescales as v,1q — e/’ Vnew, the white-noise and zero- B
viscosity limits are now interchangeable by a nontrivial rigorous result/ -
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irected polymers” provide a thermal
interpretation of the model

* Apply rescaling to the travel time (renaming X, — X) and find the
speedup o
' F
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 The path integral gives the first-passage speedup A

(e in

(we recognize a thermodynamic partition function)

 Thus —A's 64/ 3 times the equilibrium free energy per unit length of a
directed polymer (path) in the random potential 77 at temperature 7'= 2v
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rategy: Reduce first passage to the white-noise
urgers equation, then analyze this equation

Analysis steps

» Show that weak-
perturbation first pas-
sage follows a white-
noise process that fixes
the dependence on the

noise amplitude €

 Analyze the noise-
spectrum dependence
by applying the replica
method to the white-
noise Burgers equation
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Previous contributions

White (1984) obtained white-noise ray
deflections, but did not account for ray
disappearance at cusps

Kerstein and Ashurst (1992) argued
heuristically that O(e) fluctuations

speed up front propagation by 0(64/ 3 )
Blum (1994) explicitly applied the replica
method to an equivalent “directed polymer”

Fedotov (1995) formally applied the replica
method to weak-advection first passage,

but assumed white noise a priori
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“replicated” path integral allows exact averaging
over the noise

 The ensemble average (A) involves {InZ), an intractable quantity

 An identity comes to the rescue VA
nZ % tim 21 1/_
H®0 n / slope =InZ

« Since Z" depends on the noise 1 exponentlally, we can average using
the Gaussian identity (expn) = exp((n }/2)

* The nth power introduces n “replicas” of the polymer, which interact
after averaging (indices a, b, c range over the 7 replicas)
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calculation reduces to the quantum mechanics
- of zero particles

« The quantity {(Z") is the Feynman path integral for # nonrelativistic
quantum particles with static pair potential — V’/4v (and 72 = 2v)

 The wave function evolves by the “imaginary-time” Schrodinger equation
and projects onto the ground state ( energy E,<0)asA — oo

| AR

E, 2l

Zi’l
4 IZ — lim =2
2N #®0 n

N Ii\ . B Al

n®0 n

 We cannot numerically simulate n — 0O particles; we must somehow

analytically continue from positive integer n
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 special variational method gives a bound on
the answer

 General quantum variational method (used in atomic/molecular physics):
Invent an arbitrary family of “trial” wave functions [¢/) and minimize
(W |H]yr); the result is an upper bound on the ground-state energy £,

« If the family is expressed analytically in 72, we can continue (¥ |H [yr)
to n = O particles

Counterintuitive, nonrigorous operations in the # — 0 limit:

« There are now negative degrees of freedom; we maximize (W |H |yr)
to obtain a lower bound on Eg and thus an upper bound on the
speedup (A)

» We use Gaussian trial wave functions that break the permutation

symmetry among 7 replicas by dividing them into blocks and possibly
sub-blocks, sub-sub-blocks, etc. (Parisi hierarchical symmetry breaking) ——
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Xplicit formulas generalize replica bounds to
arbitrary spectra
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The general variational analysis is complex but becomes tractable in the
inviscid limit (v — 0) corresponding to Huygens propagation

Take a noise spectrum D(k) in NV transverse dimensions [D(k) <> V(x)]
“One-step” replica symmetry breaking yields the simplest bound

AN TGRS

“Full” symmetry breaking often gives a tighter bound for N =1 [the
expression is valid below a critical /V that can be calculated given D(k)]
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The special form of these bounds for a “Gaussian” medium correlator
(c(x)o(x+r))=¢€ exg( r2/a )is |mpl|ed by Blum (1994)—
one-step: (A) < 1.744€*3 N3 full (N = 1): (A) < 1.714€™? /
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iscale media can produce divergent forci
t finite speedup

Gaussian |
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For N =1 and a 2D “exponential” correlator (oo) = € exp(—r/a),

the Burgers force spectrum is kzD(k) ~ 1/k and so its integral, the
rate of energy input (and thus dissipation), is divergent at £ — oo

The “one-step” upper bound on the Burgers energy density (A ) is also
divergent (uninformative), but “full” breaking gives (A) < 2.038¢
The infinite dissipation rate requires an infinite density of cusps

The same considerations apply to weak advection by develo kzped Navier—
the

4/3

Stokes turbulence (corresponding to Burgers forcing ~ 1/
speedup remains finite as Re — oo, despite cusp densification

Exponential




.Lagrangian numerical method allows systematic
testing of replica results for 2D propagation

« For N =1, represent an inviscid Burgers velocity field by
piecewise linear sections, with discontinuities at shocks

 Evolve freely (retaining exact piecewise linearity) for a timestep,
then “kick” the fluid with an impulsive force

* The force is synthesized from a given spectrum and taken as
piecewise linear on a fixed grid

* The number of marker points increases as kicks occur, but
stabilizes as shocks form and merge

 Convergence of the steady-state energy density is observed with
the timestep, the forcing grid, and the length of the periodic domain
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| erical simulations confirm that 2D replica
ounds are valid and reasonably sharp

Speedup (coefficient of €*/°)

2
Replica bounds
1.8 —
16 : % Numerics
1.4 * (Previous lower-precision
: : : numerics not shown)
Modified Gaussian Gaussian Exponential

(one-step) (full) (full)
 The modified Gaussian is an alternate smooth medium [D(k) ~
kzexp(—kz)] for which one-step symmetry breaking applies

» We find significant and consistent dependence on the perturbation
spectrum for fixed €

» The agreement raises confidence in replica predictions for 3D
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mopsis: Links among diverse realms of physies
contribute to the analysis

Physical systems Branches of physics ~ Meanings of v
Propagation of flames Combustion Markstein length
l Weak perturbations
First passage of rays Geometrical optics Wavelength
l White noise
The Burgers equation Fluid dynamics Viscosity
l Reinterpretation
Directed polymers Statistical mechanics ~ Temperature
l Replicas

The Schrodinger equation  Quantum mechanics  Planck’s constant
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18 now well understood theoretically

nclusion: Weak-perturbation first passage =
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A weakly perturbed Huygens front, such as a premixed flamelet, can
be reduced to an inviscid Burgers fluid driven by white noise (or to the
low-temperature limit of an equivalent directed polymer)

The white-noise reduction applies to random media with arbitrary (even
non-Gaussian) statistics, provided the central limit theorem is obeyed

In the process, the /3 scaling of the front speedup is extracted

The coefficient of €*/° for a given perturbation spectrum can be
bounded above using the replica method—an illustration of the
versatility of field theory

Replica results for 2D propagation match within ~ 20% the speedup
values obtained numerically

The success of the replica method implies direct applications to weakly
random optics and acoustics (e.g., seismology)



nclusion: The results contribute to

“understanding of turbulent combustion
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Because of the white-noise reduction, weakly random propagation senses
only the second moment of fluctuations

Even so, the magnitude of the speedup is nonuniversal and depends on
the perturbation spectrum

Strong advection of premixed flamelets exhibits no such reduction and
should be even less universal, depending on arbitrary moments of the flow

A general flame-speed theory should capture this nonuniversality and
reproduce our results at weak perturbations

The widely used flame-speed theory of Yakhot (1988) predicts universality
for both strong and weak advection, and predicts e instead of €*/°
dependence on weak perturbations

Our analysis of the weak-perturbation limit can provide both inspiration
and quantitative guidance for improved modeling of turbulent combustion ——
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