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Abstract

Gelcasting of silicon metal for the production of sintered reaction-bonded silicon nitride (SRBSN)
was investigated in order to identify associated advantages over conventional forming techniques,
i.e., die and isostatic pressing. Compacts were formed from identical powder mixtures by both
gelcasting and pressing, and were nitrided and sintered to produce SRBSN ceramics using both
conventional and microwave heating. Characterization of the samples included measurement of
green density, green and nitrided pore structure, weight gain during nitridation, final density,
microstructure, toughness, and flexural strength. It was found that a more uniform pore structure
existed in the green gelcast samples. It is believed that this pore configuration aided in nitridation,
and manifested itself in a more uniform final microstructure. In addition, improved mechanical
properties were achieved in the gelcast samples. This improvement can be attributed to green
microstructure homogeneity. An additional finding of this study was that microwave heating
combined with gelcast forming resulted in SRBSN materials with improved mechanical properties.

Introduction

Silicon nitride-based materials are the leading candidates for use as high-temperature structural
ceramics due to their excellent overall combination of mechanical and physical properties [1].
These materials are of interest in numerous applications for such diverse items as cutting tools,
rotors for turbine engines, and valves and cam followers for gasoline and diesel engines.
Significant progress has been made in recent years in producing silicon nitride materials with
superior strength, fracture toughness, and creep resistance. However, these materials tend to be
prohibitively expensive due to the high cost of the silicon nitride powders used to produce them.
Reduction of cost has been recognized as a major need for the successful introduction of silicon
nitride ceramics into the marketplace [2,3,4].

SRBSN is an attractive alternative to sintered silicon nitride for a number of reasons [5,6]. Silicon
is economical compared to high purity silicon nitride powders and is more easily formed into
shapes than silicon nitride powders. Also, silicon preforms undergo less sintering shrinkage than
preforms made of silicon nitride powders. However presently, silicon preforms of complex
shapes must be made by expensive cumbersome forming processes, such as injection molding.
The door is open for inexpensive forming processes for making these silicon preforms.
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Gelcasting is a simple, inexpensive forming process which has been developed as a method for
forming ceramic greenware. Gelcasting involves the preparation of a ceramic slip in a mixed
monomer solution. After preparation of the slip, a combination of initiator and catalyst is added to
polymerize and cross-link the monomers upon heating, Previous to this heating, the slip is poured
into molds of potentially complex geometry, whose shape the final gel will assume. Numerous
combinations of monomers, catalysts, and initiators have been developed for use with both
aqueous and organic solvent.systems as dictated by the ceramic powder being gelcast [7,8,9].
Also, it has been shown that gelcast preforms of alumina have up to five times the mechanical
strength of die pressed green bodies of comparable volumes loading [10].

The present work was undertaken to develop a method for the fabrication of gelcast silicon
preforms. It is felt that the excellent uniformity and dispersion that is achievable in liquid
suspension can be frozen into the gelcast compact. It is also believed that this method will enable
the formation of complex green bodies of high green strength. In addition, the present study was
conducted to investigate the use of microwave heating for the nitridation and sintering of the
gelcast silicon preforms. Previous studies have shown that microwave heating results in
improved mechanical properties in the final SRBSN product [11,12].

Experimental

A Si metal based powder mixture designated TM-145 was used for this study. This composition
consists of the following chemicals:

67 wt % Si-metal, Elkem metallurgical grade

13 wt % Y203, Molycorp-5600

4 wt % Al303 RCHP-DBM

14 wt % Si3N4, Stark LCION

2 wt % SiO2, U.S. Silica-5 micron
The powder mixture was turbomilled for ~2 hours with 4 mm Si3N4 media in isopropanol (IPA)
containing 0.5 wt % Darvan-C and 0.5 wt % PVP-K15 as dispersants, and using 4 mm Si3Nyg
media. After milling, the powder was dried and sieved through a 100 mesh screen.

100 g portions of the pre-milled TM-145 powder mixture were initially die pressed in stainless
steel cylindrical dies using stearic acid in acetone as a mold release agent. After uniaxial pressing at
5 MPa, the samples were then bagged and isopressed at 117 MPa. The pressures for pressing
sarlnples were chosen such that the green densities were comparable to those obtained by
gelcasting.

The chemical constituents of the gelcasting system have been described in a previous publication
[13]. A 500 g portion of the pre-milled TM-145 powder mixture was added to a (IPA) solution
containing the gelcast chemicals and milled with 4 mm Si3N4 media in a small attritor mill for 30
min. A mixture of catalyst and initiator was then added to induce polymerization and cross-
linking. Glass plates separated by 1 cm thick rubber gaskets were used to cast flat plates from 100
g portions of the ceramic slurry. The slips were gelled in a oven at 65°C for approximately one
hour. After gelling and cooling to room temperature, the gelcast pieces were dried overnight in a
closed dessicator box. Some of the gelcast pieces were then isopressed at 103 MPa.

All samples underwent binder removal in an air furnace to a final condition of 525°C for 1 h. The
samples were then nitrided in either a graphite element or a custom-built 2.45 GHz multimode
microwave furnace. Sample crucibles and conditions for the nitridation and sintering have been
discussed in previous publications [11,12].

The weight gain values for nitridation of the samples processed by microwave heating were
measured after the single-step nitridation and sintering treatment. Weight gains for nitridation of
the samples processed by heating in a graphite furnace were made after the nitridation step.
Densities of sintered pieces were determined using the Archimedes method. The pore structure of



the green and nitrided samples was measured using a Micromeritics AutoPore II 9220 mercury
porosimeter. The final microstructure of both fracture surfaces and polished plasma etched
surfaces of selected sintered samples were viewed with a Hitachi $-800 SEM. 3 mm by 4 mm by
45 mm size specimens were machined from sintered samples for mechanical properties
measurements. Flexural strength testing was done by four point bending with inner and outer
spans of 20 mm and 40 mm, respectively . Fracture toughness values were measured using
Chanﬁktil's method of four point bending of specimens indented with a Vickers indenter at a 10 kg
load [14].

1ts and Di ion

Table 1 lists the sample abbreviations, including a description of the forming method and furnace
type used for processing, which are used in the graphs and tables.

Table 1. Sample Description

Forming Process Furnace Type Designation
Die and Isopressed Microwave DI-MW
Die and Isopressed Graphite element DI-GE
Gelcast Graphite element G-GE
Gelcast and Isopressed | Microwave GI-MW
Gelcast and Isopressed | Graphite element GI-GE

Measured values of green density, weight gain during nitridation, and sintered density are given in
Table 2. The weight gain data indicates that the level of nitridation appears to be independent of the
forming process. The lower values weight gains observed in the microwave processed samples
are due to weight losses during sintering. The theoretical maximum weight gain is 66 wt %,
however values approaching 60 wt % are taken to signify near complete nitridation, since weight
losses occur during the sintering step [15). Similarly, there appears to be no relationship between
the final sintered densities and the green densities of the materials. A density of 3.3 g/cm3 was
calculated to be the theoretical density.

Table 2. General Properties

Sample Type Green Density Weight Gain Sintered Density
% T.D. During % T.D.

Nitridation .

DI-MW 57.0 57.0 97.4

DI-GE 57.0 60.0 98.4

G-GE 56.3 59.5 98.5

GI-MW 60.5 58.8 98.0

GI-GE 60.4 60.7 99.1

Three green body samples, one formed by die pressing and isopressing, one by gelcasting and
isopressing, and one by gelcasting alone, were analyzed by mercury porosimetry. Figures 1 and
2 demonstrate the incremental and cumulative pore areas as a function of pore diameter. These
plots show two significant populations of pores in the green samples. The populations of the
smallest diameter pores are thought to be a result of sample compression at very large mercury
pressures, hence will be ignored. The pore populations at higher pore diameters demonstrate that
the gelcast sample had the largest pores and the narrowest pore size distribution, furthermore; the
die and isopressed sample had the smallest pores and the widest size distribution. Uniform
packing of the fine particles in the gelcast suspension would be expected to produce a green
compact with pores of a narrow distribution. Conversely, the presence of agglomerates in the
dried and sieved powder mixture would account for a broader pore size distribution.



No distinct differences were seen in the mercury porosimetry data from the analyses performed on
samples following nitridation (data not shown). The filling of pores which occurs during the
nitridation process appears to mask the differences that are present in the green compacts.

Figures 3 and 4 give the values of strength and toughness, respectively, for SRBSN samples
formed and processed as indicated in Table 1. These results show that the flexure strengths of all
die pressed samples were lower than the two types of gelcast samples, irrespective of heating
method. Also, these results show that the gelcast-isopressed sample processed by microwave
heating had a higher strength than gelcast-isopressed material processed by conventional heating.
However, the die pressed-isopressed sample processed by microwave heating showed the reverse
result. The lower strength of the die pressed, microwave processed material may be due to a
general observation made in several experiments that microwave radiation can preferentially heat
flawed areas within samples, with resulting negative effects. Microwave heating of both die
pressed-isopressed and gelcast-isopressed samples gave slight improvements in the toughness
values, as compared to conventional heating of both of these sample types.

SEM photomicrographs of polished and plasma etched surfaces of selected sintered SRBSN
materials are shown in Fig. 5. The grain structure of both die pressed-isopressed and gelcast-
isopressed materials which were processed in the microwave furnace contain numerous large
acicular grains. The gelcast-isopressed and the die pressed-isopressed materials which were
processed in the graphite furnace appear to have fewer acicular grains, and these grains have a
smaller aspect ratio than microwave processed materials. The slightly larger toughness values of
the microwave processed materials (Fig. 4) are probably due to these microstructure differences.

Conclusions

A method has been developed for gelcasting silicon metal and sintering aids into green preforms
for the production of SRBSN. This gelcasting method was shown to be superior to a traditional
die press forming process. The dispersion and uniformity that is regularly achievable in liquid
suspensions of ceramic powders can be preserved in a solid compact through the gelcasting route.
This preservation leads to uniform pore structure, which is especially important in the reaction
bonding of Si metal, where infiltration of nitrogen gas is crucial. The uniformity of the green and
nitrided pieces is then found in the sintered SRBSN ceramics.

In addition, this study reinforces similar studies which have shown that microwave heating can be
used to fabricate SRBSN materials with superior strength and toughness, compared to those
produced using conventional heating techniques. This superior strength and toughness of the
SRBSN materials is due to the increased numbers of acicular silicon nitride grains.
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Figure 1. Incremental pore area as a function of pore diameter for green body compacts formed by
die press-isopress, gelcast only, and gelcast-isopress methods.
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Figure 2. Cumulative pore area as a function of pore diameter for green body compacts formed by
die press-isopress, gelcast only, and gelcast-isopress methods.
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Figure 3. Strength values for sintered SRBSN materials processed in graphite element and
microwave furnaces for samples defined in Table 1.
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Figure 4. Toughness values for sintered SRBSN materials processed in graphite and microwave
furnaces for samples defined in Table 1.
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Figure 5. SEM photomicrographs showing the microstructure of SRBSN materials produced from
preforms which were a) die pressed-isopressed and processed in a microwave furnace, b) die
pressed-isopressed and processed in a graphite furnace, c) gelcast-isopressed and processed in a
microwave furnace, and d) gelcast-isopressed and processed in a graphite furnace.
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