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Component-framework interaction in high-
performance, parallel computing.
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» Babel provides a scalable solution to

Common Component Architecture (CCA)

« Components for high performance computing

« SPMD for distributed memory

— Framework handles per-process component composition

— No interference with interprocess communication —
standard parallel models

» Support for distributed/grid computing (RMI) and MPMD

language interoperability

* Generates glue code to link clients and
servers in any supported language

* Supports scientific data-types (complex,

array, etc) and object model
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Component-based Software Engineering

-Components are objects which exist within a runtime environment or framework which provides services
- Application composition
- Performance evaluation

- Computational quality of service

- Component approaches facilitate interface standardization and code interoperability

- Inserting “glue code” at component boundaries solves language interoperability (Babel)

Managing Multilevel Parallelism for Improved Machine Utilization

High Level Components for Structure Optimization

developers?

Evaluate component technology as an approach for
high-performance software development, both within
and outside the chemistry domain

*Gain interoperability between chemistry packages

*Incorporate and evaluate generic mathematics
packages (TAO, PETSc, GA)

—What improvements are needed for good
performance of generic mathematics routines in
the chemistry domain?

—Will state-of-the-art mathematics routines
provide better performance than application
specific routines written by chemistry package
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Number of energy/gradient evaluations required to determine minimum energy molecular structures
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TAO Solver
Component
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f energy

u cartesian coordinates
u internal coordinates
g gradient in cartesians
g gradient in internals
H Hessian in cartesians

H Hessian in internals

s update in internals

Chemistry Components
Mathematics Components

Infrastructure
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‘MPQC/NWChem solvers use the standard Broyden,
Fletcher, Goldfarb, Shanno (BFGS) update

*The TAO package provides a limited-memory
variable-metric (LMVM) solver

—Uses a subset of correction vectors — may be
more appropriate for long optimizations
—ldentical to BFGS with all correction vectors

*The TAO solver outperforms the solvers provided by
both stand-alone QC packages — the TAO line
search is well suited to molecular structure

optimizations
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-Combining SPMD and MPMD Paradigms — g [ e
MultiComponent Multiple Data (e
-MCMD driver launches multiple instances of QM
components on subsets of processors (CCA)
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-Each QM (gradient) component does multiple energy
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Low Level Components for Extended Capabilities
- _ MPQC MPQC
MP2-R12
IntV3
. . Integral Evaluator
Integrals programs do not implement all integral types Factory
-Ability to share integrals and combine packages \
Libint
. Integral Evaluator
—Enables new science { Factory J\
Integral Super

—Permits selection of most efficient package for each machine

Factory

"
Integral Evaluator

Now possible to combine three corrections into one:
O[core] + O[rel.] + d[basis] — O[core+rel.+basis]

Component architecture for integral evaluation

{0y CrO(OH), .Low-level components tend to be finer grained with more function
eaction eaction 2 . . .
NSNS T o call overhead. For Hartree-Fock (execution time in seconds):
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