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Outline

* Predictive Modeling
— Where it is Important
— The Tall Pole in the Tent
« Empirical Properties of Joints: Softening and Dissipation
 Why Joint Modeling is Hard
— More Elements is not a Solution
— Local Properties are only Part of the Story
« Standard Practice

 The Beginning of an Approach to Accommodate Joint
Nonlinearities

 How Life Should Be
— Mapping from multiscale physics to FE environment
— Roark’s Handbook for properties and parameters
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Where We Must be Predictive -

Where correct answers are necessary and either
experiments are just too expensive or are
Impossible

— satellites

— next generation space telescopes

— jet engines and jet engine failure

— nuclear weapons systems
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Predictive Modeling —
Is that not what we already do?

* In general, engineers use simulation

— To interpolate/extrapolate among experiments
Note the tuned parameters

— To help explain experiments
— To help design experiments
— To provide design guidance
— To estimate factors of safely
 We generally do not try to predict with precision
— Finer than the intrinsic variability of the problems

— That which requires physics for which there are no
models
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Traditional Barriers to Predictive Modeling

e Discretization error

e Uncertainty in Material Properties

e Uncertainty in loads/boundary conditions

* Missing Physics - Interface Mechanics (Joints)
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Discretization Error:
Less of an Issue Now Than in the Past

Today:
SALINAS MP

>10M dof.

800,000 dof
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10 years ago: Recent Past:
Shellshock 2D NASTRAN
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Traditional Barriers to Predictive Modeling

e Discretization error

— Mitigated substantially by MP technology
e Uncertainty in Material Properties

— Subject of separate research efforts

e Uncertainty in loads/boundary conditions M TO?'(;S
— Better measured, calculated, or bounded mpu_ ©
. . misfit,
* Missing Physics S
_ _ Interference,
-Interface Mechanics (Joints) and
—The Tall Pole in the Tent variability

— Topic of this workshop -
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Significance of Joint Mechanics to
Structural Dynamics

e A (the*) major source of vibration damping

e A (the *) major source of system non-linearity

e A (the *) major source of part-to-part variability

* A (the *) principle missing physics element of the
simulation effort

*depending on configuration and load
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Major Experiments on Joints

Base Excitation Ring-Down of Quasi-Static
at Resonance Free Vibration Pull

Intrinsic difficulty of joint testing — the key physics is in a
hidden interface

* The necessity of complementary joint-less specimens
 The limitations of quasi-static pull INYSS @ Sandia
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Empirical Nonlinearity of Joints

Base Excitation or Monotonic Pull
Free Vibration
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Example of Variability Due to Joints

Shock Response Spectrum
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Example of Nonlinearity Due to Joints

Mock sub-structure of a Subject to various levels

generic built-up assembly of transient lateral base
excitation.
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Nonlinearities Indicated by
Shock Response Spectra:
Particularly Stiffness Nonlinearity

High-Level Lateral
Component SRS / ImPUIse Test
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Slide 13

wahl The upper blue and magenta curves correspond to simulation predictions (linear model) for high-level lateral impulse tests.
waholzm, 1/17/2005



How Well Does a Linear Model Do when
Tuned to a Given Experiment?

— Test Data at 10g

4|—— Linear Model
Tuned to THIS
Test

Linear Model
works well at the
amplitude at
which it was
tuned.

Acceleration (Qg)
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How Well Does that Linear Model Do when
Tested on a Different Experiment?

—— Test Data at
108g

| — Linear Model
' Tuned to Low-

—

\23 Amplitude Test
O

© Linear Model

% works poorly at

3 higher amplitudes.
< Important physics

IS missing.
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Why Joint Modeling is So Difficult

* Moving boundaries Structure
e Intrinsically multiscale ~ meters
 Nonlocal
No-Sli component ~
- = Regon Centﬁ’neters
-
Region of/‘ | gj Contact
Frictional

Sliding patch ~ cm

Slip zone
~100 pm
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lllustration of Computational Difficulties

e Consider a lap joint with dimensions selected so
that the contact patch is circular of radius a=1 cm

-~ em-

e Approximate the elastic contact problem with the
Mindlin solution for two spheres.
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Estimation of Interface Dimensions

 Normal Load N =4000Newtons
- Lateral Loads L e(0.05uN,0.8uN)
 Elasticity that of Steel

e Slip Zone:
L 1/3
3:{1—(—ﬂ — £ (0.58,0.98) = 2=
a UN a a

- -

4\

)2
|

Say our interest
In structural
response is in
100Hz-3500Hz

2 CMm

< (0.02,0.42)
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Necessary Finite Element Scales
Courant Times

* For case of small tangential loads L =0.05uN
element dimension in slip zone necessary to
capture dissipation is | = 2% _0,m and
Courant time is 4 ns

* To simulate 10 ms (one cycle of 100 Hz
vibration) requires 2.5E6 time steps.

Compare this with 3E4 time steps if the
problem were linear and solved implicitly
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Even if This Problem is Solved
Quasi-Statically

* In each load cycle, the width of the slip zone twice spans
from a—c=0 to a—c=0.42

* With characteristic element size in the contact patch

a—c
| = 0 —— =20um

* Observing that quasi-static contact has difficulty
changing stick-slip status of more than one node at a
time and each time step required numerous iterations

 Approximately 800 steps per cycle are required, each
representing hundreds of iterations.

Conservation of Cussedness
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Simply Employing More Elements is not the
Solution

 One cannot reasonably directly slave a micro-
mechanics contact algorithm to a structural
dynamics analysis.

e Tools are needed to cross the dimensions
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Interface Mechanics Involve More than
Local Constitutive Behavior

 The surface degrees of freedom on an elastic body are
coupled through the elastic fields within the body.

r(x) = [ G(x,y)u(y)dA

» Displacement is solved subject to constraints

U(x)(j7(X)|— 1oy ) =0 and |r(x)| < o,

 Refinement of the friction constitutive equation still leaves
a difficult nonlinear system of equations to solve

Refinement of frictional laws may be necessary to obtain
better answers, but it cannot simplify the problem
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Standard Practice for Ignoring the Nonlinearity of
Joints in Structural Dynamics

Analyst c
coarse
model p
tunable s
interface

postulating . _ .
proportional/modal amping to matc
damping test. He then makes
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Not Predictive for Real Systems

If you have to build the full structure
In order to predict structural
response, then you are not
predictive.

The problem is fundamentally
nonlinear and important phenomena
cannot be captured by tuned linear
models. (Silk purse/Sow’s ear issue.)
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The Beginning of an Approach to
Accommodate Joint Nonlinearities

What would be the first step to bring more physics into the
analysis?

« Explicitly account for the joint nonlinearity
* Place a joint model at the location of the actual joint.

Strategy

* Represent the whole joint with a small number of scalar
constitutive models.

* Determine the parameters of these models either from
micro-modeling or from experiments on individual joints.

D.J. Segalman ASME Journal of Applied Mechanics, V. 72, 752 (2005)

D.J. Segalman, Structural Control and Health Monitoring
V.13, Issue 1, (2006)

TNAT a3 @ Sandia
A A A National

Laboratories







The Whole-Joint Approximation and
lwan Models for Shear Joints

BT Whole-Joint approximation for
e e interface

f()=] PO -xXtp)ldg

U if Ju—x(t,¢)| = ¢ and U (U - x(t,#)) > 0

0 otherwise

\
\
T

X(t,9) ={

_..f

P4

The joint properties are
characterized by po(¢)
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A Four-Parameter Iwan Distribution

Ad)=Re*(H(#)— H(@— )+ SO~ )

* Nearly linear behavior at low
amplitude.

 Power-law energy dissipation
 Manifests micro- & macro-slip
e Physically reasonable

e Tractable

¢ Parameters R,S,x.¢,.. mapto
some or more physical significance

T § =G Sandia
27 FS > KT ’ Z ” IB VA1 N o!'-ci'\ @ Natinlnal

Laboratories




28

Ln(Dissipation/Cycle)

Determining Joint Parameters:
Measured Properties

K(F)

o*
.
.

()
Stiffness

Fs

Ln(Force Amplitude) _
Force Amplitude

Experiments yield dissipation D(F) as a function of force
amplitude, tangent stiffness K(F) at load, and yield force Fe.
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Calibration of Individual Joints to Predict
Dynamics of 3-Legged Structure

29
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Plot Joint Stiffness and Dissipation as Functions of Joint

Force
 10° Stiffness vs Force for Configuration 1 Dissipation vs Force for Configuration 1
-\\ T T T T ] ] -3 .2[ T T
S Linear fit to :
N . : 1 Power-law fit to
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Joint Force (Ib)

Joint Stiffness

Joint Force (Ib)

Joint Dissipation

Model Parameters are selected to match the stiffness at 300lb
force and to match the apparent power-law dissipation.
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Predictions with Joint Model

 Employ 4-parameter
model at joint

* Represent the rest of the
structure with linear
finite elements

« Excite base sufficiently
to cause macro-slip.
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Blast Simulation for Configuration 1

Predicted and Measured Acceleration, Case 1

Predicted and Measured Acceleration, Case 1
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Explicit incorporation of a joint model can significantly

Improve the quality of predictions.
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Predictions for Axial Base Excitation that
Entails Macro-Slip

'Linea;r model

el

—  Experiment

e
’(\(\es — Model

Explicit incorporation of a joint model can significantly
Improve the quality of predictions.
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Conclusions: |

e Conventional structural dynamics is not
predictive in the manner now required

 There are fundamental barriers to incorporating
micro-meshes in structural dynamics calculations

« Employing joint models explicitly in structural
dynamics can greatly improve the quality of
predictions
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Conclusions: Il

 The whole-joint approach, though a significant
Improvement is no where near adequate

— Does not account for the multi-dimensional nature of
loads.

— Does not account for the true complexity of contact:
moving contact patch, varying normal loads ...

— Induces fallacious stress fields near contact.

 Fundamental research must be done in
understanding joint mechanics and realizing that
understanding in terms of predictive and useful
structural dynamics tools.

We need not new models, but better models
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Expectation

* This is a class of problems whose core physics
spans many length scales and will require

— Research at several length scales

— Development of conceptual tools to span those
length scales

—New methods of incorporating distributed
constitutive response into structural dynamics
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Structural Dynamics of Jointed
Structures is Analogous to
Hydrodynamics with Turbulence

Turbulence

Joints

* Multiple scales limit DNS

* Multiple scales limit DNS

» Closure models are postulated to
connect micro-mechanics to
continuum

» Closure models are postulated to
connect micro-mechanics to
continuum

 Fundamentally important in Fluid
Mechanics

« Fundamentally important in
Structural Dynamics

* Long-Standing Problem

 Long-Standing Problem

* Very significant in drag, less
significant in lift

« Very significant in damping, less
significant in stiffness

» Heuristic, qualitative
understanding

» Heuristic, qualitative
understanding
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Nominal
macro-slip

force <

(forward
mount and
Internal)

Joint
bounding

range <
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Deducing Joint Parameters

Shaker and Quasi-static Testing Determined Macro-slip
Break-Free Force

(Ti-SS mass mock 3-leg
hardware

SS-SS single leg

hardware

AF&F Top displacement, inches

x 10

Force per leg, Ibs

Fs=6151b
560 1000
Fq =450 Ib to
634 Ib
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Cycle

Dissipaton per
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Quality of Fit for 4-Paramerter Iwan Model

Dissipation Match at F=500

& 4P lwaan Modal
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Force Amplitude
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Characterize 1-Legged Experiment to
Predict 3-Legged Response

Stainless Steel Stainless Steel

\ T

Prediction

Titanium
Titanium
Steady-State |[\)/IeCcIIU(I:e
Resonance B ode
Experiments arameters
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Understanding Joint Slip Mechanics via
Finite Element Micro-Modeling




43

Review and Approval
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