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Continuum Mechanics:

Equations for Heat Transfer Analysis

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.
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ESP = Engineering Sciences Program

ESP100 is a course on computational solid mechanics

ESP200 is a course on digital signal processing with MATLAB

ESP300 is a course on heat transfer analysis using the finite element method
There are plans to offer additional courses in the future.

All of these courses are intended to provide a continuing education opportunity — in
the spirit of the INTEC courses some years ago



Introductory Info
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Evacuation Procedures:
« [Exits are located...
e Restrooms out back

Classification:
» Absolutely no classified discussions
» If you have a concern, let us know

 Some material may be OUOQ, it will be marked
as such
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}. Summary for Continuum Mechanics
Begin with:
e Continuum mechanics and conservation laws

and end with:

» General boundary value problem for heat conduction

Additional References:
W. Prager,
“Introduction to the Mechanics of Continua,” Ginn & Co., Boston, MA (1961)

L. Malvern,
“Introduction to the Mechanics of a Continuous Medium,” Prentice-Hall,
Englewood Cliffs, NJ (1969)
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It is important to recognize where heat transfer fits into the overall area of
continuum mechanics; that is why we are going through the general mechanics
setup. This is especially important when considering the multiphysics applications
that are becoming more prevalent. Most current finite element codes are designed to
be used in both single and multiphysics problems.

Most heat transfer books will skip right to a derivation of some form of the energy
equation or a discussion of the first law of thermodynamics. When the introduction
to this class said that there would be a review of heat transfer, it was not our intent
to do a review of standard mechanical engineering heat transfer but rather review
heat transfer from a general mechanics point of view.
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Questions for Continuum Mechanics:

* What are the general conservation equations ?

* What are the conservation equations relevant to heat
transfer ?

* What are the important partial differential equations
for heat transfer analysis ?
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The first part of this section is really about definitions, the various areas of
mechanics and how they are related to each other.

The fundamental question for this section is ... What are the basic partial
differential equations we are going to solve (via computation) for heat transfer
applications? This is the first part of stating an initial, boundary value problem
(IBVP); the second part involves boundary and initial conditions and this will be
covered in another lecture.

The answer to the fundamental question will be ... It depends on the type of
problem. But we will end up with descriptions of energy transfer that we can use in
a very wide variety of problems.

We are not going to derive too much here — mostly, just write things down and
define some terms. Still, this first class may seem like too much detail on esoteric
and peripheral topics. However, the basis for almost all of computational mechanics
is in the conservation laws including computational heat transfer.



} Continuum Mechanics
» Continuum mechanics deals with the equilibrium
and/or motion of condensed matter (gases, liquids,

solids) which is defined to have a continuously
distributed mass.

 Not all physical situations can be described in terms
of a continuum BUT almost everything we will
discuss here will make the continuum approximation

* Radiation will be an exception
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Continuum mechanics underlies much of what is done in modern engineering
analysis for macroscopic systems. Increasing interest in nanoscale systems and
devices will require alteration and extension of traditional continuum descriptions
and in some cases a switch to noncontinuum and atomistic methods.

The principles of continuum mechanics provide for a mathematical description of
physical behavior.

The assumed continuity of physical properties allows differential equations to be
used to describe and solve problems in mechanics.
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# Continuum Mechanics
» Continuum mechanics theory is usually developed in
two/three main parts:
— General principles which are applied to all continuous media

— Constitutive equations that apply to specific media
— Special theories

* Engineering study of continuum mechanics usually
splits into discipline oriented subjects, i.e., solids,
fluids, rheology

» Heat transfer spans all the major disciplines but is
usually more important and prevalent in fluid dynamics
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Continuum mechanics has a long history and is associated with most of the famous
names in mechanics, e.g. Euler, Navier, Cauchy, Lagrange, Stokes,...

The fundamental modern treatises are by Truesdell and colleagues:

C. Truesdell and R. Toupin, “The Classical Field Theories,” Handbuch der Physik
(Encyclopedia of Physics) Vol. 11/1 (S. Flugge, Ed.) Springer-Verlag, Berlin
(1960)

C. Truesdell and W. Noll, “The Non-Linear Field Theories of Mechanics,”
Handbuch der Physik (Encyclopedia of Physics) Vol. 111/3 (S. Flugge, Ed.)
Springer-Verlag, Berlin (1965)

Truesdell also has a very complete book on the history of mechanics which is quite
good.

The main reasons for the division and different approaches between solid and fluid
are:

a. Differences in the fundamental descriptions of material motion between solids
and fluids; solid mechanics is concerned with deformation (displacement) and
fluid mechanics is concerned with rate-of-displacement (velocity). Each type of
motion is most easily described in different coordinates.

b. Differences in emphasis on constitutive relations; solid mechanics has a strong
focus on constitutive relations to describe the multitude of material behavior
while fluid mechanics has a single constitutive relation for most common fluids

c. Boundary condition issues are emphasized in fluid mechanics and receive less
emphasis in solids (contact excepted)



} Heat Transfer & Continuum Mechanics

» Heat transfer is a core discipline within continuum
mechanics that is concerned with the transfer of
energy due to temperature differences

» Heat transfer is one of the two types of energy
interactions that appear in the First Law of
Thermodynamics - work transfer being the other type

» For a closed system, the First Law provides
dE =6Q - oW

where E — energy, Q — heat transfer, W — work transfer
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Though heat transfer and thermodynamics are essential to continuum mechanics,
most continuum mechanics texts do not focus on energy issues — to a large extent
traditional continuum mechanics would appear to be isothermal.

We are not going to review thermodynamics — I’m sure you will recall everything
you need to know about definitions, closed systems, properties, path independent
quantities, reversible processes, etc.

We will use the first law as a conservation statement and relate it to other areas of
mechanics.

The delta notation indicates that the variations are path dependent.



Continuum Mechanics -
Kinematic Descriptions

e

Two descriptions of material motion are common :

» Lagrangian Description (also known as a Material,
Convected or Referential Description)
— Preferred in solid mechanics

 Eulerian Description (also known as a Spatial
Description)
— Preferred in fluid mechanics
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Generally there are a lot of prerequisites to a serious study of continuum mechanics
— we are not going to be very serious and will skip most all of the preliminaries
dealing with vectors, tensors, strain, stress, etc.

Material motion however, cannot be skipped as it influences the types of equations
used to describe mechanics.

Heat transfer may use either of these descriptions depending on the material motion.

Though the modes of heat transfer have not yet been defined:
Heat conduction problems are usually in a Lagrangian description.
Convection problems are usually in an Eulerian description
Radiation problems are independent of the kinematic description



Continuum Mechanics —
Kinematic Descriptions

» Lagrangian
— Follows the motion of material particles
— Independent variables are (initial) material position and time

— Time derivative is
0

ot

X

» Eulerian
— Observes the motion at a fixed location
— Independent variables are spatial location and time

— Time derivative is a material derivative in spatial coordinates
D 0 0 0
—=—+U —=—+U-V
Dt ot ox ot

where u; is the material velocity
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In the Lagrangian form, the material position is given by a mapping (function) from
the reference state or position to the current position x=x(X,t)

In the Eulerian form, the material derivative is also called a convected or substantial
derivative.

Note that when there is no advective velocity (no material motion) the two
descriptions are the same.

NOTE: The standard summation (indicial) notation will be the standard used to
describe vectors, tensors and vector/tensor operations. The indices run from 1 to 3
and a Cartesian coordinate system is adequate for everything we need to describe.
Some vector notation may be used where convenient or needed.
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The transport theorem is useful for developing the
conservation laws. Consider the volume integral of
some (tensorial) property of the continuum taken over a
fixed mass

F)= | f(x.dQ

Q(t)

The rate of change of this quantity, following the
material motion is the material derivative

Transport Theorem

_—I—dQ j dQ j—dQ+jfundr

Q(t) Q(t) Q(t) I(t)
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Dealing with a continuum involves material volumes and surfaces as a function of
time in three dimensions.

The volume integral of some property over a fixed mass is important for stating the
conservation laws. In following the motion of the fixed mass, the volume and the
integrand will change with time. A derivative that accounts for this changing
volume is needed. Note that for a fixed volume the time derivative will commute
with the integral so that the time derivative of the integral is the integral of the time
derivative.

The second form of the derivative involving the surface integral is obtained from the
first form by use of Gauss’s theorem, which relates the flux through the surface of a
region to the divergence of the flux within the volume. Gauss’s theorem is also
know as the Green-Gauss or divergence theorem. Vector and tensor transformations,
such as the divergence theorem, are used throughout continuum mechanics and its
discrete counterpart, the finite element method.

The transport theorem is usually attributed to O.Reynolds.



} Conservation Laws
Two Thermodynamic Conservation Laws

e Conservation of Mass
¢ Conservation of Energy

Two Mechanical Conservation Laws
e Conservation of Linear Momentum
e Conservation of Angular Momentum
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Special relativity would collapse the two thermodynamic laws to one but we are not
going to go there — we will only consider Newtonian mechanics.

Conservation of electric charge and Maxwell’s equations would have to be added to
obtain a complete description of electromagnetic (EM) materials and effects.

We may point out additional forces and sources due to EM effects but will not really
go into detail. The EM coupling with mechanics is becoming more important,
especially for manufacturing, MEMS, and nanotechnology applications.
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Define the mass for a region of the continuum as the
integral of the (continuous) density over the material

volume
M= j p(x,t)dO
Q(t)
Conservation of mass requires that the time rate of
change (material derivative) of M is zero or

Conservation of Mass (1)

a—'0+—a'0ui dQ=0
ot 0Ox

Q(t) i

DM
ST
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We are using an Eulerian description (reference frame) for stating the conservation
laws, which implies the application is fluid mechanics. The material is moving with

velocity u (components given by u;).

The use of the transport theorem is immediate; the density is a scalar function in the

general transport theorem.

The equation for mass conservation in solid mechanics using a Lagrangian frame

will be defined, without derivation, in a subsequent slide.



} Conservation of Mass (2)

Since the selected volume is arbitrary the integrand
must hold pointwise within the continuum and

a_p+%:0 :a_p+p%+uia_p:%+p%
ot 0x ot = ox o0x Dt = ox
where the material derivative D/Dt has been used.

Also, the continuity equation in vector notation is

ap
—+V.pu=0
ot P
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The conservation of mass or continuity equation is an equation for the
thermodynamic variable, density.

In general, the density will be a function of two thermodynamic variables (given by
an equation of state), such as the pressure and temperature, as well as the
independent variables, spatial location and time.
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Special cases of importance include a constant density
flow and the flow of an incompressible material where

Conservation of Mass (3)

Dp 0 and oy, _0
Dt o X
Conservation of mass in a Lagrangian frame is
1
P=Po 3

where J is the determinant of the deformation gradient
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A constant density or incompressible material is a thermodynamic term; an
incompressible flow is a fluid dynamic term and defines when density variations
are negligible.

For an incompressible material note that the density (thermodynamic variable) is no
longer a part of the continuity equation. The mass conservation equation is now a
constraint on the material motion; the motion of an incompressible material or flow
is isochoric and the velocity field is solenoidal.

The deformation gradient is the spatial derivative of the motion; the determinant of
the deformation gradient measures the change in volume between the reference
configuration and the current configuration.



} Conservation of Momentum (1)
Define the momentum for a region of the continuum as
P = j p(x;,t) u;(x;,1) dO
Q(t)

Newton’s Second Law of Motion requires that the time
rate of change (material derivative) of momentum is
balanced by the sum of the body and surface forces

_ - 0puu.
E:Fi or J-apu': p"dQ:Ipth+J.'|'idF
Dt ay Ot OX A I

where b is a body force, T, = z,;n s the traction,

7; is the stress tensor and N; is the normal
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The transport theorem is again used to define the material derivative of the volume
integral.

The surface force is defined in terms of the traction (or stress vector) which is a
force per unit. The traction depends on the orientation of the surface which is
defined in terms of its outward normal vector, n.

The relation between the traction and the surface normal vector produces the

definition of the stress tensor (see any standard text on mechanics for a derivation).



Conservation of Momentum (2)

=

Transforming the surface integral by Gauss’ theorem

. 0 puu, oT.
[ 2% EP00 4o - [ o do+ [ Sida
ot O X; ot Q(t)axj

Q(t)

Again, since the volume is arbitrary, the integrand must
hold pointwise,

. Odpu.u. orT..
opu; n PHi L= pb, + Tij
ot OX oX .

i i
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Note that this form of the PDE is considered a conservative form of the momentum
equation — no simplification or assumption regarding continuity (conservation of
mass) has been made (see next slide). Some computational methods rely on this

form.
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Conservation of Momentum (3)

Simplify by the continuity equation to produce

o Du, _paui +pu ou, _ )b +6rij
Dt ot ox, L 0X,
This is Cauchy’s first law of motion. For completion, the
stress tensor will have to be related to the rate of
deformation for a particular material (constitutive
equation).
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To simplify the equation, expand the derivatives, collect terms and recognize the
occurrence of the conservation of mass equation.

Cauchy’s first law of motion is also referred to as the momentum equation or the
equation of motion.
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Conservation of Momentum (4)

For solid mechanics, change to a Lagrangian description
and use displacement (U i*) instead of velocity.

qui*— b+%
ot Fn OX,

Yo,

This is still Cauchy’s first law of motion. For completion,
the stress tensor will have to be related to the
deformation for a particular material (constitutive
equation).
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Note that when the acceleration is negligible, the equation reduces to the sum of the
forces being zero. This is the equilibrium equation for quasi-statics in solid
mechanics. The full equation is used to describe solid dynamics.
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Conservation of Angular Momentum

The time rate of change of angular momentum (moment
of momentum) is balanced by the moment of the forces.

Without derivation, this implies
i =7
under standard assumptions of no couple stresses and

no body couples.

This Cauchy’s second law of motion.
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The assumption of no couple stresses is valid for most common materials, both
fluids and solids. There is a large literature on the mechanics of micropolar
materials for application to biological materials, heterogeneous mixtures and
composites and materials at the nanoscale.
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Conservation of Energy (1)

Define the internal and kinetic energies as components
of the total energy for a fixed mass of the continuum

E= j pedQ+ I 2 puu, dQ
Q(t) Q(t)

The first law of thermodynamics then states that the
time rate of change of the total energy is balanced by
the heat and work transfer to the system

DE 5Q &W
Dt ot ot
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This conservation equation will be somewhat more complex than the previous
balance laws because it couples the thermal and mechanical processes.

The internal energy is composed of the microscopic energy modes in the material,
i.e., molecular translations, vibrations and rotations.

The nomenclature is often confusing for these equations — standard thermodynamic
texts will use u for the internal energy and e for the total energy. Because u is being
used for velocity (and displacement) we will not follow this convention and instead
will define e as the internal energy and E as the total energy.



Define the heat transfer and work transfer rates as

@:_Iqln dr+ [ Qda= [ = 9% da+ [ Qda

ot () Q) Q(t) 0

Conservation of Energy (2)

Q(t) I'(t) Q(t) Q(t)
where @, is the heat flux vector and Q is a volumetric
energy source.

ESP300: Continuum Mechanics

The divergence theorem is again used to change the surface integrals to volume
integrals.

Work rate is defined as a force acting through a distance per unit time (velocity).

Work done by the system is positive; work done on the system is negative.

The volume heat source is due to any other non-mechanical processes that may be
present, e.g. chemical, electromagnetic
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Putting these relations together then

Conservation of Energy (3)

J’ a(pe+%puiui)dg+ J' 0(pe+3 puU;)u; 40—
o) ot o) GXJ-
aqi anTij
- 5,040+ [ Qda+ | phudo+ | — 0

am N () () o Y7
which must hold pointwise within the continuum

1ouu) O(pe+ipuulu. . ou.t;
O(pe+3puyy) O(pe+zpuu)u;  aq, +Q+ phy, + M
ot axj 0 X o X

i j

2-22
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The transport theorem is used to rewrite the material derivative of the total energy.
The stress work term contains two parts which can be seen when the derivative is
expanded. The term with the velocity times the divergence of the stress can be
combined with the body force and rewritten using the conservation of momentum
equation. This term contains expresses the stress work done in changing the kinetic
energy of the material. The second term with the stress times the velocity gradient
represents the stress work done in deforming the material and is associated with a
change in internal energy. Once a constitutive equation for the stress is defined, this
second term is usually rewritten in terms of a dissipation function (always positive)
and a pressure work term, which may be reversible.

Again, this PDE is considered a conservative form since no simplification has
occurred. Some computational methods rely on this form.
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Conservation of Energy (4)

After some manipulation, the total energy equation can
be simplified to a thermal energy equation

De oOe oe 0q ou,
+poU—=——-+Q+7, —
Dt ot oX%  0X OX;
For completion, the heat flux and internal energy must

be related to the temperature for a particular material
(constitutive and thermodynamic relations).
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The simplification of the total energy equation may be accomplished in two
different ways. In the first approach, the total energy terms and stress work terms
are expanded, rewritten and combined into a form that has both the continuity and
momentum equations included as coefficients. Dropping out these terms leads to the
thermal energy equation. A second approach recognizes that the kinetic energy
equation is not an independent equation but comes from taking the (dot) product of
the velocity with the momentum equation. If the Kinetic energy equation is
subtracted from the total energy equation the result is the thermal energy equation.

Coupling between mechanical and thermal processes is still present in the last term,
the stress work. The stress work term is a contraction between the stress tensor and
the velocity gradient tensor. The velocity gradient tensor is usually decomposed into
two parts, the rate-of-deformation (stretching) tensor and the spin (vorticity) tensor.
Only the rate-of-deformation tensor contributes to the stress work.



Conservation of Energy (5)

=

In a Lagrangian description the energy equation

becomes
oe  0q ‘
Pt ox Q* 1y &

Constitutive and thermodynamic relations are still
required for completion.
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Note that the stress work term has been written in terms of the strain rate tensor.

This is not the same as the rate-of-deformation tensor used in the Eulerian

description. The particular form of the dissipation term will depend on the strain
measure used in the constitutive relation. For linear elastic materials this term is
usually assumed to provide only reversible work and is neglected. For large strains

and nonlinear materials the term is not negligible.
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Summary of Conservation Equations

The conservation equations for the nonisothermal
motion of a continuum have now been derived (stated)
using the two main frames of reference. We do not yet
have a complete mathematical description of the
mechanics problem because material specific
constitutive relations and boundary/initial conditions
have not yet been defined.

A summary of the conservation equations for fluids and
solids will help to define missing relations.

ESP300: Continuum Mechanics
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Summary of Conservation Equations

For a fluid using an Eulerian description:

op Opu
Mass: LLILA 1 Unknown
ot 0x
_ _ or.
Momentum: p%+pujﬂ=pbi+i 9 Unknowns
ot O X; O X;
oe oe 04 ou.
Energy: —+pU —=——""+Q+7, —- 4 Unknowns
W PP T o T gy
Total equations — 5 14 Unknowns
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The unknowns are density, 3 velocity components, 6 stress components (reduced
from 9 by symmetry and angular momentum), internal energy and 3 components of
the heat flux.
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Summary of Conservation Equations

For a solid using a Lagrangian description:

Mass: P =P, % 1 Unknown
o’u’ ot
Momentum: p——-=pb +— 9 Unknowns
ot O X;
oe 0Q ou;
Energy: —=——14+0Q+7, — 4 Unknowns
Pt ax, ¥ iay
Total equations — 5 14 Unknowns

2-27
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The unknowns are density, 3 components of displacement, 6 stress components
(reduced from 9 by symmetry and angular momentum), internal energy and 3
components of the heat flux.
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The topic of constitutive equations, especially for solid
mechanics, is far too extensive and complex to be
considered here. Constitutive relations must meet a
series of criteria related to invariance (frame, material,
dimensional, etc) and generally relate fluxes/forces to
the dependent variables. For our purposes, simple
mechanical and thermal constitutive relations for some
common materials will be used as examples. This will
allow the equation system to be closed and a
mathematical description to be completed. Some
thermodynamic relations are also needed (such as an
equation of state) and will be stated without derivation.

Constitutive Equations
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For more information on constitutive relations for solid mechanics any standard text
can be consulted or take the ESP100 course.



} Constitutive Equations — Fluids (1)

For many fluids of interest, the Newtonian and Fourier
constitutive relations are sufficient. In this case,

— P +pul S _Z 9
AT X T ax ) 3% ax
and oT
kL
% 0 X

where # is the viscosity and K is the thermal conductivity
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A Stokesian fluid postulates that the stress is a continuous function of only the rate-
of-deformation and thermodynamic variables. A Newtonian fluid is a linear
Stokesian fluid, which says that the stress is linearly dependent on the rate-of-
deformation. Note that the third term in the stress relation vanishes for an
incompressible fluid. In the general derivation of the constitutive relation, two
viscosity coefficients appear; Stokes assumption relates the two coefficients.

Fourier’s law simply states that the heat flux is proportional to the temperature
gradient and may be a function of the thermodynamic state through the
conductivity. Conductivity is a scalar for most fluids.
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Constitutive Equations — Fluids (2)

From thermodynamics, an equation of state, is required.
Typical examples are the perfect gas law, a constant
density assumption or a Boussinesq fluid assumption

P=pRT

or

P=FPo

(0]

' p=p[l- AT -T))]

where R is the gas constant and IB is the coefficient of

thermal expansion.
2-30
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Other equations of state are possible.

The Boussinesq approximation is normally used for natural convection problems
with small temperature differences.
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Constitutive Equations — Fluids (3)

Another thermodynamic relation is needed to relate the
internal energy to the temperature. There are many
possibilities for this relation but one of the most general
has the form
}%
» | OX;

De DT oP
—=pC,—+|-P+T—
Pt =P b { aT
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Note that for an incompressible flow or material, the second term in the internal
energy definition is zero by continuity.

Also, for a perfect gas, the second term is zero but for a different reason.

For most liquids, C,, is very close to C,



} Constitutive Equations — Solids (1)

The simplest constitutive relations for a solid are Hooke’s
law and Fourier’s law. In this case

1( ou® Ou;
20X, aX,
and
_ oT
of ij—axj

where ,UE,/lE are the Lame constants and kij is the
conductivity tensor
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Hooke’s law describes linearly elastic materials. The stress tensor is written in terms
of the small strain tensor; the small strain tensor is defined in terms of the
displacement gradients. Though the displacement gradients are shown as derivatives
with respect to the material coordinates, in the small strain limit the material and
spatial coordinates are the same.

The Lame constants are usually replaced by (related to) the shear modulus, Young’s
modulus and Poisson’s ratio.



Constitutive Equations — Solids (2)
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From thermodynamics a relation between the internal
energy and the temperature must be obtained. In most
cases, the required relation is
o oe »C oT
ot Voot

ESP300: Continuum Mechanics
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} General PDE’s for Fluids
Mass:
9P 0pY; _
ot 0x
Momentum:
ou., ou. oP 0 ou. Ou. | 2 ou
—+pu —t=pb ——06 +—| y| —+—L |-=u—*%35,
Pt TP i, TP o ax[’{axj 6XJ 3% ox, “}
Energy:
oT oT 0 oT ou
C,—+poC U —=—|k— |[+Q-P—X+D
P’ YT ox 8xi( 8XJ Q A,
State:
p=p(P,T)
2-34
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There are many simplifications that can be made for various applications. The field
equations are fairly complex for fluid applications; the constitutive behavior for
common liquids and gases is straightforward. Note that these equations are in
nonconservative form.

This is a complete mathematical system with 6 equations in the 6 unknowns:
density, 3 components of velocity, pressure and temperature.
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General PDE’s for Solids

Mass:
1
P=Po ]
Momentum: Constitutive:
2 .
pﬁattii = pb +Z_Qj i =T (gij u), T)
Energy:

oT 0 oT
C,— ="k — |+®
Pvot Tox ”axj] °
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This is a general statement but hides most of the complexity found in solid
dynamics, nonlinear materials and quasi-statics. The field equations are relatively
simple with all of the complexity in the constitutive relation and strain measures.

This is a complete mathematical system with 5 equations in the 5 unknowns:
density, 3 components of displacement and temperature. If the constitutive relation
is a function of another thermodynamic variable, say pressure, then an equation of
state would have to be included in the description.
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The three basic modes of heat transfer are:

Modes of Heat Transfer

 Conduction - transfer of heat through a material due
to molecular motion; a diffusion process that follows
Fourier’s law

* Convection - transfer of heat due to relative motion
of the material

» Radiation — transfer of heat due to electromagnetic
radiation

Continuum mechanics defines the equations for
conduction and convection

ESP300: Continuum Mechanics
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General PDE’s for Heat Transfer

Heat transfer in the continuum is described by the
conservation of energy equation which may be applied to

Conduction (Lagrangian description):

L {k 6TJ+cD

ot ox| " oX,
Convection (Eulerian description):

ou,
—+
0 X,

ot oT _ @ (ka_T o

c, L rpcu - 2
P TR P x| ox

j+Q—P

ESP300: Continuum Mechanics
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Heat Transfer Equations

The conduction and convection equations are both
scalar equations for the temperature. Both equations
will be considered in the remainder of this course,
though the primary emphasis will be on the conduction
equation. The obvious coupling of the convection
equation with material motion makes it more difficult to
consider as a standalone equation. The general
coupling of the energy equation to other mechanics will
be discussed after the full boundary value problem is
described.

ESP300: Continuum Mechanics
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Answers for Continuum Mechanics

» The general conservation equations are mass, linear
momentum, angular momentum and energy.

» The primary conservation equation for heat transfer
is the energy balance, though mass conservation
must also be respected.

» The partial differential equations that describe heat
transfer are the conduction equation (Lagrangian
description) and the convection equation (Eulerian
description)

ESP300: Continuum Mechanics

These are the brief answers to the questions that were posed at the beginning of the
class. Hopefully, these are now familiar ideas.



