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ABSTRACT

The viscous response of electrorheological fluids is usually manipulated through
the use of DC or uniaxial AC electric fields. The result is that fibrillated structures
parallel to the field form in a quiescent fluid; the distortion of such structures in a
flow determines the enhanced viscous response, at least at low and moderate flow
rates. We have conducted preliminary studies of electrorheological response in a
different field configuration—a rotating electric field. With respect to the uniaxial
AC case, there are two new developments in this type of field. The structures
formed are disk-like, in the plane of the rotating field. Furthermore, the structures
rotate either with or against the field, depending on the dielectric or conductivity -
contrast with the surrounding fluid.

1. Introduction

At the heart of the electrorheological (ER) effect is the ability to manipulate
the interactions between colloidal particles through an applied electric field. While
there has been considerable study of the way in which particle and ﬂuid composi-
tion and response influence the ER response of the colloidal system!, study of the
influence of the electric field has been for the most part restncted to a study of the
influence of the driving frequency of a uniaxial field.

In this contribution, it is our purpose to demonstrate that interesting effects

arise by using more complicated electric field configurations. We focus upon circu~

larly polarized electric fields. If the rotation frequency of the field is significantly
lower than the characteristic response frequency of the polarization mechanism for
the particles, then the interactions of the particles, while still uniaxial, are qualita~
tively reversed with respect to the normal ER case—particles attract if they are in
the plane of the electric field, and repel along the direction perpendicular to this
plane. This results in the formation of disk-like structures: we propose to call this
the "Rotary” ER effect.
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Any polarization mechanism will display some phase lag with the applied elec-
tric field. In the ordinary ER effect, the polarization is approximately collinear
with the field even for appreciable phase lag, so while the strength of the ER effect
may be altered by this phase lag, no torques develop on the particles. In the rotary
ER effect, such torques play a significant role, and cause the disk-like structures to
rotate at observable frequencies.?

2. Rotary Electrorheological Interactions

Consider a monodispersed suspension of spherical particles of radius r4 in an
insulating fluid. For simplicity, we will assume that the particles have a simple
dielectric response, so that their dipqle moment obeys

p=pBriE (1)

where E is the instantaneous electric field. We will further simplify matters by con-
sidering only dipolar interactions between the particles; we ignore non-electrostatic
and multipolar interactions. As with ordinary ER fluids, we expect that this as-
sumption will lead to a qualitatively correct and a quantltatlvely inadequate un-
derstanding of fluid behavior.

Let us suppose that although the frequency of the field w is less than the (
-characteristic frequency wp of the polarization response of the particles, that it is
still greater than frequencies characteristic of particle movement in the fluid. To
estimate these latter frequencies, we recall the Stokes relation for the steady velocity
v of a particle of radius r; subjected to a constant force F in a fluid of viscosity

Ko,
F = 6mpgirg ‘ (2)

Since we expect from dJmensmnal analysis that the particles will be subjected to
electrical forces Fg ~ E2 rd, we conclude that the field frequency w should obey

W>>wa—% ] (3)

so that particles move a distance much less than their diameter in one cycle of the
applied field. Note that elsewhere we have termed w, the aggregation frequency,
since its inverse glves the characteristic time scale for particle aggregation in the
ordinary ER effect.4

We have identified a range of frequencies wq < wwp over which we can approx-
imately regard the particles as stationary over one cycle of the applied field, but
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with dipole moments following the instantaneous field. In this regime, to find the
effective interaction between particles, we should average the instantaneous inter-
action over one cycle of the applied field. The instantaneous interaction energy u
between two dipoles 15(1) and 15(2) separated by a distance 7 is

3T — 25. .
) =) (25T o @

where the indices are Cartesian. We suppose that p{12)(¢) = ,BrzE"o(t); thus the

dipole moment is proportional to the applied field Eo(t)—contributiom of other

dipoles to the local field are neglected. For a uniaxial field Ey(t) = Egf(t), the
resulting averaged interaction is

uty =L O (5)

where the brackets () indicate a time average, and 6 is the angle between + and
the field direction. Equation 5 is simply the anisotropic dipolar interaction familiar
from scores of ER fluid studies. We are concerned not with uniaxial fields, but with
rotating fields

Eiy(t) = Ey(& coswt + §sinwt) (6)

where £ and § are the normal three-dimensional basis vectors. Introducing this
form for the field into Eq. (4) and averaging over time, we find that

2,.6
u(F) = —%:Td(l — 3cos?6) (7)

where 0 is now the angle between the direction perpendicular to the plane of the
rotating electric feld and 7. Note that the sign of Eq. (7) is the opposite of that
of Eq. (5). Thus the particles repel in the direction perpendicular to the plane of

the field, and attract in the plane of the field. Just as the ordinary ER anisotropy -

lends itself to the formation of chains of particles, so the rotary ER anisotropy will
lend itself to the formation of disks or sheets of particles; these disks are seen in
experiment (see Figure 1.)




Figure 1. In a rotating electric field, particle disks form in the plane of the field.
This photo shows a disk of 10 um corn starch particles in such a field. (The
experimental results displayed in Figures 2 and 3 were obtained with 90 pm corn
pollen particles.)

3. Electrical Tofqu_es and Disk Rotation _ )

One significant difference between the rotary ER effect and the ordinary ER
effect is that significant torques develop on the particles in the former case. This
effect is not to be confused with the torques that develop due to inter-particle
interactions in, e.g., aqueous Suspensions, as observed by Hu et al.® The torque T
on a particle of dipole moment p in an applied field Eo is

T =5 x Ey (8)

Suppose that a particle is subjected to a uniaxial harmonic field Ej cos(wt). If the
polarization mechanism is linear, then the dipole moment of the particle will be
o(t) = ,B(w)rgEo cos(wt — §(w)), defining the polarizability 8 and the phase shift §
.as functions of frequency.” For the field given by Eq. (6), rotating at frequency w.
it is clear that the dipole moment will be



p(t) = ,B(w)'rSEo (& cos(wt — 6(w)) + sin(wt — §(w)) (9)
and thus that the torque T will be
T = 5B(w)r3E2 sin §(w) - (10)

For any polarization mechanism, we expect that the phase shift §(w) — 0 for
w — 0. The behavior of f(w — 0) depends upon the nature of the polarization.
If the effective dielectric contrast between the particle and the surrounding fluid is
positive, then g > 0, and the torque for small phase shift § will tend to rotate the
particle in the same sense as the applied field. On the other hand, if the effective
dielectric contrast is negative, then § < 0, and the torque will tend to rotate the
particle in the opposite sense to that of the applied field.

As a concrete illustration of this latter case, consider an insulating particle
suspended in a fluid of conductivity o. For simplicity, we suppose that the particle
and fluid can both be regarded as possessing underlying dielectric constants € = 1,
so we need consider only the conductive response of the fluid. Determining the
dipole moment of the particle in an arbitrary applied field is now an elementary
problem—current will flow in the fluid around the particle until the charge buildup
at the particle surface is sufficient to cancel the normal electric field at the exterior
particle surface (Gauss’ law insures that there is an electric field interior to the
particle in this case). A simple computation then shows that in this case

1 1

P =3 TT o

(11a)

and
§(w) = tan"Y(w/0) (11d)

where the w — 0 result, 8 = —1/2, is that of a spherical hole in a medium of infinite
dielectric constant. ‘

A disk of particles, each subjected to a torque T, will rotate at a frequency -
determined by the balance between this torque and the viscous drag. We model
the disk as an oblate spheroid of semi-axes (a,b,¢) = (R, R,4), with 7y < R. The
viscous torque L on such a spheroid rotating at frequency f in a fluid of viscosity
po is given (for sufficiently low Reynolds number) by®

32
L=FuR’f | (12)




The electrical torque on this disk will be given by the torque per particle from
Eq. (10) times the number of particles N,,. For simplicity we write Np = I’&Rz/ 7‘3
with & ~ 1, and obtain

f

~ 3kf(w) siné(w)Eg (Zﬁ) ‘ (13)

32ug R

Note that the frequency is considerably reduced below its naive dimensional value
of Eg /1o by the factor rg/R. This factor also insures that the viscous stresses at
the edge of an isolated disk, no matter how large it is, are insufficient to cause
yielding in the structure.
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Figure 2. The disk rotation frequency f versus field magnitude EZ for 90 pm corn
pollen particles suspended in 4-methylcyclohexanol. The field rotates at a frequency
of 1.0 kHz. Clearly f < E3, as predicted by Eq. (13).
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Figure 3. The disk rotation frequency f versus field rotation frequency w for 90
pm corn pollen particles suspended in 4-methylcyclohexanol (solid crosses, left-
hand scale) or mineral oil (open crosses, right-hand scale) at a field magnitude of 4
kV/em. The conducting solvent (4-methylcyclohexanol) results are well modelled
by the Debye form from Eq. (14), with o = 1.58 x 10%sec™! and fy = 1.49Hz.
The disk rotation in the mineral oil was an order of magnitude slower, with a more
complicated frequency dispersion.

4. Experimental Results

We have tested these ideas by constructing a cell bounded by phased electrodes,
which generate a spatially homogeneous but rotating electric field over a large region
in the interior of the sample Details of the experimental procedure and results will
be published separately.” Our ER fluid was made of 90 pm corn pollen particles;
these could be easily visualized. We suspended these particles either in the relatively
conducting solvent 4-methylcyclohexanol or in a much more insulating mineral oil.




In both solvents we were easily able to see disk formation at fields of from 0.3
to 4 kV/cm, and at field rotation frequencies between 0.5 and 10 kHz. For the
conducting solvent, the disks counter-rotated, opposite to the sense of rotation of
the field. This agrees with the prediction in section 3 above regarding the behavior
of insulating particles in a conducting solvent. Figure 3 shows the dependence of
the disk rotation frequency f on applied field; clearly the rotation frequency is
x E2, as predicted in Eq. (13).

The conducting medel above predicts, using Eq. (11), that f o« Ssiné, or
equivalently that the dependence of f on field frequency w is

(w/o) '
f= f m | (14)

Figure 3 shows the disk frequency f versus the field frequency w for each of the
_solvents. For the conducting solvent, a fit to the “Debye” form Eq. (14) is also
shown; the agreement is good, although there is some additional dispersion at low
frequencies. The insulating solvent behavior is not fit by a Debye form; in addition,
the disks co-rotate with the field in these solvents, which suggests that the internal
dielectric relaxation of the particles is determining the phase lag of the polarization
in this case, leading to a positive effective dielectric contrast between the particles
and the fluid.
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