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Goals
—

To derive nonlinear equations for flute modes in
a high beta plasma, when magnetic components of
excited wave field are included into the system.

To analyze linear stage of flute mode instability in
high beta plasma with inhomogeneous magnetic field.

To develop a code for numerical solution of the nonlinear
system of equations for flute mode turbulence.

To investigate nonlinear saturation of flute mode instability
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Global MHD modes in the precursor
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Laser probing and Faraday rotation

experimental results
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Experimental results indicate non MHD
behavior of excited wave spectrum

magnetic field density wave turbulence

Faraday channel Shadowgraphy Interferometry
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Development of plasma turbulence in the precursor SRV
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Flute instability

small density perturbation 07 ~ cos(® ¢ —k z) Vi
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Flute mode turbulence in high beta plasma
_ 7. &

For flute mode turbulence the contributions of density
fluctuations and finite Larmor radius effects are significant.

In high beta z-pinch plasma contribution due to
electromagnetic effects should also be included.

Qﬂ<<1, kD:()a (I)(X,y,t), N(X,y,f), Ax(x’y’t)’ Ay(x’y’t)
Ez—@q)(x,y,t)—lé—A, B=rot A
c ot

N(x,y,t)=ny(x)+5n(x,y,t)  B(x,y,6)=[B,.(x)+8B.(x,y,1)] &,



Configuration of excited wave fields
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Basic equations
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Nonlinear equations for flute modes
in high beta plasma
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Nonlinear equations for flute modes in high beta plasma e
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Growth rate and frequency of flute modes
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In contrast to Hasegawa-Mima equation for electrostatic drift
turbulence, for flute mode turbulence in a low beta plasma there are

two perturbed quantities: potential ® and density N.

The polarization drift nonlinearity is WCDX%(AED)]Z
IS known to cascade power towards long scales.

The contribution of density fluctuations to the ion polarization

drift is significant.
The diamagnetic component of polarization nonlinearity

T . o
- div [VnxV(V,®)] can significantly modify cascade properties.

. . . C Mom o
The convective nonlinearity B—[VCDXWL on the

0z

contrary, cascades power into the shorter scale lengths.
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Nonlinear wave cascades
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Wave energy cascade to small wavelengths and
associated ion heating due to E x B nonlinearity

n

Source region K

<

Wave energy cascade to large wavelengths and excitation
of large scale structures due to polariztion drift nonlinearity



° UNIVERSITY
Fluid Model of 2D Flute Turbulence

i

¢ Numerical Solutions of Nonlinear Flute Equations.
e Pseudo-spectral spatial representation

e Two-step predictor-corrector time advance

« Arakawa method used throughout to treat Poisson
bracket nonlinear terms

* Viscous and biharmonic dissipations advanced
explicitely in time
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Dimensionless variables
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Energies
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Potential in linear stage

B=0

250 250
200 200 —&
150
=
=]
100 100
50 50
0 0
0 50 100 150 200 250
col
-0.04 -0.02 0.00 0.02 0.04

lastem pot bet0 1007 xy 0

Q 1=1400

150 122

UNIVERSITY
NEVADA

*keno E ga



Toer

° ° ° UNIVERSITY
Density in linear stage SYNEBX
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Vorticity in linear stage “
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Vorticity in linear stage “
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Potential in nonlinear stage
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Density in nonlinear stage
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Vorticity in nonlinear stage
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Density in nonlinear stage s
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Vorticity in nonlinear stage
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* Wave activity experimentally observed in the central region
of imploding wire array, where significant part of the current is
concentrated, can be connected with excitation of flute-type
electromagnetic oscillations in high beta plasma.

* Equations derived for electromagnetic flute-type instability
contain electrostatic potential, magnetic field and density
perturbations.

* Linear dispersion equation for electromagnetic flute-like mode
instability has growing solution even in the
limit of a high beta plasma.

* Fluid model of flute turbulence can describe nonlinear
dynamics of large scale density and magnetic field structures as
well as wave energy cascading towards the short scales.



