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ESP300: Variational Principles

Variational Formulations & Methods 
for Heat Transfer

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

ESP = Engineering Sciences Program
ESP100 is a course on computational solid mechanics
ESP200 is a course on digital signal processing with MATLAB
ESP300 is a course on heat transfer analysis using the finite element method
There are plans to offer additional courses in the future.

All of these courses are intended to provide a continuing education opportunity – in 
the spirit of the INTEC courses some years ago

SAND2006-7330P
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Introductory Info

Evacuation Procedures:
• Exits are located…
• Restrooms out back

Classification:
• Absolutely no classified discussions

• If you have a concern, let us know

• Some material may be OUO, it will be marked 
as such
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Summary for Variational Principles

Begin with:
• General initial/boundary value problem for heat 

conduction

and end with:
• Variational formulation applied to heat conduction

• Weighted residual formulation applied to heat 
conduction

Additional References: 
J.N. Reddy, “Energy and Variational Methods in Applied Mechanics,” John Wiley & 

Sons, New York, NY (1984)

B. A. Finlayson, “The Method of Weighted Residuals and Variational Principles,”
Academic Press, New York, NY (1972)
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Questions for Variational Formulations 
For Heat Transfer Analysis

• What is the “strong” form, the “weak” form?  How are 
they different?

• Why is the weak form so important to us?  How do 
we use it to obtain approximate solutions?

• What is a variational principle and what is the method 
of weighted residuals?  How are they alike, how are 
they different?

• How are finite difference, finite volume, and finite 
element methods related?  How are they different?
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Remember the Initial/Boundary Value 
Problem (IBVP) Discussed Last Time

• An initial/boundary value problem is 
• a mathematical statement comprised of the field equation(s) 

describing the process of interest within a domain, 
• conditions describing the behavior of the dependent 

variables on the boundary of the domain (BC’s) and 
• initial values (IC’s) for the dependent variables.

• A boundary value problem (BVP) is an IBVP without 
time as an independent variable; IC’s are not 
required.

These are standard definitions. For the most part, we will consider time-dependent 
problems as they are the most general. Time independent problems will be singled 
out when it comes to Finite Element solution methods.

These definitions assume that all necessary material properties and source terms are 
known, i.e. in mathematical terms, the parameters and sources for the problem are 
given data with appropriate functional behavior (smoothness).
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Summary of 
Heat Transfer - IBVP

For a region      with boundary Ω Γ
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This is the general mathematical setting for the equations that we will address with 
the FEM. It will be assumed that all relevant “data” is given and all we have to do is 
find T(x,t)

This is referred to as the “strong” form.  We will figure out just what this means in 
today’s class.
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Heat Transfer Analysis (1)

A well-posed mathematical description of heat transfer 
has been developed. The objective is now to solve 
practical engineering problems described by the given 
equations. These problems usually involve-

• Complicated geometries

• Complex boundary conditions

• Complex material behavior

• Variety of time and length scales

• Coupled physical phenomena
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Heat Transfer Analysis (2)

What does it mean to “solve” a heat transfer or 
mechanics problem?  

Generally, we want

• to obtain an accurate description of the dependent 
variable as a function of time and space

• an accurate description of various derivatives (fluxes) 
of the dependent variable as a function of time and 
space

• an accurate description of various integrals of the 
dependent variable and/or its derivatives as a function 
of time and space
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Solution Approaches (1)

• Analytic Solution Methods
• Separation of variables methods 
• Green’s function methods
• Integral transform methods

• Approximate Analytic Solution Methods
• Integral methods
• Rayleigh-Ritz methods (variational)
• Weighted residual methods (Galerkin)

The analytic solution methods listed are classic methods for partial differential 
equations; their use in heat transfer is well covered in the books by Ozisik and 
Carslaw & Jaeger. The separation of variables techniques generally lead to Sturm-
Liouville equations that are ultimately solved by special functions such as Bessel 
and Legrendre functions depending on the geometry. 
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Solution Approaches (2)
• Numerical Solution Methods

• Differential equation methods
• Integral equation methods

Because of the many limitations of analytic and 
approximate analytic solution methods, engineering 
practice has come to rely on numerical methods for the 
solution of  realistic problems. Also, numerical 
algorithms based on differential equation methods have 
limitations that exclude them from general application.  
Integral equation methods, being very general, will be 
our focus.

Note that numerical solution methods are all approximate solution methods.
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Spectrum of Approaches for Problem 
Formulation in Heat Transfer

Form 
equivalent 
expressions

Applied to 
continuum 
mechanics

Approximate
“strong form”

discrete 
equations

Balance Laws 

Conservation 
of mass, 
momentum, 
and energy “weak form”

of the IBVP

(integral form or   
variational form) 

COE + BCs, ICs

Method of 
Weighted 
Residuals

approximate 
solutions via 
weighted integral

Apply Finite 
Difference 
Method

“strong form”
of the IBVP

PDE for

COE + BCs, ICs

Solution of PDEs

analytic solutions

Rayleigh-Ritz 
methods

approximate 
solutions via 
minimization of 
functionals

Our focus is
on the Galerkin FEM

Apply 
weighted 
integral 
statement

Apply
variational 
principle

Galerkin MWR

Finite Element 
semi discrete 
equations

Apply Petrov
Galerkin MWR 
over discrete 
sub-volumes of 
domain
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The “Strong Form” Representation of
the Heat Conduction BVP

• Solutions must be satisfy this equation over the entire domain (all 
points, point by point)

• Analytical solution must be smooth and differentiable to at least 
2nd derivative

• Analytical solution must satisfy boundary conditions

Qxx yy
T Tk k

x x y y
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

− − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

For most of the discussion today, we will focus on the time-independent equation 
for simplicity and avoidance of technical problems (details).  We could write this as 
a time-dependent problem in which case the PDE must be satisfied for all times as 
well.   
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An “Example” Problem to Assess 
Different Solution Methods

Consider a case of 1-D conduction in a plane wall (2L thick) with 
uniform volumetric energy generation 

Integrating twice, results in 

Evaluating the constants of integration using the boundary conditions

For which the analytical solution is 
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This will be an “example” problem that we will use to apply different approximate 
solution methods.  The analytical solution will allow us to compare the accuracy of 
these methods. 
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Finite difference methods directly approximate 
the strong form on on topologically regular gridstopologically regular grids

Typical Finite Difference Method

spatial derivatives are approximated 
using a differencedifference stencilstencil,
e.g. at node (a,b) : 
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The approximations in a finite difference method arise from two sources. 
•The first is that spatial and temporal quantities are only know at discrete 
points (as opposed to continuously) in space and time. 
•The second is that spatial and temporal derivatives of a function are 
approximated using a stencil – that is difference formulas are used on the 
function values defined only at discrete points.

These difference “stencils” for the derivatives may be developed using either of two 
approaches:

•using a Taylor series expansion of temperature 
•Using the definition of a derivative in an approximate manner (without 
applying the limiting process)

Check out those boundary flux conditions and the need for  “ghost nodes”!
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Application the Finite Difference 
Method to the Plane Wall Example

Consider a case of 1-D conduction in a plane wall (2L thick) with 
uniform volumetric energy generation,  

Set up a 1-D “grid” of points at which we will solve the PDE 

We will develop finite difference equations for each grid point by 
considering an energy balance over a finite volume
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Application the Finite Difference 
Method to the Plane Wall Example (2)

Consider a control volume for the first grid point, grid point “1”

Conservation of energy is

or 
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Application the Finite Difference 
Method to the Plane Wall Example (3)

Consider a control volume for an interior grid point, grid point “2”

Conservation of energy is 

or 
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Application the Finite Difference 
Method to the Plane Wall Example (4)

Consider a “typical” interior grid point, call it grid point “n”

Conservation of energy is

or  
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Application the Finite Difference 
Method to the Plane Wall Example (5)

Consider a “typical” interior grid point, call it grid point “n”

If we were going to solve for         , then we would construct

as we have previously done

For the specified boundary condition, we will set 
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Application the Finite Difference 
Method to the Plane Wall Example (6)

For 5 grid points, the system of equations can be written as a matrix 
system of equations with the five unknown grid point temperatures, 

Remember that we developed this system of algebraic equations by
applying the PDE at each grid point.  Although, integral formulations 
will be different, they will also result in a set of algebraic equations.
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⎪ ⎪⎪ ⎪⎢ ⎥− − ⎪ ⎪⎪ ⎪⎢ ⎥ ∆⎪ ⎪ ⎪ ⎪= =⎢ ⎥− − ⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎪ ⎪ ⎪ ⎪− −⎢ ⎥ ⎪ ⎪ ⎪ ⎪
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For 2-dimensional structured grids, the coefficient matrix is also banded with five 
rows of non-zero coefficients.  
For 3-dimensional structured grids, there are seven rows of non-zero coefficients. 
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Observations on the 
Finite Difference Method

• Method usually requires a topologically regular grid

• Method focuses on the “grid point” with no consideration of the 
temperature between the points

• Analogous to the “resistor-capacitor” network method

• Application of boundary conditions, in particular, flux boundary
conditions can be difficult

• Can be simple to implement, can be computationally efficient, 
utilize customized solver algorithms

• Poor representation of complex geometry
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Background on
Variational Principles

General remarks on variational principles:

• Foundations in solid mechanics

• Typically associated with energy quantities (potential energy, etc)

• Involve minimization of functionals
• Integral equivalents of some PDE’s for COE (along with the essential 

and natural boundary conditions)
• Produce an Euler-Lagrange equation that corresponds to a PDE of 

interest
• Functionals are “functions of functions” and often an integral form

We will begin with a “model” problem corresponding to the BVP for 
COE

Much of the early application of variational principles was directed at solid 
mechanics and considered such concepts as virtual work and minimization of 
energy principles. 
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More on “Functionals”

Functional – function that takes a function as an argument, typically 
the integral of a function.

Functionals depend on the function,    , used in the integrand.

The objective is to make     stationary (usually a minimum),

So                     necessary condition 

Use calculus of variations to obtain the          
Euler-Lagrange equation

Lots of functionals can be written down and made stationary, but
the resulting Euler-Lagrange equations will probably not 
correspond to anything recognizable in mechanics.

( )( )2

1

, ( ), ,
x

xx
I F x T x T x dx= ∫

0Iδ =

T
I

Calculus of variations was designed to work with functionals just the way calculus 
works with functions.

One of the shortcomings of applying the variational principle to mechanics 
problems is the limited number of problems that have appropriate functionals.  
“Appropriate functionals” being those that result in the Euler-Lagrange equation 
that represents meaningful mechanics.
On the other hand, there are a number of problems for which the functional 
represents some physical quantity (like potential or strain energy) that will seek a 
minimum potential.
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Definitions for the Discussion of 
Variational Methods

Variational principle implies an extremum of a functional, which 
includes the governing equations, the boundary and/or initial 
conditions, and constraints.

Variational statement (or formulation, method) is more general and 
encompasses both variational principles and more general 
integral forms.

We need a variational statement or weak form
• Can start with a variational principle in some special cases
• Can develop a weak form for virtually any PDE

Why use a weak form?
• We want to solve an easier problem, without as many restrictions

on the solution function (smoothness).   Averaging (or weighted 
averaging) is one way to smooth or weaken the problem.  
Averaging functions implies integration over domains.
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The Variational Principle Considers 
the BVP over a Finite Volume

• The first step is to multiply the energy equation by a variation of 
temperature and integrate over the domain

• In this formulation, the solution is satisfied over the arbitrary 
volume and is no longer, necessarily, satisfied on a point-by-point 
basis

• We can reduce the order of the equation by integrating by parts 
(or Green-Gauss theorem) to transfer one differentiation of 
temperature to the variation of temperature.

Q 0xx yy
T TT k k hT d

x x y y
δ

Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − + − Ω =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

By performing a “weighted” integral over an arbitrary volume, we have expanded 
the set of acceptable temperature functions that will satisfy this integral expression. 
It will be satisfied on an integral sense, as opposed to at each point in the domain, 
which suggests a less restrictive set of possible solutions.  Consequently, the integral 
representation is often called the “weak” form.  

You may have noticed the additional term “hT” and be wondering where it came 
from.   In a more general case, it could represent a convective heat transfer or it 
could be thought of as a temperature-dependent generation term.  You can see how 
this term might occur by considering the development of the energy equation for the 
fin problem described on pg 75 of LNS (Lewis, Nithiarasu, and Seetharamu).
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The Variational Principle (1)

• Having used the integration-by-parts on the second derivative

• Now, the solution only needs to be differentiable once (the 
acceptable solution space is broader than for the strong form) 

• The essential and natural boundary conditions are satisfied 
through the boundary integral term

Q

0

xx yy

xx x yy y

T T T Tk k T hT T d
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T TT k n k n d
x y

δ δ δ δ
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∫

∫
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The Variational Principle (2)

Using the following boundary conditions

results in the “weak” or “variational” form of the PDE

specified T

xx x yy y b q

T T on

T Tk n k n q on
x y

= Γ

∂ ∂
+ = Γ

∂ ∂

Q

0
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− Γ =

∫

∫

On the specified temperature boundary, the variation of temperature “delta T” is 
zero.
On the remainder of the boundary, the flux is specified to be q_b.
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The Variational Principle (3)

Because the order of the variation and the derivative can be 
switched*, then 

or

where            is the “functional”

It can be demonstrated that the temperature solution that makes 
this integral stationary, also satisfies the original PDE! 

2 2
21 Q 0

2 xx yy b
T Tk k h T T d T q d
x y
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∫ ∫
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⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
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∫ ∫ ∫

( )I T

Actually, we can write this as a functional because the operator on T and delta_T is 
symmetric with respect to T and delta_T.  Consequently, the result that we are able 
to express this as the first variation of the functional, I.  This can be related to the 
minimum entropy principle – an extremum principle.

It can be shown using calculus of variations, that when the functional I, can be 
minimized (or made stationary), the Euler-Lagrange equation (which is our PDE in 
this case) is also satisfied.  

Applicability of this approach is limited to problems in which there is a functional 
that corresponds to the correct PDE.  In general, this is not always available.  
Consequently, we will seek other, more general methods in the long run.  For now, 
we will consider an example problem that demonstrates this method.
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Application of Variational Principle 
or Rayleigh-Ritz (1)

Recall our example problem which is1-D conduction in a plane wall 
(2L thick) with uniform volumetric energy generation 

Integrating twice, results in 

Evaluating the constants of integration using the boundary conditions

For which the analytical solution is 
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∂
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Application of Variational Principle 
or Rayleigh-Ritz (2)

“Recipe” for applying variational formulation

1. Assume a temperature function (having unknown constants) 
that is adequately smooth and satisfies the boundary 
conditions.  Denote the assumed temperature as “T-bar,”

2. Substitute assumed temperature function into the functional for 
heat conduction and evaluate integral

3. Determine unknown constants in the assumed temperature 
function,    ,   by minimization of functional

for arbitrary          then

with respect to each unknown constant
( )

0
i

I T
c

∂
=

∂

( ) ( )
0 i

i

I T
I T c

c
δ δ

∂
= =

∂
ic

T

T

The result here is a system of N equations with N (unknown constants) as 
unknowns.
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Application of Variational Principle 
or Rayleigh-Ritz (3)

We will consider the following assumed temperature functions:

1.

2.

3.

4.

and will consider our model problem using each of these assumed 
functions with the variational principle.

or for our problem

0 1( )T x c c x= +

2
0 1 2( )T x c c x c x= + +

2 3
0 1 2 3( )T x c c x c x c x= + + +

2 3 4
0 1 2 3 4( )T x c c x c x c x c x= + + + +

2 2
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2 q
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⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= + + Ω − Ω − Γ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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2
1( ) Q
2

TI T k d T d
xΩ Ω

⎡ ⎤⎛ ⎞∂
= Ω − Ω⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫

This is the functional that, when made stationary, is equivalent to solving the our 
time-independent heat conduction equation.
There are some requirements on the assumed temperature functions:
•They need to be continuous and differentiable up to the derivatives in the 
functional
•They need to be “complete.” That is, they have to support all orders of the 
polynomial. 
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Consider the Assumed Temperature 
Functions for our Plane-Wall Problem

Begin with the most general form..  The other functions are 
simplifications of this case. 

For our boundary conditions

Using these simplifications, then  

2 3 4
0 1 2 3 4( )T x c c x c x c x c x= + + + +

2 3
2 3 4
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( )2 3
1 2 3 4 0

0

( ) 0 0 2 3 4
x

x

dT x c c x c x c x
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=
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For our plane-wall problem, we have specified that T_L is zero.

If we want to consider up to 2nd order, then we just set c_3 and c_4 to zero
If we want to consider up to 3rd order, then we set c_4 to zero.
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Example 1 – Assumed Linear 
Temperature Function

Does this assumed function satisfy the boundary 
conditions?

For this assumed function, both of the coefficients must 
be zero to satisfy the boundary conditions.

Clearly, an assumed temperature function that is linear 
in temperature does not satisfy the boundary conditions 
and is not a viable assumed function for this problem.

1
0

0 0
x

d T c
d x

=

= + = 0 1( ) 0 0 0T L c c= = + =



5 - 34

ESP300: Variational Principles

For this assumed temperature function:

Results in the exact solution

Example 2 – Assumed Quadratic 
Temperature Function

2
( ) 2dT x c x

dx
=( )2 2

2( )T x c L x= − −

2
1( ) Q
2

TI T k d T d
xΩ Ω

⎡ ⎤⎛ ⎞∂
= Ω − Ω⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫
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1 2 2( ) 2 Q
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3 2 3
2 2 2

2 2

( ) 2 20 2
3 3

dI T d k L c Q L c k c Q
dc dc

⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠ 2 2

Qc
k

= −

( )
2 2

( ) 1
2

Q L xT x Lk
⎛ ⎞= −⎜ ⎟
⎝ ⎠

Because the functional is a function of only one unknown constant, we differentiate 
it once with respect to c2.
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For this assumed temperature function:

Solving                                                yields

Results in the exact solution

Example 3 – Assumed Cubic 
Temperature Function

2
1( ) Q
2

TI T k d T d
xΩ Ω

⎡ ⎤⎛ ⎞∂
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∂
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In this case, the functional, I, is a function of the two constants, c2 and c3.  Taking 
the partial derivatives with respect to the two unknown constants results in two 
equations with the two unknown constants.  The unknown constants are determined 
by solving this set of equations. 
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For this assumed temperature function:

Solving                                                         yields 

Results in the exact solution

Example 3 – Assumed Quartic 
Temperature Function

( )

( ) ( ) ( )( )

22 3
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( ) 0I T
c

∂
=

∂
4 0c =

In this case, the functional has three unknown constants.  Taking the partial 
derivatives with respect to each unknown constant give us a set of three equations 
with three unknowns.  Solving the set simultaneously, we get the three unknown 
constants.  Again, the solution is exact and the constants for the higher order  
(higher than 2) are zero.
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Observations on our Plane-Wall 
Example Problem

• For our boundary conditions, the lowest-order function that we 
assumed (second order) was also the analytical solution.  
Therefore, all the higher-order functions assumed produced the  
analytical solution.

• Higher order (than quadratic) functions resulted in the coefficients 
of the higher-order terms being zero and dropping those terms 
out of the solution. 

• Had our assumed function not supported the analytical solution, 
we would not have seen this behavior.  See LNS textbook, pages 
75-84.

• We will embellish this plane-wall problem when we discuss the 
method of weighted residuals.

In the example in the Lewis, et.al. text, pgs. 75-84, the assumed solution did not 
support the analytical, so the solutions produced there are approximate solutions.  
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Observations on the 
Variational Principle

• Variational principle often referred to as “weak form”

• Needed an assumed profile that satisfied boundary conditions

• Problem was simple (1-D, steady-state)

• In general, it may be difficult to assume an appropriate profile for 
multi-D, with more complex boundary conditions

• An appropriate functional must exist for the PDE of interest.  In 
many cases, it does not.  We need a more general method.

Rather than continue to seek a solution with the variational principle 
(Rayleigh-Ritz) using minimization, we will take a different 
approach that has broader application. 
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The Method of Weighted Residuals (1)

If we assume a temperature function that does not exactly solve the 
PDE, then the “error” is termed the residual 

The MWR allows you to determine approximate solutions for which 
the residual error is distributed over the domain through the use 
of a global “weighting function.”

For simplicity, we will continue our discussion of this concept using  
a one-dimensional formulation

( ), Q 0i xx yy
T T TR T x C k k
t x x y y

ρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

= − − − ≠⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

( ) ( , ) 0i iw x R T x d
Ω

Ω =∫

Here the weighting function is written as a global function over the domain.  We 
will see later how be might express this in terms of a series of functions.
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The Method of Weighted Residuals (2)

Assuming a temperature function and a weighting function

Then the weighted residual statement can be rewritten as

Or, because the             are independent of 

( )
1

( ) , 0
N

j j i
j

b w x R c x dx
Ω

=

=∑∫

1

( ) ( )
N

i i
i

T x c f x
=

= ∑
1

( ) ( )
N

j j
j

w x b w x
=

= ∑

( )
1

( ) , 0
N

j j i
j

b w x R c x dx
Ω

=

⎡ ⎤ =⎣ ⎦∑ ∫

'jb s x

Remember here that we are assuming global functions for both the temperature 
function and the weighting function.  We are writing them both in terms of a series 
with unknown coefficients. 
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The Method of Weighted Residuals (3)

Now, expanding the sum,  we get

If the            are arbitrary constants (and non-zero), then each of 
these “N” integrals must equal zero.   We now have “N” integral 
equations with the “N” unknown constants,  the    

( )
1

( ) , 0
N

j j i
j

b w x R c x dx
Ω

=

⎡ ⎤ =⎣ ⎦∑ ∫

( ) ( )

( ) ( )
1 1 2 2

1 1

( ) , ( ) ,

( ) , ( ) , 0

i i

N N i N N i

b w x R c x dx b w x R c x dx

b w x R c x dx b w x R c x dx
Ω Ω

− −Ω Ω

+ +

+ + =

∫ ∫
∫ ∫

'jb s

'ic s

To demonstrate this argument, assume that arbitrary constants, b_2 through b_N are 
zero.  Then, if b_1 is non-zero, the integral it multiplies must be zero.



5 - 42

ESP300: Variational Principles

The Method of Weighted Residuals (4)

The discussion in the textbook does not go into this much detail, 
but makes the leap to the “N” integral equations in the form of

Now, we understand where these integrals come from and why 
they are equal to zero.

The next issue is to consider functions we might use for the 
weighting function,      .

( )( ) , 0 1,j iw x R c x dx for j N
Ω

= =∫

( ) ( )

( ) ( )
1 1 2 2

1 1

( ) , ( ) ,

( ) , ( ) , 0

i i

N N i N N i

b w x R c x dx b w x R c x dx

b w x R c x dx b w x R c x dx
Ω Ω

− −Ω Ω

+ +

+ + =

∫ ∫
∫ ∫

w

It is clear now (hopefully), that the weighted integral statement actually generates N 
equations from which we can determine the N unknown constants in the assumed 
temperature function. 
We still have several choices for the weighting function which we will discuss in 
more detail.  

We used “j” as the index here to make the distinction between the weighting 
function and the assumed temperature function.  In the future, we will also use “i”
as an index.
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The Method of Weighted Residuals (5)

Again, this integral representation is referred to as a “weighted 
integral” formulation. To get a “weak” form, we integrate by parts 
to reduce the order of the temperature derivative.

One significant difference is that we do NOT need a functional like 
we did with the variational formulation.  We just need the PDE.

By integrating over an arbitrary volume, we “distribute” this residual 
error over the volume. 

There are several different forms for this weighting function that 
distribute the error differently and may have different physical
interpretations. 

( ) Q 0i i xx yy
T T Tw x C k k d
t x x y y

ρ
Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− − − Ω =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

Here we have written the weighted integral in a form for a particular weighting 
function, the i th weighting function.
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The Method of Weighted Residuals (6)

For an assumed temperature profile 

And applying the MWR

Commonly used weighting functions include:

• Collocation method – for 

• Sub-domain method – for             

• Petrov-Galerkin method – for                      (in general)
• Galerkin method – if the weighting function is the same as the 

assumed temperature function

• Least Squares method – for 

( ) 0 1,iw x R d for i N
Ω

Ω = =∫

( )i iw x xδ= −

1iw =

( ) ( )i iw x g x=

( )i
i

Rw x c
∂= ∂

1

( ) ( )
N

i i
i

T x c f x
=

= ∑

( ) ( )i iw x f x=

We will see later that the sub-domain method can be interpreted as a finite volume 
formulation as well. 

For the Petrov-Galerkin method the weighting function is more general than in the 
Galerkin method, in which it is the functions that multiply the unknown constants in 
the assume temperature profile.

For the least-squares method, we seek to minimize the square of the residual error.  
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Application of the 
Method of Weighted Residuals

To implement this method, you first assume a temperature profile in 
terms of “N” unknown constants. 

The equation below can then be evaluated to determine the 
unknown constants.  

Exactly how this is done depends on the weighting function and will 
be demonstrated for each method. 

We will continue our “plane wall” example here to demonstrate the 
use of the MWR with different weighting functions.

( ) Q 0i i xx yy
T T Tw x C k k d
t x x y y

ρ
Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− − − Ω =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

1

( ) ( )
N

i i
i

T x c f x
=

= ∑

The terms shaded above require the assumed temperature function to be smooth and 
differentiable up to the second derivative.  This may not be an issue, but we would 
like to relax that requirement if possible.  One way to do that is to manipulate the 
residual using integration-by-parts and Gauss-Divergence theorem to reduce the 
order of the temperature derivatives and transfer one differentiation to the weighting 
function. 
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Transferring Derivatives Broadens the 
Admissible Solution Space

Often, we may want to simplify this integral equation and expand
the acceptable temperature profiles by reducing the order of the
temperature derivatives.  This is accomplished using integration
and the Gauss Divergence theorem. When done, the integral 
equation is

Now, admissible temperature solutions only need to be smooth and
differentiable up to the first derivative (“broader solution space”).

Q

0
q

i i
i xx yy i

i xx x yy y

w wT T Tw C k k w d
t x x y y

T Tw k n k n d
x y

ρ
Ω

Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂
+ + − Ω⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞∂ ∂
− + Γ =⎜ ⎟∂ ∂⎝ ⎠

∫

∫

By transferring one differentiation from the temperature function to the weighting 
function (shaded box above), we have increased the potential functions that might 
be assumed for temperature by requiring only first derivatives to exist.  In FEM 
speak, we expanded the admissible solution space. We also see that the boundary 
integral terms occur naturally from the weighted integral formulation. 

For the sub-domain method, where w=1 over specific volumes (and dw=0), the 
equation above simplifies because the terms in the shaded box above are now zero.  
The remaining terms look like the heat capacitance and energy generation over the 
sub-domain volume and the boundary integral looks like the net heat flux out of the 
sub-domain across the boundaries.   Does this look/sound like a finite volume 
method?   Yes it does!  It is at this point that we can see that finite volume methods 
are really a specific implementation of the sub-domain formulation of the method of 
weighted residuals.  
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Plane-Wall with Linearly Varying 
Volumetric Energy Generation

Consider a case of 1-D conduction in a plane wall (2L thick) with 
spatially varying volumetric energy generation, 

Integrating twice, results in 

Evaluating the constants of integration using the boundary conditions

For which the analytical solution is 

2
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T
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Collocation Method – Assumed 
Quadratic Temperature Function

Recall

Because we only have one constant to evaluate, we will use one 
weighting function with a collocation point at 

evaluating and solving for

results in an approximate solution

1 1( )w x xδ= −
2

0 12
d TR k Q Q x
dx

= − − −
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0 120
( ) 0
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∫
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2 2

1
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2c 0 1
2 2 4

Q Q Lc
k k

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

( ) 0 1,iw x R dx for i N
Ω

= =∫

1 / 2x L=

Note that the Q terms in the approximate solution are the volumetric energy 
generation evaluated at the mid-point.

If there were more than one constant (say N) in our assumed temperature function, 
then we would choose N weighting functions with collocation points (probably 
equally spaced) over the 0 L domain.  

So, for two unknown constants, we could use collocation points at L/3 and 2L/3. 
This would result in two equations from which the two constants can be determined. 



5 - 49

ESP300: Variational Principles

Sub-domain Method – Assumed 
Quadratic Temperature Function

Recall

Because we only have one constant to evaluate, we will use one 
weighting function that is unity over the entire domain 0 L

evaluating and solving for

results in an approximate solution

1 1w =
2

0 12
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= =∫

Same approximate solution as the collocation method.  Again, note that the Q terms 
in the approximate solution are the volumetric energy generation evaluated at the 
mid-point.

If there were more than one constant (say N) in the assumed temperature function, 
we would use “N” weighting functions that are 1 over N sub-domains over 0 L
and zero otherwise.  These can be constructed by sub-dividing the domain into N
sub-domains and using N heavyside functions, where wi=1 over each sub-domain 
and zero outside of the specific sub-domain.  
For example, if there were two unknown constants, then we would use two 
weighting functions;  
•the first weighting function being w1=1 over 0 L/2 and w1=0 over L/2 L and 
•the second weighting function being w1=0 over 0 L/2 and w1=1 over L/2 L.   
This would result in two equations from which the two constants can be determined.     
Because the weighting functions are constants over each portion of the domain, they 
can be factored out of the integral. The resulting equation is simply the product of a 
constant and the integral of the residual over the particular sub-domain.  That being 
the case, the value of the constant (w=1, for our discussion) is somewhat arbitrary 
because we have just multiplied that integral residual equation by a constant.  What 
is important is that the weighting functions are constants over each sub-domain and 
the sum of sub-domains covers the complete domain of interest in the problem.
In class, I talked about integrating over each of the N sub-domains with a constant.  
Now, I’m presenting it as integrating each weighting function over the entire 
domain (but the weighting function is zero over some of the domain).   The resulting 
integrals are identical, just differing ways to “view” the method.   The perspective 
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Galerkin Method – Assumed Quadratic 
Temperature Function (1)

Recall

where the weighting function            has the same form as the
functions used in the assumed temperature function

and 

or 
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2( )T x c L x= − − ( )2 2

1 1( ) ( )w x f x L x= = − −

If there were more than one unknown constant (say N) in the assume temperature 
function, then we would apply the integral using each of the functions used in the 
assumed temperature function.  If for this problem, we had included the cubic terms, 
we would evaluate this integral twice; with the different weighting functions.  In this 
case, the first instance with w1 = (L2-x2) and the second instance with w2 = (L3-x3) as 
the weighting function. This would result in two equations from which the two 
unknown constants can be determined.  

NOTE:  In this example, because we did not reduce the order of the residual 
(temperature derivatives) by employing integration-by-parts we did not employ a 
weak form representation.   Therefore, we are solving a weighted residual integral 
statement, but it is not a weak form representation. You can show that in either case, 
the terms in the integrand will be identical.   In the future, we will find more utility 
in using the weak form representation.   
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Galerkin Method – Assumed Quadratic 
Temperature Function (2)

By evaluating this integral 

and solving for the unknown constant

results in an approximate solution

( )( )2 2
2 0 10
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Note that the Q terms in the approximate solution are the volumetric energy 
generation evaluated at the 3L/8 point.

This is also the same solution as we would obtain using the variational principle.    It 
can be shown that the Galerkin and variational principle give the same result if the 
problem has a classical variational statement.
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Least-Squares Method – Assumed 
Quadratic Temperature Function (1)

Recall

with

where weighting functions are the partial derivatives with respect to 
the constants in the residual

The integral can be written as

which is a minimization of the residual error squared
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Ω

= =∫

In the least-squares method, we are minimizing the error in a least-squares sense. 

If there were more than one constant (say N) in the assumed temperature function, 
we would have to take the partial derivatives of the error integral with respect to 
each of the constants. The result would be N  equations from which the N constants 
could be determined.  
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Least-Squares Method – Assumed 
Quadratic Temperature Function (2)

Because we only have one constant to evaluate, we only need to 
take the derivative with respect to  

evaluating and solving for

results in an approximate solution

( )
22
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In this case, the Q terms in the approximate solution are the volumetric energy 
generation evaluated at the L/4 point (weighted towards the plane of symmetry).
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Comparison of MWR Results and 
Analytical Solution

In each case, the main differences was where/how the volumetric energy generation 
was evaluated…
For collocation and sub-domain, it was at the mid-point L/2
For Galerkin, it was just inside the mid-point, at 3L/8
For least-squares, it was at the quarter point, L/4
The closer to the centerline, (smaller x), the smaller the volumetric energy 
generation.  We see the effect in the reduced temperatures in the profiles.

All of these methods resulted in zero error at the surface (L), where the temperature 
was specified.  We would certainly expect that since we assumed a temperature 
function that satisfied the boundary conditions of the problem. For this problem, 
only the Galerkin method had a point within the interior where the error was zero.
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Summary of Methods

• Weighted integrals and weak forms permit us to consider a wider 
range of PDEs, when compared to minimizing functionals using 
the variational principle.

• Weighted integrals and weak forms reduce requirements on the 
assumed solutions, expand the solution space, and allow us to 
compute approximate solutions over domain.

• The Galerkin method produces the same solutions as variational 
principle (when variational functionals are available).

• It can be shown that the Galerkin method produces optimal 
approximate solutions in an L2 norm for certain types of 
equations, such as heat conduction.

• We will focus on the Galerkin FEM for heat conduction problems. 
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Observations for MWR 

• We have assumed solution profiles over the entire domain and 
determined constants in the assumed solution.

• To be more general and be simpler to apply, we might consider 
applying these concepts to a sub-divided domain with 
approximate temperature profiles assumed over each domain

• This line of thinking will lead us to the Finite Element Method 
using the MWR Galerkin formulation for complex geometries, etc.

• Catch – before we can do that, we will have to shift our focus to 
the “element” concepts such as element geometry, assumed 
temperature profiles and gradients, evaluating the MWR 
integrals, etc.  

• Make sure you understand these concepts for the Galerkin MWR 

Where are we going with this discussion and why?
Conceptually, we have the basic ideas here that will lead us to the Galerkin Finite 
Element Method.
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Summary of the Strong and Weak Forms 
for Heat Transfer Problems

“Strong form BVP” “Weak form BVP”

The weak form involves solving the PDE and boundary 
conditions in an average sense over the domain of 
interest. We will continue with that approach.
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Exercise #1

Repeat the plane-wall example, but now consider the volumetric 
energy generation as a quadratic function of position.

Assume: 

Required: 

• Determine the analytical solution

• Determine approximate solutions with Galerkin method by 
assuming 1) quadratic and 2) cubic temperature functions 

• Plot analytical solution and approximate solutions

• Plot temperature error for approximate solutions

• BONUS: repeat using assume quartic temperature function 

2
0 1( )Q x Q Q x= +

( ) ( ) ( )2 2 3 3 4 4
2 3 4( )T x c L x c L x c L x= − − − − − −


