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Any IFE power-plant design (e.g., ZP3) will
need shock mitigation to maintain system integrity.
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Preliminary analysis on energy-driven
shock attenuation in water used the WONDY code.

e Calculations were all performed with the one-dimensional Lagrangian
hydrocode WONDY:

> Both planar and cylindrical symmetries were used.

> The numerical mesh consisted of 3,050 zones representing: 1) the source
region (50 zones); and 2) an additional 80 source-region thicknesses (3,000
zones).

> Typical runs extend to 50,000 time cycles or more.
> Calculations run in a few minutes or less on a typical laptop.

e The nominal calculation involved the following base configuration:

> Energy was deposited in the axially-located source region of thickness
(or radius) 1 cm.

> The “initial load” (or energy deposition) in the source region was p=1 Mbar
(E,=100 kd/g, py=1 glcm3, y,=1).

> Energy was deposited over 1 ns, which is “short” compared to the shock
transit time across the source region (~0.7 pus).

> Water was represented by the U /U, Hugoniot, U; = 1.48 + 1.77 U, (km/s); as
well as by p, = 0.9982 g/cm? for the denS|ty, and y, = 1.0 for the Griineisen

parameter.
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We examined various
excursions from the nominal configuration.

e Computational variations involved:
> Comparison of slab and cylindrical geometries;

> Energy source durations that were short, similar, and long compared to the shock
transit times across the source region —

— At=1 ns (short)
— At=1 ps (similar)
— At=100 ps (long)
> Low- and high-pressure, and polynomial equations of state (EOSs) —
— Low-pressure EOS: U;=1.48 +1.77 U, km/s
— High-pressure EOS: U;=1.48 +1.52 U, km/s
— Polynomial EOS (n=1-py/p): p=2.191(1-6.811+31.712+91.6 13+ 129 %) GPa
> Changes in the “initial load” to show importance of EOS nonlinearities —
— P, =1 Mbar (large): &,= 100 kJ/g, with p, =1 g/lcm3, y,=1
— P, =1 kbar (small): g,=100 J/g, with p, =1 g/lcm3, y,=1
> Additional calculations that employed a Z-type p(t) loading.

o Detailed results are plotted in terms of pressure histories at evenly spaced
Lagrangian points in the water outside the source region. lllustrative pressure
profiles at evenly spaced times are also given to show the early-time behavior
of the configurations. Normalized peak-pressure data are tabulated.
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The equations of state for relevant materials
can be described by linear fits on the U//U, plane.
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Early-time pressure profiles show the large

differences between slab and cylindrical geometries.
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Later-time results show even greater
effects in attenuation and propagation velocities.
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Pressure attenuation for energy-driven shock
loading in water shows various dependencies . ..

Driving Energy Equation Lagrangian Slab Cylindrical
Pressure Pulse Width of State Position Geometry * Geometry *

10 cm 0.148 0.023

1 Mbar 1ns Lo-Pressure
75cm 0.031 0.0023
10 cm 0.146 0.023

1 Mbar 1ns Hi-Pressure
75cm 0.030 0.0020
: 10 cm 0.170 0.020

1 Mbar 1ns Polynomial
p(n) 75 cm 0.028 0.0013
10 cm 0.151 0.023

1 Mbar 1 us Lo-Pressure
75cm 0.031 0.0020
10 cm 0.033 0.0069

1 Mbar 100 ps Lo-Pressure
75cm 0.031 0.0020
10 cm 0.50 0.137

1 kbar 1ns Lo-Pressure
75cm 0.41 0.037

* Listed values are peak pressures normalized by “driving” pressure. @
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. . . and attenuation for p(t)-driven
loading in water shows related features.

e Sample configuration: 2
> Inner “radii” of 10 cm and 5 cm; E 10 |
> Buffer layer or liner of 1 cm of S o8 P(Y) = po (t/z))" &2
aluminum; §_ i po = 1.0 Mbar
- 06| 74 =7.3576 x 102 us
> Water layer of 80 cm. g 1= 24953 x 10 s
.y . 0 04 n =0.80151
e A pressure boundary condition, p(f), is $
applied to the inner surface of the S
aluminum buffer. It is representative e R — =
of pressure loads generated by Z. Time, t(us) | o 2000
Driving Inner Equation of Lagrangian Slab Cylindrical
Pressure Radius State Position ** Geometry * Geometry *
10 cm 0.044 0.029
1 Mbar 10 cm Lo-Pressure
75 cm 0.0084 0.0029
10 cm 0.044 0.023
1 Mbar 5cm Lo-Pressure
75 cm 0.0083 0.0022

* Listed values are peak pressures normalized by “driving” pressure. @ Sandia
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These attenuation calculations
can be summarized in a simple fashion.

Geometric (cylindrical) attenuation plays by far the largest role, but
as starting (inner) radii become larger, the geometric effects are
reduced. Note that as a rough estimate, shock attenuation due to
geometric divergence can be separated from that due to material
losses—(1/r)'2 for cylindrical, and 1/r for spherical.

Reasonable variations in the water equation of state have a
relatively small effect on shock attenuation.

Pulse width can be important at short distances (early times); but
less so for longer distances (later times); in particular for the
source-region calculations.

Greater loading levels increase the effects of EOS nonlinearities.

Pressure transmission to surrounding containment materials can
be determined through material impedances, independent of
geometry.

However, for many types of response, impulse (i.e., fp-dt or | vedm)
may be more relevant than pressure.
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Shock transmission and reflection at an
interface is calculated from material impedances.

For a shock
wave traveling
from mat’l A
into mat’l B
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For a potential IFE first-wall material,
the properties for FLIBE have been reported.

Chemical Composition
LiF — 67%; BeF, - 33%

Be — 6% ; Li—18%; F—76°/\

Shock Properties

Density - Po =2 g/lcm?
Sound speed - Co = 3.42 km/s
U,/U, slope — s =1.35
Griuneisen parameter —

Yo = 0.96

Thermal Properties
Specific sublimation energy —
&, =~ 1330 callg
Specific melt energy —
g, =270 callg
Melt temperature —
T,,=459 C°

Specific heat —
C, = 0.57 callg-K

12

Linear absorption coefficient, p (m)

— Fiibe |]
v Lithium | A

1 keV Blackbody

10 10° 10’ 10°
Photon energy, hv (keV)
— Zaghloul (2003)
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A simple Mie Gruneisen EOS gives
scaling laws for peak instantaneous pressure.

Simplified 10*
Mie Griineisen EOS F
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Scaling for Instantaneous Peak Pressure

Ppeak(FLIBE) = 8 kbar/(J/cm?)
Ppoeak (Steel) = 220 kbar/(J/cm?) @ ﬁgagﬁal
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The modified BBAY model predicts dynamic
impulse from simple energy deposition analyses.

MBBAY Model: 10°
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Typical Lethality Response Levels:

e Light-weight structure (e.g., satellite)
> 1 to 10 ktaps *

e Medium-weight structure (e.g., airframe)

> 10 to 30 ktaps

¢ Robust structure (e.g., RV)
> 30 to 80 ktaps

14 * 1 tap = 1 dyne-s/cm?
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1 keV Blackbody
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Simple models for peak shock pressure,
attenuation, and impulse, have been described.

e We have demonstrated that IFE shock mitigation problems can be
addressed with a combination of one-dimensional hydrodynamic
calculations and simple analytic models.

> 1-D hydrocode calculations can rank important factors for shock
attenuation, using planar, cylindrical, and spherical geometries.

> Simple shock physics provides the amplitudes of shocks crossing
material interfaces.

> Along with energy deposition calculations, simplified Mie Gruneisen
equations of state give scaling laws for peak instantaneous shock
pressures.

> Analytic descriptions (MBBAY model) provide values for dynamic
impulse (for structural response) in situations where pressures are at or
below the material failure thresholds.

e These approaches are good for initial problem scoping and analysis
of the relevant phenomenology. More elaborate multi-dimensional
radiation-transport hydrocode will be needed for actual system
designs.
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