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Internal interfaces: relationships between

structure, chemistry and topology

« Complexity of interfaces
— 3D objects, homophase/heterophase, chemistry, defects, strains, ...

« Atomistic mechanisms controlling the structure of interfaces
— High spatial and chemical resolution tools
« Transmission electron microscopy
« Atom probe tomography

— Extract quantitative information from observations to validate
theoretical predictions

« Controlled model systems
» Detailed understanding of physical atomic phenomena

« Two examples:
— Homophase interfaces: Grain boundary structures
— Alloy structures: Precipitate structures in Al-Ag alloys e
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Finite size effects on the structure of grain
boundaries

Acknowledgements: John C. Hamilton, Douglas L. Medlin and Francois Léonard
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Grain 2 structure?
Infinitely long Finite-size grain
grain boundary boundary

Challenge: how to quantify the roles of atomic relaxation and elastic
interactions

===> Combination of systematic experimental observations,
continuum modeling and first-principles calculations. o
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The {112} twin boundary
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Simple structure previously

studied
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— For instance, in Al: Medlin et al.

(1993)

(1991)

Conflicting report in the literature
— Au: Ichinose and Ishida (1985)
— Au: Krakow and Smith (1987)

— Al: Penisson, Dahmen, Mills

about the structure

Relevant for nanocrystalline and
grain boundary engineered

materials

Vapor Deposited

Au thin film on <101> NaCl
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Plane offset at the infinitely long X3 {112} boundary

{111} planes

First-principles calculations of GB energy
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Offset profiles: length dependence
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» Offset energy

_E 27¢(y)
Eoffset = 70 '[length COS{ J de

» Elastic energy (restoring force)
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Offset (d,)
Profile obtained by minimization §F 0 Offset profile along the boundary, ¢(y), is solution
of the energy of the boundary: 5_ - of the equation:
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Best fit to the experimental profile

| " for the parameter, A

I T T I Experimental measurement of the energy barrieL:
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Distance along the boundary (d,) Eo =0.50+0.24 eV/nm
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—— > Cannot extrapolate structure of infinitely

long GB to that of nano-length GB e

E.A. Marquis, J.C. Hamilton, D.L. Medlin, F. Léonard Phys. Rev. Letters (2004)
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Summary: Grain boundaries at the atomic scale

« From bi-crystal experiments to real
materials...

« Quantitative study of grain
boundary structures using TEM

. Size effect: Compromise between {1} GB
elastic energy and atomic relaxation t
. 4.5
» Step towards the understanding of w
dislocation interactions with grain N
boundaries AP R,
— Dislocation and GB interactions (111} GB

— Structure, deformation, stability of
nanocrystalline materials : -
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Atom Probe Tomography atom by atom volume

analysis

Time-of-flight mass spectrometry
2D Detector

Sequence of
evaporation:
depth information
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Pulse

» Spatial resolution: 0.1-0.2 nm depth, 0.3-0.5 nm lateral
* 50-60% efficiency
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GP zones
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Alloy structures

« Understanding the solute distribution, solute interactions with defects,
and temporal stability: Atomic scale structure AND chemistry

* Interfaces
— Precipitate/matrix Grain boundaries

* Solute interactions |
clusters
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As-quenched

'Y, 130°-45hrs
Solid-solution —»GP zones —p 7y —» v GP zones
— /
Spherical - e (coherent) How does the structure
evolve?
Plates (Ag,Al) @
(semi-coherent)
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A very studied systeyet W|th unanswered
questions

Guinier, 1942: First evidence for GP zone formation in Al-Ag alloys
(Phys. Radium, Paris 8, 124 (1942))
Since then, many studies leading to various theories on the structure
of GP zones:

— Ag rich shell structure?

— Ag depleted shell structure? Shell structures?

— Uniform structure? Erni et al., 2004 using STEM

Guinier, Mat. Sci. Forum (1996):

“Two models are possible:

i) the spherical zones of uniform radii are
arranged like the molecules in a liquid or

ii) the zone is complex, made of central
sphere enriched in Ag, surrounded by a
depleted shell. The choice between the two
models is ambiguous.”
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Time evolution at 130°C

As-quenched 30 minutes 2 hours 4.5 hours

All reconstructions
are 10 nm thick
slices shown at
same scale

1080 hours

44 hours 116 hours

O Ag atoms
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Fluctuations In an evolving system

mes.

140°C -4 hrs

From R. Erni, H. Heinrich, G. Kostorz,

Phil. Mag. Letters 81 (2003)
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« After long aging times:
— Faceted GP zones

— Uniform composition inside the
zones

— All zones have same composition

130°C- 450 hours

Concentration profile
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GP zones change over time
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« 2regimes
— Concentration increase and wavelength
constant
» Spinodal decomposition?
— Coarsening beyond ~20 hours === \acancy-solute interactions? =
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Conclusions and outlooks

« Understanding alloy structures at the atomic scale

— Integration of theoretical and experimental approaches
* Tools to extract quantitative information from measurements
« Combination of complementary experimental techniques
— Atom Probe Tomography
— TEM
« Combination of complementary theoretical techniques
— First principles calculations, continuum modeling, ...

* New insights into the atomic mechanisms involved in alloy systems
— Solute-solute, solute-defect interactions
— Kinetic pathways
— Equilibrium structures




