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Sandia
LA TN = ESP300: Variational Principles Laboratories

ESP = Engineering Sciences Program

ESP100 is a course on computational solid mechanics

ESP200 is a course on digital signal processing with MATLAB

ESP300 is a course on heat transfer analysis using the finite element method
There are plans to offer additional courses in the future.

All of these courses are intended to provide a continuing education opportunity — in
the spirit of the INTEC courses some years ago



Introductory Info
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Evacuation Procedures:
« [Exits are located...
e Restrooms out back

Classification:
» Absolutely no classified discussions
» If you have a concern, let us know

 Some material may be OUOQ, it will be marked
as such
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Summary for Variational Principles

Begin with:

 General initial/boundary value problem for heat
conduction

and end with:
 Variational formulation applied to heat conduction

» Weighted residual formulation applied to heat
conduction
Additional References:

J.N. Reddy, “Energy and Variational Methods in Applied Mechanics,” John Wiley &
Sons, New York, NY (1984)

B. A. Finlayson, “The Method of Weighted Residuals and Variational Principles,”
Academic Press, New York, NY (1972)
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Questions for Variational Formulations
For Heat Transfer Analysis

=T

* What is the “strong” form, the “weak” form? How are
they different?

* Why is the weak form so important to us? How do
we use it to obtain approximate solutions?

* What is a variational principle and what is the method
of weighted residuals? How are they alike, how are
they different?

* How are finite difference, finite volume, and finite
element methods related? How are they different?
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}l Remember the Initial/Boundary Value

Problem (IBVP) Discussed Last Time

* An initial/boundary value problem is

* a mathematical statement comprised of the field equation(s)
describing the process of interest within a domain,

» conditions describing the behavior of the dependent
variables on the boundary of the domain (BC’s) and

« initial values (IC’s) for the dependent variables.

* A boundary value problem (BVP) is an IBVP without
time as an independent variable; IC’s are not
required.

ESP300: Variational Principles

These are standard definitions. For the most part, we will consider time-dependent
problems as they are the most general. Time independent problems will be singled
out when it comes to Finite Element solution methods.

These definitions assume that all necessary material properties and source terms are
known, i.e. in mathematical terms, the parameters and sources for the problem are
given data with appropriate functional behavior (smoothness).



Summary of

i Heat Transfer - IBVP

For a region () with boundary T°

I,

oT 0 oT
C,—=—ki— ®
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oT

-k, —n, =1 _(s;,1) on r
J@XJ— q

T (Xi 1 0) :To (Xi )
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This is the general mathematical setting for the equations that we will address with
the FEM. It will be assumed that all relevant “data” is given and all we have to do is
find T(x,t)

This is referred to as the “strong” form. We will figure out just what this means in
today’s class.



Heat Transfer Analysis (1)

A well-posed mathematical description of heat transfer
has been developed. The objective is now to solve

practical engineering problems described by the given
equations. These problems usually involve-

» Complicated geometries

» Complex boundary conditions

» Complex material behavior

* Variety of time and length scales

» Coupled physical phenomena
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What does it mean to “solve” a heat transfer or
mechanics problem?

Heat Transfer Analysis (2)

Generally, we want

* to obtain an accurate description of the dependent
variable as a function of time and space

* an accurate description of various derivatives (fluxes)
of the dependent variable as a function of time and
space

* an accurate description of various integrals of the
dependent variable and/or its derivatives as a function
of time and space

ESP300: Variational Principles




} Solution Approaches (1)

* Analytic Solution Methods
e Separation of variables methods
e Green’s function methods

¢ Integral transform methods

» Approximate Analytic Solution Methods
¢ Integral methods
¢ Rayleigh-Ritz methods (variational)
¢ Weighted residual methods (Galerkin)
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The analytic solution methods listed are classic methods for partial differential
equations; their use in heat transfer is well covered in the books by Ozisik and
Carslaw & Jaeger. The separation of variables techniques generally lead to Sturm-

Liouville equations that are ultimately solved by special functions such as Bessel
and Legrendre functions depending on the geometry.



Solution Approaches (2)

* Numerical Solution Methods

¢ Differential equation methods
¢ Integral equation methods

Because of the many limitations of analytic and
approximate analytic solution methods, engineering
practice has come to rely on numerical methods for the
solution of realistic problems. Also, numerical
algorithms based on differential equation methods have
limitations that exclude them from general application.
Integral equation methods, being very general, will be
our focus.
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Note that numerical solution methods are all approximate solution methods.



Spectrum of Approaches for Problem
Formulation in Heat Transfer

Balance Laws
Conservation Our focus_ is

of mass, on the Galerkin FEM
momentum,

and energy

“strong form”
of the IBVP

Form

“weak form”

equivalent

of the IBVP

expressions

(integral form or
variational form)

COE + BCs, ICs

Appliedb PDE for
COE +BCs, ICs | ==

continuum
Apply Finite
Difference
Method

mechanics
Approximate
“strong form”

Solution of PDEs

analytic solutions
discrete

equations

vanatlonal
principle

Welg%ted
integral
statement

Rayleigh-Ritz
methods

approximate
solutions via
minimization of
functionals

Method of
Weighted
Residuals

approximate
solutions via
weighted integral
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Galerkin MWR

Finite Element

semi discrete
equations

Apply Petrov
Galerkin MWR
over discrete
sub-volumes of
domain




The “Strong Form” Representation of
the Heat Conduction BVP

8k6T 8k8T

T ax ) Tayl vy ) T

 Solutions must be satisfy this equation over the entire domain (all
points, point by point)

* Analytical solution must be smooth and differentiable to at least
2nd derivative

 Analytical solution must satisfy boundary conditions
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For most of the discussion today, we will focus on the time-independent equation
for simplicity and avoidance of technical problems (details). We could write this as
a time-dependent problem in which case the PDE must be satisfied for all times as

well.



An “Example” Problem to Assess
Different Solution Methods

Consider a case of 1-D conduction in a plane wall (2L thick) with
uniform volumetric energy generation

dsT
T
with T(L)=0 and T o
‘ dx |,
L P 0

Integrating twice, resultsin ~ T(x) = EXZ +CX+C,

Evaluating the constants of integration using the boundary conditions
aT : Q 2 . Q 2
— = = T(L)=0=—L +8L+c, givesc,=—L
., 0 gives ¢, =0 (L) P yl+c, g 2= D

. . . . _QL2 G )
For which the analytical solution is T(x) = . (1 KZ
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This will be an “example” problem that we will use to apply different approximate
solution methods. The analytical solution will allow us to compare the accuracy of
these methods.
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Typical Finite Difference Method

Finite difference methods directly approximate
the strong form on topologically regular grids

T ab+ spatial derivatives are approximated
@) @) @ using a difference stencil,
Ay e.g. at node (a,b) :
ab
a-1b a,b AX a+lb oT _ ab+1 ab-1
T° Tf.\ o7 =TT ) /28y
A y
%a’b: (T a+lb _Ta—l,h)/ZAX
@ ) @
T a,b-1 oo ab

_ (T aslb _oTab T a—l,b) / AXZ

4
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The approximations in a finite difference method arise from two sources.

*The first is that spatial and temporal quantities are only know at discrete
points (as opposed to continuously) in space and time.

*The second is that spatial and temporal derivatives of a function are
approximated using a stencil — that is difference formulas are used on the
function values defined only at discrete points.

These difference “stencils” for the derivatives may be developed using either of two
approaches:

eusing a Taylor series expansion of temperature

*Using the definition of a derivative in an approximate manner (without
applying the limiting process)

Check out those boundary flux conditions and the need for “ghost nodes”!



} Application the Finite Difference
Method to the Plane Wall Example

Consider a case of 1-D conduction in a plane wall (2L thick) with
uniform volumetric energy generation, Q

d’T

T
with T(L)=0 and ar =0
= x dx |, o
Set up a 1-D “grid” of points at which we will solve the PDE
+T1 ol ol ol Ty
CLI
dx |, - T(L)=T,=0

We will develop finite difference equations for each grid point by

considering an energy balance over a finite volume
ESP300: Variational Principles
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Application the Finite Difference
Method to the Plane Wall Example (2)

Consider a control volume for the first grid point, grid point “1”

j}m

[Qun = QAAX/2] O

out

’ .T3 ‘T4
\’ Qout — _kAd_T ~ _kA
Q

dT
dx "

=0

an -

Conservation of energy is ~ Qu — Qi = Qgen

T,-T, AA
or {—kA( AX )}—{o}=Q2 X
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Application the Finite Difference

f i Method to the Plane Wall Example (3)

Consider a control volume for an interior grid point, grid point “2”

A
T. T, +T
® 3 [ N
— \
\, Qout = _kAd_T =~ —kA—(T3 _Tz)
Qgen = QAAX aX | oy AX
aT  a@-T)
ax|;, AX
Conservation of energy is  Q,, —Q, =Q,,
— — 2
or {—kA—(T3 Tz)} —{—kA—(TZ Tl)} = QAAX T, +2T,-T, = Qax
AX AX k
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Application the Finite Difference

- i Method to the Plane Wall Example (4)

Consider a “typical” interior grid point, call it grid point “n”

M

n+l _Tn)
AX
Conservation of energy is  Q,,, —Q,, =Q,,
— — 2
or _kA (Tn+1 Tn) _ _kA (Tn Tnfl) — QAAX o + 2T —T _ QAX
AX AX n-1 n n+l k
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} Application the Finite Difference
Method to the Plane Wall Example (5)

Consider a “typical” interior grid point, call it grid point “n”

J\
T ol ols oy Ty
+ Wt
dT

Qout =-kA—

out

Qqen = QAAX/2 dx
Q = _kAdl ~ —kAM
" dx |;, AX

If we were going to solve for TN , then we would construct
Qu—Qw=Q  as we have previously done

For the specified boundary condition, we will set T, =T(L)=0
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Application the Finite Difference
Method to the Plane Wall Example (6)

For 5 grid points, the system of equations can be written as a matrix
system of equations with the five unknown grid point temperatures,

+T1 o ol o +T5
arl _, T,=T(L)=0
ax |,

1 -1 0 0 offT 0.5Q"

1 2 -1 0 0|l Q" )

0 -1 2 -1 ol{T,t=! Q" where Q**_Qix

0 0 -1 2 -1f[T, Q"

0 0 0 0 1]|T] [TW=0

Remember that we developed this system of algebraic equations by

applying the PDE at each grid point. Although, integral formulations

will be different, they will also result in a set of algebraic equations.
ESP300: Variational Principles

For 2-dimensional structured grids, the coefficient matrix is also banded with five
rows of non-zero coefficients.

For 3-dimensional structured grids, there are seven rows of non-zero coefficients.



} Observations on the
Finite Difference Method
» Method usually requires a topologically regular grid

» Method focuses on the “grid point” with no consideration of the
temperature between the points

* Analogous to the “resistor-capacitor” network method

» Application of boundary conditions, in particular, flux boundary
conditions can be difficult

» Can be simple to implement, can be computationally efficient,
utilize customized solver algorithms

» Poor representation of complex geometry

ESP300: Variational Principles




A g

Background on
Variational Principles

General remarks on variational principles:
» Foundations in solid mechanics
 Typically associated with energy quantities (potential energy, etc)

¢ Involve minimization of functionals

« Integral equivalents of some PDE’s for COE (along with the essential
and natural boundary conditions)

¢ Produce an Euler-Lagrange equation that corresponds to a PDE of
interest

¢ Functionals are “functions of functions” and often an integral form

We will begin with a “model” problem corresponding to the BVP for
COE

ESP300: Variational Principles

Much of the early application of variational principles was directed at solid
mechanics and considered such concepts as virtual work and minimization of
energy principles.



} More on “Functionals”

| = J.: F(X,T(X), T,(x),) dx
Functional — function that takes a function as an argument, typically
the integral of a function.
Functionals depend on the function, T, used in the integrand.
The objective is to make | stationary (usually a minimum),
So Ol =0 necessary condition

Use calculus of variations to obtain the
Euler-Lagrange equation

Lots of functionals can be written down and made stationary, but
the resulting Euler-Lagrange equations will probably not
correspond to anything recognizable in mechanics.
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Calculus of variations was designed to work with functionals just the way calculus
works with functions.

One of the shortcomings of applying the variational principle to mechanics
problems is the limited number of problems that have appropriate functionals.
“Appropriate functionals” being those that result in the Euler-Lagrange equation
that represents meaningful mechanics.

On the other hand, there are a number of problems for which the functional
represents some physical quantity (like potential or strain energy) that will seek a
minimum potential.



Definitions for the Discussion of
Variational Methods

Variational principle implies an extremum of a functional, which
includes the governing equations, the boundary and/or initial
conditions, and constraints.

Variational statement (or formulation, method) is more general and
encompasses both variational principles and more general
integral forms.

We need a variational statement or weak form
» Can start with a variational principle in some special cases
» Can develop a weak form for virtually any PDE

Why use a weak form?

* We want to solve an easier problem, without as many restrictions
on the solution function (smoothness). Averaging (or weighted
averaging) is one way to smooth or weaken the problem.
Averaging functions implies integration over domains.

ESP300: Variational Principles




}- The Variational Principle Considers
the BVP over a Finite Volume

jaT _° kxxﬂ Ok ST k- Qlda=0
o ox\ "“ox) oyl Yoy

» The first step is to multiply the energy equation by a variation of
temperature and integrate over the domain

« In this formulation, the solution is satisfied over the arbitrary
volume and is no longer, necessarily, satisfied on a point-by-point
basis

» We can reduce the order of the equation by integrating by parts
(or Green-Gauss theorem) to transfer one differentiation of
temperature to the variation of temperature.
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By performing a “weighted” integral over an arbitrary volume, we have expanded
the set of acceptable temperature functions that will satisfy this integral expression.
It will be satisfied on an integral sense, as opposed to at each point in the domain,
which suggests a less restrictive set of possible solutions. Consequently, the integral
representation is often called the “weak” form.

You may have noticed the additional term ““hT"” and be wondering where it came
from. Ina more general case, it could represent a convective heat transfer or it
could be thought of as a temperature-dependent generation term. You can see how
this term might occur by considering the development of the energy equation for the
fin problem described on pg 75 of LNS (Lewis, Nithiarasu, and Seetharamu).



-~ &

The Variational Principle (1)

« Having used the integration-by-parts on the second derivative

jﬂ{aﬂ[k aT] +ﬂ[k a—TJ +5ThT—§TQ}dQ

ax | ™ax oy Yoy
- éT[k A ﬂn]olrzo
r XX@X X %4 y

* Now, the solution only needs to be differentiable once (the
acceptable solution space is broader than for the strong form)

« The essential and natural boundary conditions are satisfied
through the boundary integral term

ESP300: Variational Principles
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The Variational Principle (2)

Using the following boundary conditions

T :Tspecified on l—‘T

oT oT
kxxanﬁ kwa_yny =q, onl,

results in the “weak” or “variational” form of the PDE

) 901 kxxﬂ Ll kwﬂ +hsTT-6TQ|dQ
Q| 0OX oX oy oy

- oTg,dr=0
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On the specified temperature boundary, the variation of temperature “delta T” is

ZEero.

On the remainder of the boundary, the flux is specified to be g_b.



} The Variational Principle (3)

Because the order of the variation and the derivative can be
switched*, then

5{]9{%{@{%}2 . kw(%Jz " hTZ]—TQ}dQ—gﬁrTqbdr}: 0

ol =0

where | (T) is the “functional”

2 2
1 oT oT 2
I(T)—Ejg{kxx(a] +kw[aj +hT }dQ—jﬂTQdQ—(ﬁquqbdr

It can be demonstrated that the temperature solution that makes
this integral stationary, also satisfies the original PDE!
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Actually, we can write this as a functional because the operator on T and delta_T is
symmetric with respect to T and delta_T. Consequently, the result that we are able
to express this as the first variation of the functional, I. This can be related to the
minimum entropy principle — an extremum principle.

It can be shown using calculus of variations, that when the functional I, can be
minimized (or made stationary), the Euler-Lagrange equation (which is our PDE in
this case) is also satisfied.

Applicability of this approach is limited to problems in which there is a functional
that corresponds to the correct PDE. In general, this is not always available.
Consequently, we will seek other, more general methods in the long run. For now,
we will consider an example problem that demonstrates this method.



Application of Variational Principle
or Rayleigh-Ritz (1)

Recall our example problem which is1-D conduction in a plane wall
(2L thick) with uniform volumetric energy generation

dsT
T
with T()=0 and 91 —o
: dx |,
Ll 0
Integrating twice, resultsin ~ T(x) = ﬂxz +CX+ G,

Evaluating the constants of integration using the boundary conditions

or . Q . ; Q 2
- = = T(L)=0=——-L"+8L+cC ives ¢, = =L
., 0 gives ¢, =0 (L) P yl+c, g 2= D

. . . . _QL2 G )
For which the analytical solution is T(x) = o (1 KZ

ESP300: Variational Principles




Application of Variational Principle
or Rayleigh-Ritz (2)

“Recipe” for applying variational formulation

1. Assume atemperature function (having unknown constants)
that is adequately smooth and satisfies the boundary _
conditions. Denote the assumed temperature as “T-bar,” T

2. Substitute assumed temperature function into the functional for
heat conduction and evaluate integral

3. Determine unknown constants in the assumed temperature

function, T, by minimization of functional

— ol(T .
Sl (T): 0= 6( ) . for arbitrary C; then
Ci
o1(T)
ac 0 with respect to each unknown constant
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The result here is a system of N equations with N (unknown constants) as
unknowns.



Application of Variational Principle
or Rayleigh-Ritz (3)

We will consider the following assumed temperature functions:
1. T(x)=c,+cx

2. T(X)=c,+CX+C%°

3. T(X)=Cy+CXx+C,x>+Cx°

4. T(X)=Cy+CX+C,X°+CX +C,x*

and will consider our model problem using each of these assumed
functions with the variational principle.

I(T) = %Iﬂ{km(g—i] " ky&] +M do - [,TQda -, Kg,dr

—\2
or for our problem l(f)zéfg{k(%j }dQ—L}T—Q 40
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This is the functional that, when made stationary, is equivalent to solving the our
time-independent heat conduction equation.

There are some requirements on the assumed temperature functions:

*They need to be continuous and differentiable up to the derivatives in the
functional

*They need to be “complete.” That is, they have to support all orders of the
polynomial.



} Consider the Assumed Temperature
Functions for our Plane-Wall Problem
Begin with the most general form.. The other functions are

simplifications of this case. T(X) = Gy +C,X+€,X° +C,x° +C,x*

For our boundary conditions
dT (x)

-0 = 2 3 -
o | =0 = (0+¢,+2¢,Xx+3cX" +4¢,X )X=0 ¢,=0
T(L) =T, =c,+cL+c,2+c,lP+c,L* G = R~ (aL+c P +cl+c L)
Using these simplifications, then
T(x) ==, (L =x*)—cy(L* = x*)—¢, (L' - x*)
_ -
ar(x) _ 2¢,x+3c,x° +4¢,X° d JEX) = 2¢,+6¢,x+12¢,X?
X
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For our plane-wall problem, we have specified that T_L is zero.

If we want to consider up to 2" order, then we just set ¢_3 and c_4 to zero
If we want to consider up to 3™ order, then we set ¢_4 to zero.



Example 1 — Assumed Linear
Temperature Function

=

Does this assumed function satisfy the boundary
conditions?
aT

at T(L)=0=c,+c,0=0
dx

=0+¢, =0
x=0

For this assumed function, both of the coefficients must
be zero to satisfy the boundary conditions.

Clearly, an assumed temperature function that is linear
in temperature does not satisfy the boundary conditions
and is not a viable assumed function for this problem.

ESP300: Variational Principles




% Example 2 — Assumed Quadratic
Temperature Function

For this assumed temperature function:

T(x) :—cz(Lz—xz) dT;ix) = 2C,X
I(T)z%jg{k[%} }dQ—ITQdQ
I(T):—j [k(Zczx)szQ—j -, (L -x")QdQ = %kL3c22+§QL302
diT) __d (2, 5. 2.5 )_
i, _O_dcz(skch+3QLCZ]_2kc2+Q CZZ_ZQ_k

Results in the exact solution |_ 2
0= (1‘()( L)Zj
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Because the functional is a function of only one unknown constant, we differentiate
it once with respect to c,.



Example 3 — Assumed Cubic
Temperature Function

=

For this assumed temperature function:

dT (x)
dx

2

T(X) =—¢, (L =x*)—cy (L~ x°) = 2C,X+3C,X

|(T‘)=%qk[g—tj }dQ—J‘QfQ do

I(T) = %_|‘()L[k(202X+3c3x2)2 } dQ - J'OL(_CZ(LZ )=, (L- Xg))Q 40

aI(T):o 6I(T_)=0 yields -1 c,=0

Solving
oc, oc, 2k

Results in the exact solution T = QL
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In this case, the functional, I, is a function of the two constants, ¢, and c,. Taking
the partial derivatives with respect to the two unknown constants results in two
equations with the two unknown constants. The unknown constants are determined

by solving this set of equations.



Example 3 — Assumed Quartic

i Temperature Function

For this assumed temperature function:

T(x) = =6, (L =x*)—cy (L =x*)—¢, (L' - x*) d'z)((x) = 20,X+3¢,x* +4¢,X°
M) == I[(Zcx+3cx+4cx)}d9
—j( & (L =x) =g, (=) —c, (L = x*))Q 2
. am) , o) _ alT) _ Q ¢, =0
Solving T 0 26 " 0 ac, 0| yields | ¢, = - .

Results in the exact solution

o0 - 2 (1-(3))
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In this case, the functional has three unknown constants. Taking the partial
derivatives with respect to each unknown constant give us a set of three equations
with three unknowns. Solving the set simultaneously, we get the three unknown
constants. Again, the solution is exact and the constants for the higher order

(higher than 2) are zero.



Observations on our Plane-Wall
Example Problem

=

 For our boundary conditions, the lowest-order function that we
assumed (second order) was also the analytical solution.
Therefore, all the higher-order functions assumed produced the
analytical solution.

» Higher order (than quadratic) functions resulted in the coefficients
of the higher-order terms being zero and dropping those terms
out of the solution.

« Had our assumed function not supported the analytical solution,
we would not have seen this behavior. See LNS textbook, pages
75-84.

» We will embellish this plane-wall problem when we discuss the
method of weighted residuals.

ESP300: Variational Principles

In the example in the Lewis, et.al. text, pgs. 75-84, the assumed solution did not
support the analytical, so the solutions produced there are approximate solutions.



A

Observations on the
Variational Principle

 Variational principle often referred to as “weak form”
* Needed an assumed profile that satisfied boundary conditions
* Problem was simple (1-D, steady-state)

* In general, it may be difficult to assume an appropriate profile for
multi-D, with more complex boundary conditions

» An appropriate functional must exist for the PDE of interest. In
many cases, it does not. We need a more general method.

Rather than continue to seek a solution with the variational principle
(Rayleigh-Ritz) using minimization, we will take a different
approach that has broader application.

ESP300: Variational Principles




A

The Method of Weighted Residuals (1)

If we assume a temperature function that does not exactly solve the
PDE, then the “error” is termed the residual

= oT o oT 0 oT
R(T,x)=pC——-—| ky— | ——| k,— | - Q=0
(T:x)=r ot 6x[ XX@XJ ay( Wayj Q

The MWR allows you to determine approximate solutions for which
the residual error is distributed over the domain through the use
of a global “weighting function.”

jﬂw(xi)R(f,xi) dQ=0

For simplicity, we will continue our discussion of this concept using
a one-dimensional formulation
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Here the weighting function is written as a global function over the domain. We
will see later how be might express this in terms of a series of functions.



=,

The Method of Weighted Residuals (2)

Assuming a temperature function and a weighting function
_ N N
T(x)= Zci fi (X) w(x) = zbj Wj(x)
i=1 j=1
Then the weighted residual statement can be rewritten as
N
IQZ;bi w,(x) R(c,,x) dx =0
J:
Or, because the bj 's are independent of X

ilbj UQWJ.(X) R(c;,x) dx} =0
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Remember here that we are assuming global functions for both the temperature
function and the weighting function. We are writing them both in terms of a series
with unknown coefficients.



=,

The Method of Weighted Residuals (3)

ibj “ w,(x) R( c,,x)dx}: 0

j=1

Now, expanding the sum, we get

blfgwl(x) R(c,x)dx + szng(x) R(c;, ) dx + -
+ bN—JQWN,l(x) R(c,x)dx + bN_[QwN(x) R(c;, x) dx =0
If the bj 'S are arbitrary constants (and non-zero), then each of

these “N” integrals must equal zero. We now have “N” integral
equations with the “N” unknown constants, the C;'s

ESP300: Variational Principles

To demonstrate this argument, assume that arbitrary constants, b_2 through b_N are
zero. Then, if b_1 is non-zero, the integral it multiplies must be zero.



A

The Method of Weighted Residuals (4)

bl_[gwl(x) R(c,x)dx + szng(x) R(c;, ) dx + -
+ b WL (0 R(6,X) dx + by [ w, () R(c,x) dx = 0

The discussion in the textbook does not go into this much detail,
but makes the leap to the “N” integral equations in the form of

Iﬂwj(x) R(c,x)dx=0 for j=LN

Now, we understand where these integrals come from and why
they are equal to zero.

The next issue is to consider functions we might use for the
weighting function, W,

ESP300: Variational Principles

It is clear now (hopefully), that the weighted integral statement actually generates N
equations from which we can determine the N unknown constants in the assumed
temperature function.

We still have several choices for the weighting function which we will discuss in
more detail.

We used “j” as the index here to make the distinction between the weighting
function and the assumed temperature function. In the future, we will also use “i”’
as an index.
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The Method of Weighted Residuals (5)

oT 0 oT 0 oT
W, (X; C——-——|k,—|——k,— |- dQ=20

Again, this integral representation is referred to as a “weighted
integral” formulation. To get a “weak” form, we integrate by parts
to reduce the order of the temperature derivative.

One significant difference is that we do NOT need a functional like
we did with the variational formulation. We just need the PDE.

By integrating over an arbitrary volume, we “distribute” this residual
error over the volume.

There are several different forms for this weighting function that
distribute the error differently and may have different physical
interpretations.
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Here we have written the weighted integral in a form for a particular weighting
function, the i " weighting function.



A

The Method of Weighted Residuals (6)

For an assumed temperature profile T (x) = ici f.(x)
And applying the MWR -

[ w()RdQ=0 for i=1N
Commonly used weighting functions include:
+ Collocation method —for W, =5(x—x)
* Sub-domain method — for w, =1

» Petrov-Galerkin method — for  w;(x)=g;(x) (in general)

» Galerkin method — if the weighting function is the same as the
assumed temperature function w;(x)= f;(x)

» Least Squares method — for W‘(X):a%c.
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We will see later that the sub-domain method can be interpreted as a finite volume
formulation as well.

For the Petrov-Galerkin method the weighting function is more general than in the
Galerkin method, in which it is the functions that multiply the unknown constants in
the assume temperature profile.

For the least-squares method, we seek to minimize the square of the residual error.



}l Application of the

Method of Weighted Residuals

To implement this method, you first assume a temperature profile in
N
terms of “N” unknown constants. 7 (x) = e f(x)
i=1

The equation below can then be evaluated to determine the
unknown constants.

Exactly how this is done depends on the weighting function and will
be demonstrated for each method.

oT of, oT) o, oT
(%) | PC———| Ky—| ——| ky=— |- Q|d2=10
fone e Zr - 20,20 - 2, 2T - o

We will continue our “plane wall” example here to demonstrate the
use of the MWR with different weighting functions.
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The terms shaded above require the assumed temperature function to be smooth and
differentiable up to the second derivative. This may not be an issue, but we would
like to relax that requirement if possible. One way to do that is to manipulate the
residual using integration-by-parts and Gauss-Divergence theorem to reduce the
order of the temperature derivatives and transfer one differentiation to the weighting
function.



} Transferring Derivatives Broadens the
Admissible Solution Space

Often, we may want to simplify this integral equation and expand
the acceptable temperature profiles by reducing the order of the
temperature derivatives. This is accomplished using integration
and the Gauss Divergence theorem. When done, the integral

equation is
| wocZl o[22 0T (aw, oT)  0l4q
Q ot o X o X oy oy
—j w(k a—Tn+k 6—Tnj dr=20
rq 1 XX ax X yy 6y y

Now, admissible temperature solutions only need to be smooth and
differentiable up to the first derivative (“broader solution space”).
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By transferring one differentiation from the temperature function to the weighting
function (shaded box above), we have increased the potential functions that might
be assumed for temperature by requiring only first derivatives to exist. In FEM
speak, we expanded the admissible solution space. We also see that the boundary
integral terms occur naturally from the weighted integral formulation.

For the sub-domain method, where w=1 over specific volumes (and dw=0), the
equation above simplifies because the terms in the shaded box above are now zero.
The remaining terms look like the heat capacitance and energy generation over the
sub-domain volume and the boundary integral looks like the net heat flux out of the
sub-domain across the boundaries. Does this look/sound like a finite volume
method? Yes it does! It is at this point that we can see that finite volume methods
are really a specific implementation of the sub-domain formulation of the method of
weighted residuals.



}- Plane-Wall with Linearly Varying
Volumetric Energy Generation

Consider a case of 1-D conduction in a plane wall (2L thick) with
spatially varying volumetric energy generation, Q=Q, +Q,x

dsT
—kW :QO +Q1X
with T(L)=0 and T o
i dX x=0
L P
i i i S Qe

Integrating twice, results in ~ T(x) = ka ka +CX+C,

Evaluating the constants of integration using the boundary conditions
aT Q 2 Q 3 Q 2 Q 3
—1 =0 =0 T(L)=0=—=01"-=+p5L+cC C,= =2 L*+=LL
x| G ) ok ekl T G= g e

. . Lo Q L? 2 QL 3
For which the analytical solution is [T (x) _;_k(l_(%) )+ o (1_(%_) )
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}l Collocation Method — Assumed

Quadratic Temperature Function

Recall W, =0 (x=x,)
R 27
-[vii(X)RdXZO for i=1N R:_k?jT-l;_Qo_le
L dT oF
1} 5(X_Xi)(_kW_QO_Q1X] dx =0 LJXEX): 2¢,

Because we only have one constant to evaluate, we will use one
weighting function with a collocation point at x, = L/2

IOLé(x—xl) (-2kc, - Q, —Q x) dx = (—2kc, — Q, — Q, X)

evaluating and solving for C,  _ _ _(Qo . Qll_j
22k 4k

=0

x=L/2

2
results in an approximate solution  [T(X) :L(QO Lt ) (1—(X L)zj
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Note that the Q terms in the approximate solution are the volumetric energy
generation evaluated at the mid-point.

If there were more than one constant (say N) in our assumed temperature function,
then we would choose N weighting functions with collocation points (probably
equally spaced) over the 0> L domain.

So, for two unknown constants, we could use collocation points at L/3 and 2L/3.

This would result in two equations from which the two constants can be determined.



_
* Sub-domain Method — Assumed
Quadratic Temperature Function

Recall
w, =1
— 1 — 2T
IQWi(x)Rdx_O for i=1N R=—k(;TTz—Qo—Q1X
1 47 .
[ L0 (—kW—Qo—le] dx=0 ddTng): 2,

Because we only have one constant to evaluate, we will use one

weighting function that is unity over the entire domain 0 > L
L

2
[ (~2ke, - Q, - Qx) dx = [—chzx — QX - le?J =0
0
. . [, QL
evaluating and solving for C, =715k T ak

results in an approximate solution  |_ L2 L 2
i 70 =5 @ + 5 ) (-(%) )
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Same approximate solution as the collocation method. Again, note that the Q terms
in the approximate solution are the volumetric energy generation evaluated at the
mid-point.

If there were more than one constant (say N) in the assumed temperature function,
we would use “N”” weighting functions that are 1 over N sub-domains over 0 2 L
and zero otherwise. These can be constructed by sub-dividing the domain into N
sub-domains and using N heavyside functions, where w;=1 over each sub-domain
and zero outside of the specific sub-domain.

For example, if there were two unknown constants, then we would use two
weighting functions;

«the first weighting function being w;=1 over 0> L/2 and w,=0 over L/2-2 L and
«the second weighting function being w,=0 over 0 L/2 and w,=1 over L/2 2> L.
This would result in two equations from which the two constants can be determined.

Because the weighting functions are constants over each portion of the domain, they
can be factored out of the integral. The resulting equation is simply the product of a
constant and the integral of the residual over the particular sub-domain. That being
the case, the value of the constant (w=1, for our discussion) is somewhat arbitrary
because we have just multiplied that integral residual equation by a constant. What
is important is that the weighting functions are constants over each sub-domain and
the sum of sub-domains covers the complete domain of interest in the problem.

In class, | talked about integrating over each of the N sub-domains with a constant.
Now, I’m presenting it as integrating each weighting function over the entire
domain (but the weighting function is zero over some of the domain). The resulting
integrals are identical, just differing ways to “view” the method. The perspective



}- Galerkin Method — Assumed Quadratic
Temperature Function (1)
Recall
JQWi(X) Rdx=0 for i=1LN

w; (X)= f,(x)
a4
kW -Q, - QX

dzf(x)

ax 26,
where the weighting function W,(X) has the same form as the
functions used in the assumed temperature function

R=-

f(X) = —Cz(LZ _)(2) and W1(X) - fl(x) _ _(Lz _ XZ)
d’T
or J‘oL(LZ_XZ)(_kW—QO—lej dx=0

[ (%) (~2ke, - Q, ~ Qx) dx =0
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If there were more than one unknown constant (say N) in the assume temperature
function, then we would apply the integral using each of the functions used in the
assumed temperature function. If for this problem, we had included the cubic terms,
we would evaluate this integral twice; with the different weighting functions. In this
case, the first instance with w, = (L?-x?) and the second instance with w, = (L3-x3) as
the weighting function. This would result in two equations from which the two
unknown constants can be determined.

NOTE: In this example, because we did not reduce the order of the residual
(temperature derivatives) by employing integration-by-parts we did not employ a
weak form representation. Therefore, we are solving a weighted residual integral
statement, but it is not a weak form representation. You can show that in either case,
the terms in the integrand will be identical. In the future, we will find more utility
in using the weak form representation.



Galerkin Method — Assumed Quadratic

| i Temperature Function (2)

By evaluating this integral

[ () (-2ke, - Q, - Qx) dx =0

and solving for the unknown constant C,

results in an approximate solution
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Note that the Q terms in the approximate solution are the volumetric energy

generation evaluated at the 3L/8 point.

This is also the same solution as we would obtain using the variational principle.
can be shown that the Galerkin and variational principle give the same result if the

problem has a classical variational statement.

It



}l Least-Squares Method — Assumed

Quadratic Temperature Function (1)

Recall Wl(x):@
jw.(x)Rdx:O for i=1N 2
i dT
_ ° R=-k=—7-Q, - Qx
with R dx
W, (X)= d’T(x
og, dXE ) 2¢,

where weighting functions are the partial derivatives with respect to
the constants in the residual

The integral can be written as
ij R dx=0 for i=1N
oc; °2

which is a minimization of the residual error squared
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In the least-squares method, we are minimizing the error in a least-squares sense.

If there were more than one constant (say N) in the assumed temperature function,
we would have to take the partial derivatives of the error integral with respect to
each of the constants. The result would be N equations from which the N constants
could be determined.



} Least-Squares Method — Assumed
Quadratic Temperature Function (2)

Because we only have one constant to evaluate, we only need to
take the derivative with respectto C,

d d o  dfT ’
—_ R?)dx = — -Kk—-0Q,-Q,x|dx=0
dc, o (%) dc, 0[ o %@ J

d L
d_ch (—2kc, - Q, —Qx)" dx =0

evaluating and solving for C,

results in an approximate solution
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In this case, the Q terms in the approximate solution are the volumetric energy
generation evaluated at the L/4 point (weighted towards the plane of symmetry).



}-l Comparison of MWR Results and
Analytical Solution

Approximate and Exact Solutions Errors in Approximate Solutions
1.4 T 0.3 T
: ——colfocation —collocation
1.2 : —— sub-domain sub-domain
: galerkin 0.2 galerkin
1 : — least-squares — least-squares
[ exact ke 01 :
3 08k S U
-E 0.8 "I_m
g 5
£ 06 5 ok
2 w0
04
-0.1
0.2
0 ; ; ; 0.2
o 0.2 04 0.6 0.8 1 [} 0.2 0.4 0.6 0.8 1
XL XL
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In each case, the main differences was where/how the volumetric energy generation
was evaluated...

For collocation and sub-domain, it was at the mid-point L/2
For Galerkin, it was just inside the mid-point, at 3L/8
For least-squares, it was at the quarter point, L/4

The closer to the centerline, (smaller x), the smaller the volumetric energy
generation. We see the effect in the reduced temperatures in the profiles.

All of these methods resulted in zero error at the surface (L), where the temperature
was specified. We would certainly expect that since we assumed a temperature
function that satisfied the boundary conditions of the problem. For this problem,
only the Galerkin method had a point within the interior where the error was zero.
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Summary of Methods

Weighted integrals and weak forms permit us to consider a wider
range of PDEs, when compared to minimizing functionals using
the variational principle.

Weighted integrals and weak forms reduce requirements on the
assumed solutions, expand the solution space, and allow us to
compute approximate solutions over domain.

The Galerkin method produces the same solutions as variational
principle (when variational functionals are available).

It can be shown that the Galerkin method produces optimal
approximate solutions in an L2 norm for certain types of
equations, such as heat conduction.

We will focus on the Galerkin FEM for heat conduction problems.

ESP300: Variational Principles
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Observations for MWR

* We have assumed solution profiles over the entire domain and
determined constants in the assumed solution.

* To be more general and be simpler to apply, we might consider
applying these concepts to a sub-divided domain with
approximate temperature profiles assumed over each domain

 This line of thinking will lead us to the Finite Element Method
using the MWR Galerkin formulation for complex geometries, etc.

» Catch — before we can do that, we will have to shift our focus to
the “element” concepts such as element geometry, assumed
temperature profiles and gradients, evaluating the MWR
integrals, etc.

» Make sure you understand these concepts for the Galerkin MWR
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Where are we going with this discussion and why?

Conceptually, we have the basic ideas here that will lead us to the Galerkin Finite
Element Method.



“Strong form BVP”

Summary of the Strong and Weak Forms
for Heat Transfer Problems

“Weak form BVP”

T(s,t)="f(s,t) onTI;

oT
-k; =——n; = f_(s;,t) on
laxj q

T

q

T :Tspecifled on 1HT
oT oT
kxxanﬁ kyyany =q,onrl,

The weak form involves solving the PDE and boundary
conditions in an average sense over the domain of
interest. We will continue with that approach.
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Repeat the plane-wall example, but now consider the volumetric

Exercise #1

energy generation as a quadratic function of position.
Q(X):Qo + lez

Assume: T (x) =—c, (L =x*)—¢, (L =x*)—c, (L' =x*)

Required:

Determine the analytical solution

Determine approximate solutions with Galerkin method by
assuming 1) quadratic and 2) cubic temperature functions

Plot analytical solution and approximate solutions
Plot temperature error for approximate solutions

BONUS: repeat using assume gquartic temperature function
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