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Component-based Software Engineering

Language interoperability with Babel.

• Babel provides a scalable solution to 
language interoperability

• Generates glue code to link clients and 
servers in any supported language

• Supports scientific data-types (complex, 
array, etc) and object model
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Common Component Architecture (CCA)

Component-framework interaction in high-
performance, parallel computing.

• Components for high performance computing

• SPMD for distributed memory

– Framework handles per-process component composition

– No interference with interprocess communication –
standard parallel models

• Support for distributed/grid computing (RMI) and MPMD
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QC Package MPQC MPQC NWChem NWChem NWChem

Solver Package/Algorithm MPQC/BFGS TAO/LMVM NWChem/BFGS NWChem/BFGS TAO/LMVM

Line Search no yes no yes yes

Guess Hessian unit scaled unit 0.5*unit 0.5*unit scaled unit

Glycine (C2H5NO2) 26/26 19/19 33/33 65/33 19/19

Isoprene (C5H10) 75/75 43/43 56/56 89/45 45/45

Phosphoserine (C3H8NO6P) 85/85 62/62 79/79 121/61 67/67

Acetylsalicylic Acid (C9H8O4) 54/54 48/48 43/43 83/42 51/51

Cholesterol (C27H46O) 27/27 30/30 33/33 —/— 30/30

Number of energy/gradient evaluations required to determine minimum energy molecular structures 
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•MPQC/NWChem solvers use the standard Broyden, 
Fletcher, Goldfarb, Shanno (BFGS) update 
•The TAO package provides a limited-memory 
variable-metric (LMVM) solver

–Uses a subset of correction vectors – may be 
more appropriate for long optimizations
–Identical to BFGS with all correction vectors

•The TAO solver outperforms the solvers provided by 
both stand-alone QC packages – the TAO line 
search is well suited to molecular structure 
optimizations 

•Evaluate component technology as an approach for 
high-performance software development, both within 
and outside the chemistry domain

•Gain interoperability between chemistry packages

•Incorporate and evaluate generic mathematics 
packages (TAO, PETSc, GA)

–What improvements are needed for good 
performance of generic mathematics routines in 
the chemistry domain?

–Will state-of-the-art mathematics routines 
provide better performance than application 
specific routines written by chemistry package 
developers?

High Level Components for Structure Optimization

MCMD Hessian Driver
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•Combining SPMD and MPMD Paradigms –
MultiComponent Multiple Data
•MCMD driver launches multiple instances of QM 
components on subsets of processors (CCA)

•Each QM (gradient) component does multiple energy 
computations on subgroups (GA)
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Traditional parallelization scheme:
Each step executes on the 
entire machine

Using components, a Three-level 
Parallelism scheme was implemented:

Energy-Level: Native NWChem code

Gradient-Level: Global Array groups

Hessian Level: Task-based using CCA
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•Distributing work for maximum efficiency 
nontrivial and machine dependent

•Order of magnitude improvement:

Managing Multilevel Parallelism for Improved Machine Utilization

Low Level Components for Extended Capabilities

•Integrals programs do not implement all integral types

•Ability to share integrals and combine packages

–Enables new science

–Permits selection of most efficient package for each machine
NWChem
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Component architecture for integral evaluation
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●Low-level components tend to be finer grained with more function 
call overhead.  For Hartree-Fock (execution time in seconds):

Now possible to combine three corrections into one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

•Components are objects which exist within a runtime environment or framework which provides services

• Application composition

• Performance evaluation

• Computational quality of service

• Component approaches facilitate interface standardization and code interoperability

• Inserting “glue code” at component boundaries solves language interoperability (Babel)
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