

Update: High-Temperature Electronics and Testing

**Drilling Engineering Association
Fourth Quarter 2006 Meeting**

November 16, 2006

**Randy Normann
Geothermal Research Department (06331)
Sandia National Laboratories**

ranorma@sandia.gov

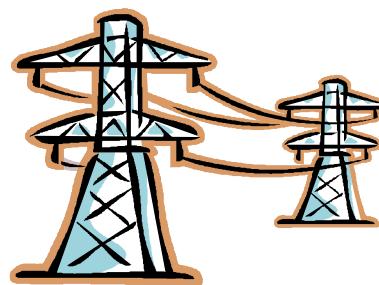
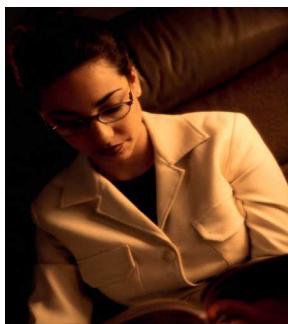
**John Witham
Frequency Devices Department (01732)
Sandia National Laboratories**

jpwitha@sandia.gov

Outline

- **Introduction**
- **High-Temperature Electronics at Sandia**
- **High-Temperature Testing Guidelines**
- **What Sandia Can Do**

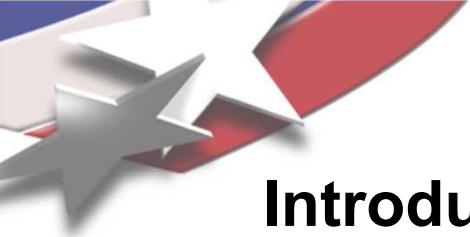
Introduction - Why?



New high-temperature SiC & SOI electronics benefits both sides of the energy equation.

- **Oil and Gas Exploration**
 - Deep-offshore GOM wells are hot, 200 – 300 Celsius. Costs >\$100 Mil each!
 - On-shore natural gas wells are >17,000 ft.
 - Steam injection production is a growing market
- **Geothermal Power Production**
- **Nuclear Power**

Introduction - Why?

- **Aircraft saves fuel**


- Fly by wire (Replace hydraulics and pneumatics with electrical)
- Distributed controls on the engine
- 200 to 600 Celsius/44,000 hrs

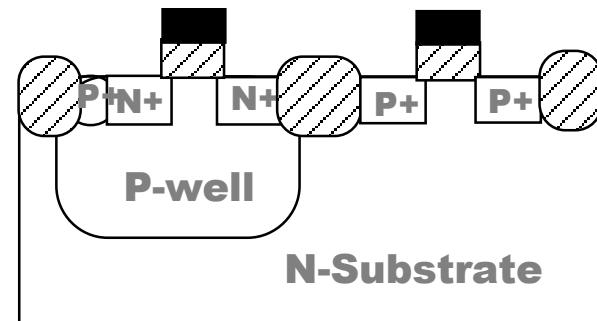
- **Automobiles saves fuel**

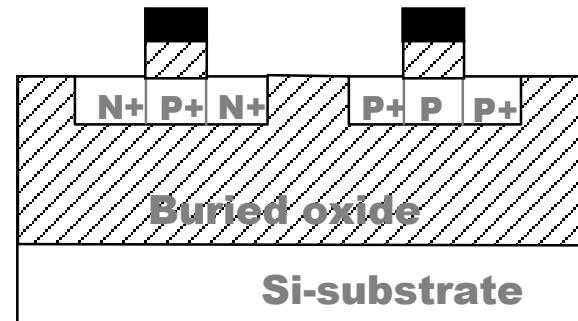
- Improved hybrids
- Drive by wire
- 125 – 180 Celsius /10 years

- **Power grid improvements**


- Modular controls
- Reduced cooling fans
- >150 Celsius – 20kV

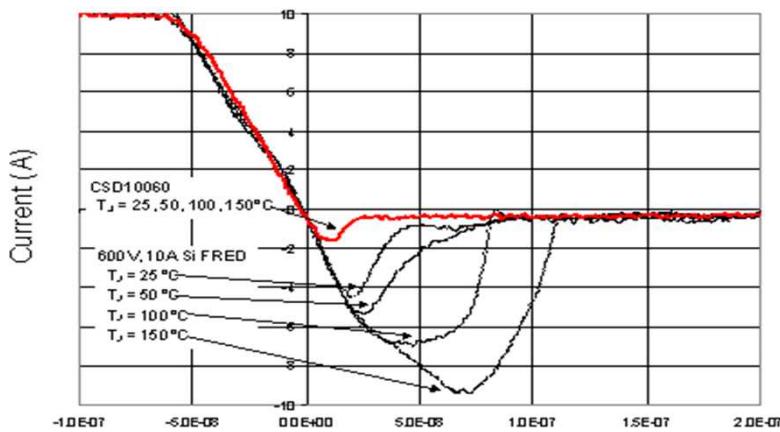
Introduction – Common Goals for Using High- Temperature Electronics


- Increase temperature capability of electronics
 - passively cool electronics
- Save volume and space
 - Replace active cooling with passive cooling (Example – On an aircraft, to cool 1 kWatt of thermal energy, must add 25 pounds to the aircraft)
- Improve power system efficiency
 - Eliminate transients and improve current capabilities for electronic systems for $T > 150$ Celsius.
- Reduce thermal hot spots
- Increase power density
- Increase operating life and reliability


Introduction – What Are High Temperature Electronics? SOI Devices

- **Silicon-On-Insulator (SOI)** isolates transistors on an insulating material providing:
 - Isolation reduces leakage currents by ~100 times!
 - Latchup immunity
 - 25% Faster Switching
 - Better isolation for analog and digital on the same die
- SOI is the same process as used for Radiation Hardened silicon

A: Cross-section of bulk CMOS inverter

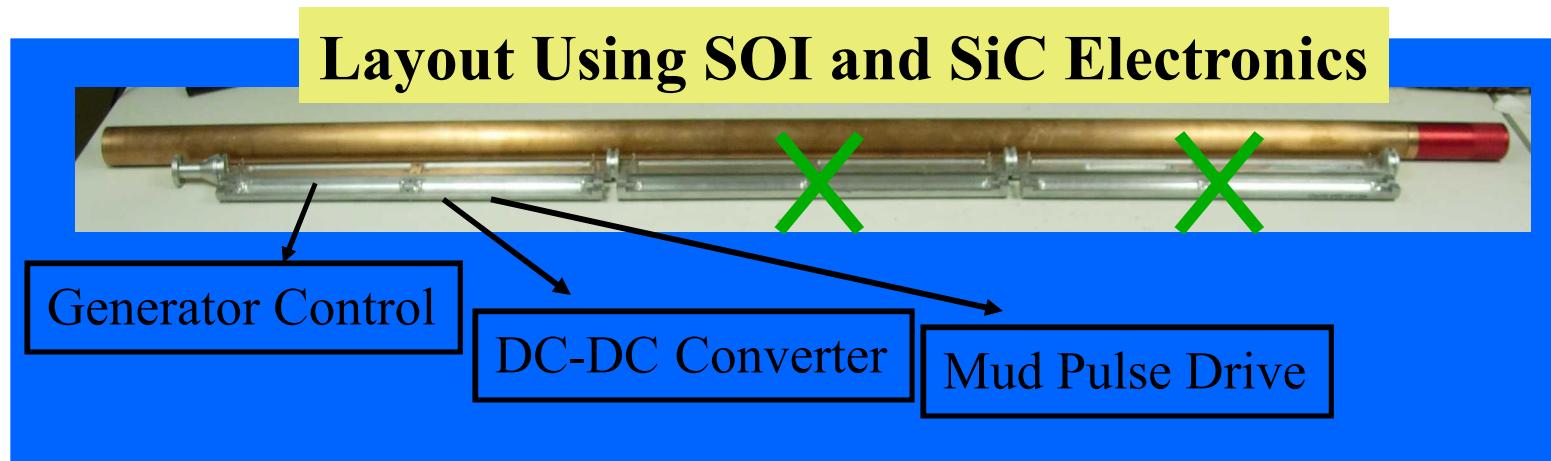

B: Cross-section of a SOI CMOS inverter

In short, SOI is just a better way to build silicon electronic devices

Introduction – What Are High Temperature Electronics? SiC Devices

- SiC has 7 times the voltage breakdown of Si
- SiC has ~3 times the thermal conductivity of Si
- SiC devices are 5 to 10 times smaller than Si
- The smaller SiC power transistor can be operated much faster allowing for smaller passives devices

Courtesy Suresh Soni, GTI 2006


Courtesy Anant Agarwal, Cree HiTEC 2006

Introduction – Advantage of Using SOI and SiC Devices in Applications

- HPHT turbine regulator using HT SOI and SiC electronics
 - 1/3 the size of the conventional 200°C Si switcher
 - Operates up to 250°C+
 - Commercial systems reduce energy loss by 30-50%
- In 3-5 years this SiC technology will dominate the drilling industry power electronics!!!

High-Temperature Electronics at Sandia - Our Suppliers are the Industry Leaders

- Below is a short list of the companies Geothermal Research Department is currently working with

Quartzdyne Inc.

Presidio Components, Inc.

Paine Electronics

Multilayer Prototypes, Inc

Kulite Semiconductor Products

Honeywell SSCS

Weed Instrument Company

Cissoid

Kemlon Products

Electrochemical Systems

Semisouth Laboratories

Endevco Corp

Rockwell Scientific/ GTI

Regal Plastic Supply Co.

Biotronics

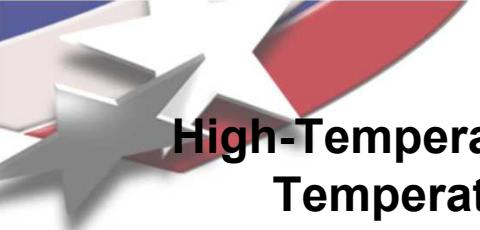
***Honeywell Richmond
General Atomics***

Solid State Devices Inc.

High-Temperature Electronics at Sandia – Geothermal Research Progress

- Sandia has a complete DAQ 250°C (482°F) tool able to stay in the well indefinitely.
 - Long-term demonstration testing with over 17,000 hrs at 193°C
 - Complete 48 channel µP tool tested to 250°C
 - Currently planning a long-term 225°C demonstration
 - Currently testing a 275-300°C tool in Bakersfield, Ca.
 - Simple two-data-channel tool
 - Planning a long-term 8 week test with a major oil company
 - DWD for downhole bit monitoring while drilling at 225°C
- We can quickly modify our tool to use almost any electronic component or sensor

High-Temperature Electronics at Sandia – Evaluating New High-Temperature Components


- HT PC Board Material
- 300°C Quartz Crystal
- 300°C SOI Clock Chip
- EEPROM 64K X 16
- 400°C SiC MEM Pressure Sensor (for aircraft engines)
- 250°C SiC JFET Normally On
- 200°C SiC JFET ~Normally Off

High-Temperature Electronics at Sandia - New Components Coming to Geothermal Research by January 2007

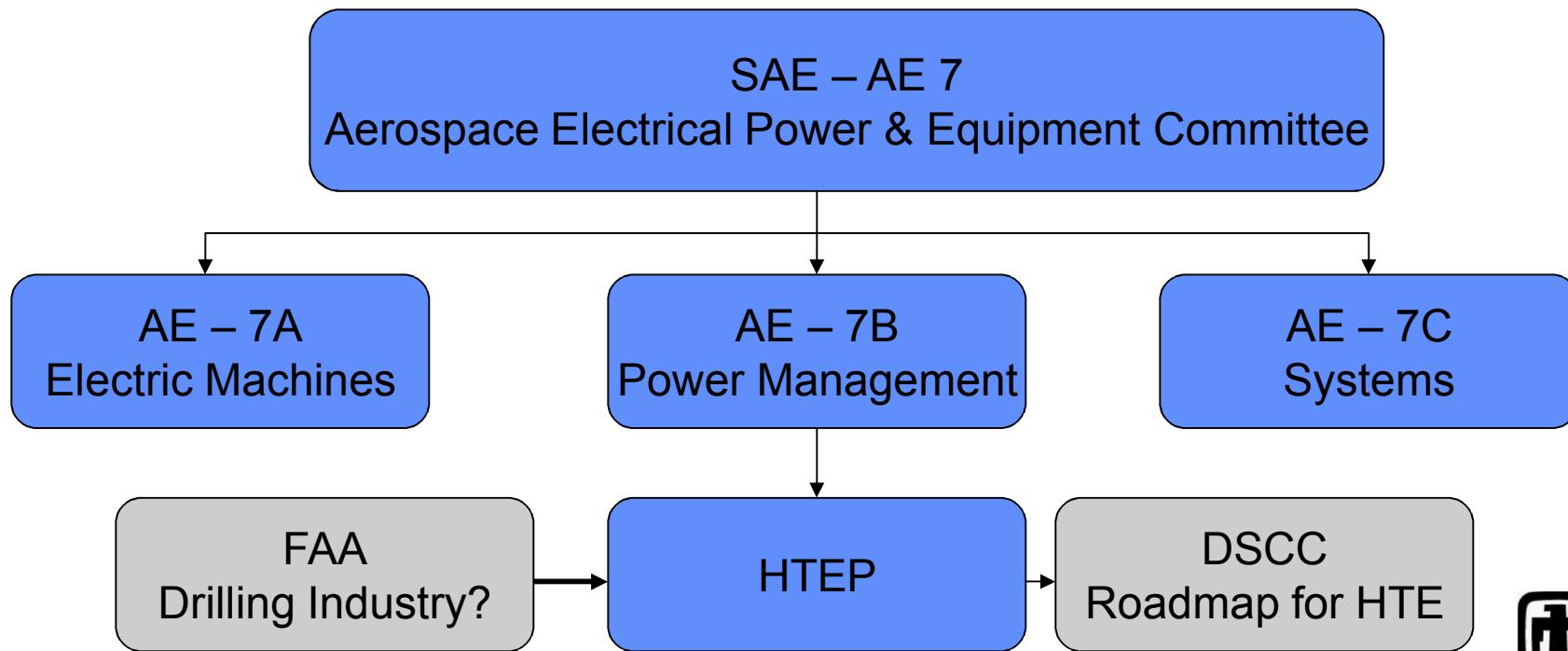
- **8 bit PWM SOI (Automotive)**
- **2K EEPROM SOI (Automotive)**
- **8-Channel, 12-Bit SOI A/D**
- **350°C SOI MEM Pressure Sensor**
- **275°C 8/16 bit SOS HC11 µP with ROM (Late Jan)**

High-Temperature Electronics at Sandia – Proving Reliability of High-Temperature Electronics and Systems - Long-Term SOI Tool Demonstration

Objective: Demonstrate a microprocessor, multi-channel data collection set of SOI electronics

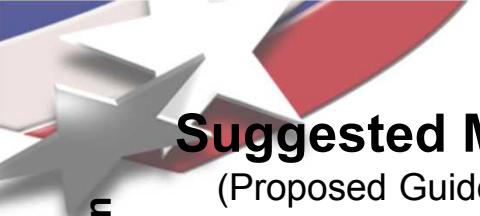
The Coso well was chosen at 193°C. This is the hottest location within the well. We have 750+ days in the well, along with 750 hours at 200°C inside a test oven.

Current Issues with High-Temperature Electronics


- **Capacitors**
 - Lack of high-voltage, high-capacitance capacitors due to limitations of X7R ceramic
- **Solders/ Interconnects**
 - Lack of high-temperature solders (other than 95.5-2.0-2.5 Pb-Sn-Ag)
- **Packaging (Standard FR4 PCB limited to 175°C)**
 - What is the best approach – MCM (Al_2O_3 , AlN substrates) or high-temperature polymer packaging (polyimide)?

High-Temperature Test Guidelines – Who Is Proposing the Guidelines

- Defense Supply Center Columbus (DSCC) maintains the military standards for components (MIL-PRF). However, components that are qualified are very expensive.
- High-Temperature Electronics Panel (HTEP) of SAE – AE7 Committee Is Proposing High-Temperature Test guidelines, which will help to establish reliability of high-temperature components and to make them affordable.



High-Temperature Test Guidelines – Why Have Guidelines

- Aid component manufacturers in identification of components as high-temperature and reliable
- Aid design engineers and system engineers in minimizing qualification testing and development time by using qualified high-temperature electronic components (along with standardized test data from the manufacturer).
- Aid end-users of high-temperature systems in identifying products that are built with high-temperature, reliable components and sensors.

Suggested Minimum Testing for HT Components and Sensors

(Proposed Guidelines Being Developed by High-Temperature Electronics Panel (HTEP) of Society of Aerospace Engineers (SAE) – AE7 Committee)

Test device is calibrated to manufacturers operating specification

Soak

2000 hrs
at rated temp
and operating voltage

Cycling

50 Temperature Cycles

Vibration

Vibration
15g @10-500hz

A failed device is any device falling more than 5% outside of the manufacturers specification. A complete set of test data, test devices and procedures must be reported in open publication.

Test device is tested against manufacturers operating specification

Suggested Minimum Testing for HT Components and Sensors (cont.)

- **Destructive Physical Analysis (DPA) and Visual-Mechanical Examination per MIL-STD-1580**
 - Verify workmanship, construction and materials in making the component or the sensor
 - Show that component is free of unsuitable materials for high-temperature (e.g., 100% Sn) and is defect free.
 - Prevent counterfeiting of qualified, high-temperature, high-reliability components
- **Solderability**
 - Ensure that reliable interconnects can be made between components and packaging.

What Sandia National Labs Can Do

- **There is room for Sandia in HT component development**
 - John Witham, 1732 for HT Capacitors
 - Karen Waldrip, 2521 for GaN crystal growth
- **There is room for Sandia in component and system-level packaging development**
 - The success of future systems is 100% dependent on packaging and interconnects
 - Most applications will use the same devices in die form
 - Robust packaging and reliable interconnects are the key to high-temperature electronic systems.
 - Paul Vianco, 1824 for Solders and die attach
 - Blake Jakaboski, 17152 for HT packaging

What Sandia Can Do – Departments 1732 (Frequency Devices) and 1734 (Component Information & Models)

- **Component Testing (Electrical, Thermal, Mechanical, Radiation) → 1732, 1734**
- **High Performance Electrical Modeling and Simulation (HPEMS – Xyce, Chile SPICE, etc.) → 1734**
- **Component Modeling (Library of >1800 component models, Model Verification, Model Extraction, Advanced Model Development, etc.) → 1734**
- **Failure Analysis (Electrical Failure Analysis Laboratory, Scanning Electron Microscope Laboratories, Focused Ion Beam System, Optical Microscopy Laboratory, Scanning Probe Microscope Laboratory) → Sandia Site Wide**
- **Reliability and Risk Assessments of Components → 1732, 1734**

What Sandia Can Do – Departments 1732 (Frequency Devices) and 1734 (Component Information & Models) (cont.)

- **Weapons Reserve COTS Insertion Process (WRCIP – Parts Selection, Procure and Accept, Reliability and Qualification) → 1732, 1734**
- **Development, use and implementation of commercial and Sandia-developed sensors to provide functional sensor sub-systems → 1732**
- **Design and development of clocks, oscillators and sensors for national security applications → 1732**
- **Design, develop and test custom capacitors for national security applications → 1732**

What Sandia National Labs Can Do (cont.)

- **Geothermal Research Can Do:**
 - Provide third party test data on components and sensors
 - Simulate real world applications within the drilling industry by building complete HT – HR drilling tools
 - Provide a list of Sandia suppliers to anyone on request
 - Encourage new DOE programs in HT components, sensors and systems.

Conclusions

- **High temperature electronics and sensors have potential applications in geothermal, petroleum, aerospace, military and automotive industries after reliability is proven.**
- **High-temperature testing guidelines are needed to provide a formalized guideline for component manufacturers on high-temperature components and to establish the reliability of high-temperature components for end users.**
- **High-temperature electronics and components would benefit the energy industry and the national security of the United States.**
- **Thank you for your time and for your consideration.**

Definitions

- SOI – Silicon on Insulator
- SOS – Silicon on Sapphire
- SiC – Silicon Carbide
- μ P – microprocessor
- EEPROM – electrical erasable programmable read only memory
- MEM – micro-electro-mechanical
- JFET- Junction Gate Field Effect Transistor
- A/D – Analog to Digital
- PWM – Pulse Width Modulator
- ROM – Read Only Memory
- AlN – Aluminum Nitride
- Al_2O_3 – Aluminum Oxide
- X7R – Electronic Industry Association (EIA) designation of capacitance change of $\pm 15\%$ from -55°C to $+125^\circ\text{C}$ unbiased.

COTS Testing, Evaluation and Qualification Resources

- CALCE – Center for Advanced Life Cycle Engineering
(<http://www.calce.umd.edu/>)
- DSCC – Defense Supply Center Columbus
(<http://www.dscc.dla.mil/>)
- NASA Electronic Parts and Packaging Program (NEPP)
(<http://nep.p.nasa.gov/>)
- Sandia National Laboratories Microsystems Science, Technology & Components (<http://www.sandia.gov/mstc/index.html>)
- Honeywell Solid State Electronics Center (SSEC)
(<http://www.ssec.honeywell.com/hightemp/>)
- NASA Silicon Carbide Electronics
(<http://www.grc.nasa.gov/WWW/SiC/index.html>)
- Sandia National Laboratories Microsystems Science, Technology & Components – Electronic Components
(<http://www.sandia.gov/mstc/products/elect-comp/index.html>)