
CCA
Common Component Architecture

Component Architectures for Quantum Chemistry:

Forging New Capabilities and Insights
Joseph P. Kenny,1 Curtis L. Janssen,1 Ida M. B. Nielsen,1 Manojkumar Krishnan,2

Vidhya Gurumoorthi,3 Edward F. Valeev,4 Theresa L. Windus,5

1Scalable Computing Research and Development, Sandia National Laboratories/CA
2Computational Science and Mathematics, Pacific Northwest National Laboratory
3Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
4Department of Chemistry, Virginia Tech
5Department of Chemistry, Iowa State University

Component-based Software Engineering

Language interoperability with Babel.

• Babel provides a scalable solution to
language interoperability

• Generates glue code to link clients and
servers in any supported language

• Supports scientific data-types (complex,
array, etc) and object model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

C

C++

f77

f90

Python

Java

C

C++ f77

f90

Python

Java

Common Component Architecture (CCA)

Component-framework interaction in high-
performance, parallel computing.

• Components for high performance computing

• SPMD for distributed memory

– Framework handles per-process component composition

– No interference with interprocess communication –
standard parallel models

• Support for distributed/grid computing (RMI) and MPMD

Solver
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User
Input

Ui+1

f,g,H

Build
options

Ui+1
(Visualization)

f energy

u cartesian coordinates

u internal coordinates

g gradient in cartesians

g gradient in internals

H Hessian in cartesians

H Hessian in internals

s update in internals

NWChem
Model Factory

GUI

MPQC
Model Factory

Model

Ui+1

Builder
Construct application using
framework builder services

Linear
Algebra

PETSc Linear
Algebra Factory

GA Linear
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes

QC Package MPQC MPQC NWChem NWChem NWChem

Solver Package/Algorithm MPQC/BFGS TAO/LMVM NWChem/BFGS NWChem/BFGS TAO/LMVM

Line Search no yes no yes yes

Guess Hessian unit scaled unit 0.5*unit 0.5*unit scaled unit

Glycine (C2H5NO2) 26/26 19/19 33/33 65/33 19/19

Isoprene (C5H10) 75/75 43/43 56/56 89/45 45/45

Phosphoserine (C3H8NO6P) 85/85 62/62 79/79 121/61 67/67

Acetylsalicylic Acid (C9H8O4) 54/54 48/48 43/43 83/42 51/51

Cholesterol (C27H46O) 27/27 30/30 33/33 —/— 30/30

Number of energy/gradient evaluations required to determine minimum energy molecular structures

Stand-alone
MPQC/NWChem

TAO Solver
Component

+27%

+27%

-11%

+43%

+21%

•MPQC/NWChem solvers use the standard Broyden,
Fletcher, Goldfarb, Shanno (BFGS) update
•The TAO package provides a limited-memory
variable-metric (LMVM) solver

–Uses a subset of correction vectors – may be
more appropriate for long optimizations
–Identical to BFGS with all correction vectors

•The TAO solver outperforms the solvers provided by
both stand-alone QC packages – the TAO line
search is well suited to molecular structure
optimizations

•Evaluate component technology as an approach for
high-performance software development, both within
and outside the chemistry domain

•Gain interoperability between chemistry packages

•Incorporate and evaluate generic mathematics
packages (TAO, PETSc, GA)

–What improvements are needed for good
performance of generic mathematics routines in
the chemistry domain?

–Will state-of-the-art mathematics routines
provide better performance than application
specific routines written by chemistry package
developers?

High Level Components for Structure Optimization

MCMD Hessian Driver

GoGo
cPropscProps ModelFactoryModelFactory

NWChem_QM_1NWChem_QM_1

ModelFacto
ry

ModelFacto
ry

cPropscProps

Param PortParam Port

EnergyEnergy
EnergyEnergy

EnergyEnergy

EnergyEnergy
EnergyEnergy

EnergyEnergy

EnergyEnergy
EnergyEnergy

EnergyEnergy

EnergyEnergy
EnergyEnergy

EnergyEnergy

NWChem_QM_0NWChem_QM_0

ModelFacto
ry

ModelFacto
ry

cPropscProps

Param PortParam Port

NWChem_QM_2

ModelFacto
ry

ModelFacto
ry

cPropscProps

Param PortParam Port

NWChem_QM_nNWChem_QM_n

ModelFacto
ry

ModelFacto
ry

cPropscProps

Param PortParam Port

•Combining SPMD and MPMD Paradigms –
MultiComponent Multiple Data
•MCMD driver launches multiple instances of QM
components on subsets of processors (CCA)

•Each QM (gradient) component does multiple energy
computations on subgroups (GA)

Driver

Gradient

Energy

Energy

Gradient

Energy

Energy

CCA Driver

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

Gradient

Energy Energy

Energy Energy

E
xe

c
u

tio
n

 T
im

e
E

xe
c
u

tio
n

 T
im

e

Nodes

CCA

Traditional parallelization scheme:
Each step executes on the
entire machine

Using components, a Three-level
Parallelism scheme was implemented:

Energy-Level: Native NWChem code

Gradient-Level: Global Array groups

Hessian Level: Task-based using CCA

0.1

1

10

100

0 32 64 96 128 160 192 224 256 288

Processors

T
im

e
 (

h
o

u
rs

)

one-level (native)

two-level (groups)

three-level (groups + CCA)

•Distributing work for maximum efficiency
nontrivial and machine dependent

•Order of magnitude improvement:

Managing Multilevel Parallelism for Improved Machine Utilization

Low Level Components for Extended Capabilities

•Integrals programs do not implement all integral types

•Ability to share integrals and combine packages

–Enables new science

–Permits selection of most efficient package for each machine
NWChem

Integral Evaluator
Factory

Libint
Integral Evaluator

Factory

p.Vp
Eval.

pxVp
Eval.

R12
Eval.

Integral Super
Factory

IntV3
Integral Evaluator

Factory

MPQC MPQC
MP2-R12

Component architecture for integral evaluation

7.0%219.1gradient

8.6%93.786.3energyC5H10 cc-pVDZ

4.6%41.339.5gradient

5.5%21.019.9energyH2O cc-pVQZ

OverheadCCAMPQC

204.8

●Low-level components tend to be finer grained with more function
call overhead. For Hartree-Fock (execution time in seconds):

Now possible to combine three corrections into one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

•Components are objects which exist within a runtime environment or framework which provides services

• Application composition

• Performance evaluation

• Computational quality of service

• Component approaches facilitate interface standardization and code interoperability

• Inserting “glue code” at component boundaries solves language interoperability (Babel)

SAND2006-6513P

