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Goals

• To derive nonlinear equations for flute modes in

a high beta plasma, when magnetic components of 

excited wave field are included into the system. 

• To analyze linear stage of flute mode instability in

high beta plasma with inhomogeneous magnetic field.

•  To develop a code for numerical solution of the nonlinear

system of equations for flute mode turbulence.

•  To investigate nonlinear saturation of flute mode instability
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Flute mode turbulence in high beta plasma

For flute mode turbulence the contributions of density 
fluctuations and finite Larmor radius effects are significant.

In high beta z-pinch plasma contribution due to 
electromagnetic effects should also be included.
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Configuration of excited wave fields
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Nonlinear equations for flute modes 
in high beta plasma
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Nonlinear equations for flute modes in high beta plasma
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Nonlinear cascades

In contrast to Hasegawa-Mima equation for electrostatic drift 
turbulence, for flute mode turbulence in a low beta plasma there are 

two perturbed quantities: potential  and density .

The polarization drift nonlinearity is 
is known to cascade power towards long scales.

The contribution of density fluctuations to the ion polarization
drift is significant.
The diamagnetic component of polarization nonlinearity  

can significantly modify cascade properties.

The convective nonlinearity                          on the 

contrary, cascades power into the shorter scale lengths.
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Nonlinear wave cascades

Wave energy cascade to large wavelengths and excitation

of large scale structures due to polariztion drift nonlinearity

Wave energy cascade to small wavelengths and
associated ion heating due to E  B nonlinearity

kSource region



 Numerical Solutions of Nonlinear Flute Equations.

 Pseudo-spectral spatial representation

 Two-step predictor-corrector time advance

Fluid Model of  2D Flute Turbulence

• Arakawa method used throughout to treat Poisson    
bracket nonlinear terms

• Viscous and biharmonic dissipations advanced                              
explicitely in time
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Time dependence of energy
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Potential in linear stage
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Density in linear stage 
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Vorticity in linear stage
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Potential in linear stage
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Density in linear stage 

  1.0

 cit  1400

0 50 100 150 200 250

250

200

150

100

50

0

col

ro
w

0 50 100 150 200 250

250

200

150

100

50

0

col

ro
w

-0.00075-0.00050-0.000250.000000.000250.000500.00075

lastem_dens_bet1_1007_xy_0



Vorticity in linear stage
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Potential in nonlinear stage
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Density in nonlinear stage
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Vorticity in nonlinear stage
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Potential in nonlinear stage

  1.0
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Density in nonlinear stage
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Vorticity in nonlinear stage
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Conclusions

• Wave activity experimentally observed in the central region 

of  imploding wire array, where significant part of  the current is 
concentrated, can be connected with excitation of  flute-type 
electromagnetic oscillations in high beta plasma.

• Equations derived for electromagnetic flute-type instability 

contain electrostatic potential, magnetic field and density 
perturbations.

• Linear dispersion equation for electromagnetic flute-like mode 

instability has growing solution even in the
limit of  a high beta plasma.

• Fluid model of  flute turbulence can describe nonlinear 

dynamics of  large scale density and magnetic field structures as 
well as wave energy cascading towards the short scales.


