
Sensitivities and Optimization:

Going Beyond the Forward Solve

(to Enable More Predictive Simulations)

Roscoe A. Bartlett

Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, November 8th, 2006

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2006-6911P

Outline

• Mathematical overview of sensitivities and optimization

• Minimally invasive optimization algorithm for MOOCHO

• ModelEvaluator software

• Wrap it up

Outline

• Mathematical overview of sensitivities and optimization

• Minimally invasive optimization algorithm for MOOCHO

• ModelEvaluator software

• Wrap it up

Why Sensitivities and Optimization?

The Standard Steady-State Forward Simulation Problem

Example applications

• Discretized PDEs (e.g. finite element, finite volume, discontinous Gelerkin, finite difference, …)

• Network problems (e.g. circuit simulation, power grids)

• …

Why is a forward solver is not enough?

• A forward solve p  g(x(p),p) can only give point-wise information, it can’t tell you what you ultimately
want to know:

• How to a characterize the error in my model so that it can be improved?  Error estimation

• What is the uncertainty in x given uncertainty in p ?  QMU

• What is the “best” value of p so that my model f(x,p)=0 fits exp. data?  Param. Estimation

• What is the “best” value for p to achieve some goal?  Optimization

What are some of the tools that we need to answer these higher questions?

• Sensitivities and Optimziation!

Steady-State Simulation-Constrained Sensitivities

Steady-State Simulation-Constrained Response

Reduced Response FunctionNonlinear elimination

Steady-State Sensitivities

State Sensitivity:

Reduced Response Function Sensitivity:

Forward (Direct) vs. Adjoint Sensitivities

Forward (Direct) Sensitivity Method:

Adjoint Sensitivity Method:

O(np)

O(ng)

Complexity

Well suited for
Newton Methods

Uses for Sensitivities: Derivative-based optimization, UQ, error estimation etc …

Steady-State Simulation-Constrained Optimization

Basic Steady-State Simulation-Constrained Optimization Problem:

Basic example optimization formations

• Parameter estimation / data reconciliation

• Optimal design

• Optimal control

• …

Optimality conditions

Define Lagrangian:

State equation:

Adjoint equation:

Gradient equation: Reduced sensitivity!

Trilinos Optimization Packages

• MOOCHO (R. Bartlett)

• Aristos (D. Ridzal)

Simulation-Constrained Optimization Methods

Basic Steady-State Simulation-Constrained Optimization Problem:

• Decoupled approach (simulation constraints always satisfied):

Optimization method never
“sees” the state space!

• Optimization method deals with the (parallel)
state space and the parameter space
together!

• Requires special globalization methods to
converge to a minimum!

MOOCHO, Aristos

Two broad approaches for solving optimization problems

• Coupled approach (converges optimality and feasibility together):

DAKOTA

Full-Newton Coupled Optimization Methods

Full-Newton Coupled Optimization Methods (The Gold Standard)

Optimality conditions

A set of three coupled
nonlinear equations!

• Results in fast local quadratic (Newton) convergence

• Global convergence to a minimum requires special “globalization” methods

• Requires second derivatives (i.e. Hessians)

• Requires solution of large symmetric indefinite systems

• Hard to exploit forward-solve capabilities of an application

Solve using Newton’s
method?

Also know as a full-space
successive quadratic
programming (SQP)
method!

Aristos (D. Ridzal)

Reduced-Space Coupled Optimization Methods (i.e. MOOCHO)

Basic Steady-State Simulation-
Constrained Optimization Problem

Basic (line-search-based) reduced-space optimization algorithm

• Strongly leverages the
capabilities of applications that
can be used with a Newton-
based forward solver

• Direct sensitivities
• np+1 solves with f/x

• Adjoint sensitivities
• 2 solves with f/x
• 1 solve with (f/x)T

• Quasi-Newton methods typically
used to approximate reduced
Hessian (second derivatives) B
and to compute:

p = -B-1 (ĝ/p)T

• MOOCHO implements this class
and related classes of algorithms!

A Spectrum of Optimization Methods form Decoupled to Coupled

• Decreased impact to
existing app code

• Ease of interfacing

• Better scalability to large
parameter spaces

• More accurate solutions

• Less computer time

Fully Decoupled
Optimization Method

Fully Coupled, Newton
Optimization Method

MOOCHO

Aristos

General Inequality Simulation-Constrained Optimization

General Steady-State Simulation-Constrained Optimization Problem with Inequalities:

Example optimization formations

• Parameter estimation / data reconciliation

• Optimal design

• Optimal control

• …

Issues associated with handling of inequalities

• Inequalities allow a modeling capability not possible with just equalities

• Allows reformulation of some non-differentiable optimization problems

• Two broad classes of optimization algorithms for handling inequalities

• Active-set methods (adds and removed inequalities from “working set”)

• Interior-point methods (enforces inequalities using “barrier term”)

• Tradeoffs between direct and adjoint sensitivity methods not so obvious anymore

MOOCHO allows
inequality constraints
using active-set methods
(see QPSchur)!

Transient Sensitivities and Optimization

DAE/Implicit ODE Forward
Sensitivities:

ODE Constrained
Optimization:

Explicit ODE Forward
Sensitivities:

Issues associated with transient sensitivities and optimization

• If sufficient storage is available, then discretization in time yields a BIG steady-state problem

 4D approach!

• If sufficient storate is not available then time integration methods must be used to eliminate transient
equations and state varaibles

• Direct transient sensitivity methods scale as O(np)

• Adjoint transient sensitivity methods scale as O(ng) but require storage/recomputation of x(t)

• Model/Application requirements are similar for steady-state sensitivities and optimization

I am not going to say anything more about transient sensitivities or optimization!

Outline

• Mathematical overview of sensitivities and optimization

• Minimally invasive optimization algorithm for MOOCHO

• ModelEvaluator software

• Wrap it up

Motivation for Invasive Coupled Optimization

Large Scale Non-Linear Programming for PDE Constrained Optimization, van Bloemen Waanders, B., Bartlett, R.,
Long, K., Boggs, P., and Salinger, A. Sandia Technical Report SAND2002-3198, October 2002

Increasing Levels of
Coupling and Derivative
and Solve Capabilities

Key Point

For many/some optimization problems, intrusive coupled optimization methods can be
much more computationally efficient and more robust than the decoupled approach

But:

• It is hard to get our “foot in the door” with production codes

• It is hard to keep a “door stop” in place once we are in … Because …

Decoupled
Finite-Difference

Varying levels of
Invasiveness

Decoupled
Pattern Search

Level 2 = Decoupled forward sens.
Level 3 = Coupled forward sens.
Level 4 = Decoupled adjoint sens.
Level 5 = Coupled adjoint sens.
Level 6 = Coupled full-Newton

Some Challenges to Incorporation of Invasive Optimization

• Lack of Software Infrastructure

– Linear algebra and linear solvers not supporting
optimization requirements

– Application structure not flexible (i.e. only supports a
narrow mode to solve the forward problem)

• Lack of software maintenance

– Optimization support is not tightly integrated with
forward solve code and is not maintained over time.

• Lack of derivative support

– Lack of model smoothness

– No optimization variables derivatives

– Lack of transient derivatives

Thyra

Model Evaluator

Automatic
Differentation (AD)

MOOCHO

Rythmos

Where I am Involved

Key Point

We need a strategy to reduce the threshold for getting invasive optimization into
codes and for keeping the capability once it is there => Software and Algorithms

Minimally Invasive Gradient-Based Optimization

Nonlinear Solver
(e.g. NOX)Model

Linear Algebra
Linear Solver

Noninvasive
Optimizer

Simulator

Invasive Optimizer
(e.g. MOOCHO)

Model

Linear Algebra
Linear Solver

Decoupled Optimization: Assume there is no optimization capability in the “Simulator”

Coupled Optimization: Simulator broken up and some pieces are given over to optimizer

Question: How can we break the a simulator open to begin
using coupled optimization methods and how can our algorithms
exploit any capabilities that the simulator can provide?

Finite difference entire
simulation to get sensitivities!

Model
Evaluator

State
solve

Objective
eval

Minimally Invasive Direct Sensitivity MOOCHO

Basic Simulation-Constrained Optimization Problem

Minimal Requirements for decoupled Newton simulation-constrained optimization

– Residual Eval:

– Jacobian Eval:

– Objective Eval:

State solve
with

NOX/LOCA

Minimally Invasive
Direct Sensitivity

MOOCHO

Derivatives desired but not required

– Residual opt. deriv:

– Objective state deriv:

– Objective opt. deriv:

Defines the state
simulator and

direct sensitivities

Linear
Solver

Approximate using O(np) directional finite differences!

Reduced Obj. Function

Decoupled
Opt.

Scalable Optimization Test Problem

Example: Parallel, Finite-Element, 2D, Diffusion + Reaction (GL) Model

Key Points

• Simple physics but leads to very nonlinear state equations

• Inverse optimization problem is very ill posed in many instances

• State PDE: Scalar Ginzburg-Landau equations (based on Denis Ridzal’s (1414) code)

• Discretization:
• Second-oder FE on triangles
• nx = 110,011 state variables and equations

• Optimization variables:
• Sine series basis
• np = 8 optimization variables
• Note: df/dp is constant in this problem!!!

• Iterative Linear Solver : ILU (Ifpack), (GMRES) AztecOO

Results: Decoupled vs. Coupled, Finite Differences

Decoupled Finite Diff. vs. Coupled Finite Diff.

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 5 10 15 20

Optimiation Iteration

decoupled ||obj||

coupled ||obj||

coupled ||state con||

Decoupled Finite Diff. vs. Coupled Finite Diff.

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 100 200 300 400

Time [seconds]

decoupled ||obj||

coupled ||obj||

coupled ||state con||

Key Points

• Finite differencing the underlying functions is much more efficient than
finite differencing entire simulation!

• Finite differencing the underlying functions is more accurate!

• Coupled approach requires (almost) no extra application requirements!

Results: Coupled Finite Diff. vs. Coupled Analytic

Coupled Finite Diff. vs. Coupled Analytic

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 5 10 15 20

Optimization Iteration

finite diff ||obj||

finite diff ||state con||

analytic ||obj||

analytic ||state con||

Key Points

• Analytic derivatives are usually not faster

• Analytic derivatives often much more accurate

Coupled Finite Diff. vs. Coupled Analytic

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 50 100 150 200 250 300

Time [seconds]

finite diff ||obj||

finite diff ||state con||

analytic ||obj||

analytic ||state con||

Outline

• Mathematical overview of sensitivities and optimization

• Minimally invasive optimization algorithm for MOOCHO

• ModelEvaluator software

• Wrap it up

Overview of Nonlinear Model Evaluator Interface

Motivation: An interface for nonlinear problems is needed that will support a variety of
different types of problems

• Nonlinear equations (and senstitivities)
• Stability analysis and continuation
• Explicit ODEs (and sensitivities)
• DAEs and implicit ODEs (and sensitivities)
• Unconstrained optimization
• Constrained optimization
• Uncertainty quantification
• …
as well as different combinations of problem types such as:
• Uncertainty in transient simulations
• Stability of an optimum under uncertainty of a transient problem

Approach: Develop a single, scalable interface to address all of these problems

• (Some) Input arguments:

• State and differential state:

• Parameter sub-vectors:

• Time (differential):

• (Some) Output functions:

• State function:

• Auxiliary response functions:

• State/state derivative operator
(LinearOpWithSolve):

Key Point

All inputs and outputs are
optional and the model
evaluator object itself

decides which ones are
accepted.

Key Point

The number of
combinations of different

problem types is large and
trying to statically type all
of the combinations is not

realistic

Some Examples of Supported Nonlinear Problem Types

Nonlinear equations:

Stability analysis:

DAEs/Implicit ODEs:

Explicit ODEs:

DAE/Implicit ODE Forward
Sensitivities:

Unconstrained Optimization:

Constrained Optimization:

ODE Constrained
Optimization:

Explicit ODE Forward
Sensitivities:

A More Advanced Optimization Example

Equality and Inequality Constrained Optimization solved using Continuation:

• Np = 2 parameter sub-vectors:

• design p0

• continuation p1

• Ng = 3 response functions:

• objective g0  R 1

• auxiliary equalities g1

• auxiliary inequalities g2

Key Points

• This is a very realistic problem that could be added to MOOCHO this year!

• We can’t be developing a new interface for every one of these types of mixed
problem formulations!

Example : “Composite” Coupled (Multi-Physics) Models

Forward Coupled Model:

“Composite” Forward Coupled Model:

where

ModelEvaluator
models

1…m

ForwardCoupledModelEvaluator

“Composite” ANA Subclasses:

LinearOpWithSolveBase
models

1…m

BlockTriangularLinearOpWithSolve

<<create>>

Nonsingular linear operators
on the diagonal

Nonlinear Algorithms and Applications : Everyone for Themselves?

NOX / LOCA Rythmos MOOCHO

Xyce Charon AriaTramonto Premo

…

…

Trilinos and non-Trilinos
Preconditioner and Linear

Solver Capability

Key Point

• BAD

Nonlinear
ANA Solvers
in Trilinos

Sandia
Applications

Nonlinear Algorithms and Applications : Thyra & Model Evaluator!

Model Evaluator

Trilinos and non-Trilinos
Preconditioner and Linear

Solver Capability

NOX / LOCA MOOCHO

Xyce Charon AriaTramonto Premo

…

…

Key Points

• Provide single interface from nonlinear ANAs to applications

• Provide single interface for applications to implement to access nonlinear ANAs

• Provides shared, uniform access to linear solver capabilities

• Once an application implements support for one ANA, support for other ANAs can
quickly follow

Nonlinear
ANA Solvers
in Trilinos

Sandia
Applications

Rythmos

Stratimikos!

Model Evaluator : Thyra and EpetraExt Versions

Thyra::ModelEvaluator

createInArgs() : InArgs
createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase
…
evalModel(in InArgs, out OutArgs)

EpetraExt::ModelEvaluator

createInArgs() : InArgs
createOutArgs() : OutArgs
create_W() : Epetra_Operator
…
evalModel(in InArgs, out OutArgs)

Thyra::EpetraModelEvaluator

createInArgs() : InArgs
createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase
…
evalModel(in InArgs, out OutArgs)

Thyra::LinearOpWithSolveFactoryBase

Nonlinear
ANA

Concrete
Application

Thyra-based interoperability
interface layer

Epetra-based application-
friendly implementation support
interface

• Thyra::ModelEvaluator and EpetraExt::ModelEvaluator are near mirror copies of each other.

• Thyra::EpetraModelEvaluator is fully general adapter class that can use any linear solver through a
Thyra::LinearOpWithSolveFactoryBase object it is configured with

• Stateless model that allows for efficient multiple shared calculations (e.g. automatic differentation)

• Adding input and output parameters involves

• Modifying only the classes Thyra::ModelEvaluator, EpetraExt::ModelEvaluator, and
Thyra::EpetraModelEvaluator

• Only recompilation of Nonlinear ANA and Concrete Application code

Stratimikos!

Example EpetraExt::ModelEvaluator Application Implementation

/** \brief Simple example ModelEvaluator subclass for a 2x2 set of
* parameterized nonlinear equations.
*
* The equations modeled are:
\verbatim

f[0] = x[0] + x[1]*x[1] - p[0];
f[1] = d * (x[0]*x[0] - x[1] - p[1]);

\endverbatim
*/
class EpetraModelEval2DSim : public EpetraExt::ModelEvaluator {
public:

EpetraModelEval2DSim(...);
/** \name Overridden from EpetraExt::ModelEvaluator . */
//@{
Teuchos::RefCountPtr<const Epetra_Map> get_x_map() const;
Teuchos::RefCountPtr<const Epetra_Map> get_f_map() const;
Teuchos::RefCountPtr<const Epetra_Vector> get_x_init() const;
Teuchos::RefCountPtr<Epetra_Operator> create_W() const;
InArgs createInArgs() const;
OutArgs createOutArgs() const;
void evalModel(const InArgs& inArgs, const OutArgs& outArgs) const;
//@}

private:
...

};

Complete nonlinear equations example in epetraext/thyra/example/model_evaluator/2dsim/.

Example EpetraExt::ModelEvaluator Application Implementation

EpetraExt::ModelEvaluator::InArgs EpetraModelEval2DSim::createInArgs() const
{

InArgsSetup inArgs;
inArgs.setModelEvalDescription(this->description());
inArgs.setSupports(IN_ARG_x,true);
inArgs.setSupports(IN_ARG_beta,true);
return inArgs;

}

EpetraExt::ModelEvaluator::OutArgs EpetraModelEval2DSim::createOutArgs() const
{

OutArgsSetup outArgs;
outArgs.setModelEvalDescription(this->description());
outArgs.setSupports(OUT_ARG_f,true);
outArgs.setSupports(OUT_ARG_W,true);
outArgs.set_W_properties(

DerivativeProperties(DERIV_LINEARITY_NONCONST,DERIV_RANK_FULL,true)
);

return outArgs;
}

void EpetraModelEval2DSim::evalModel(const InArgs& inArgs, const OutArgs& outArgs) const
{

const Epetra_Vector &x = *inArgs.get_x();
Epetra_Vector f_out = outArgs.get_f().get();
Epetra_Operator W_out = outArgs.get_W().get();
if(f_out) {

...
}
if(W_out) {

...
}

}

Key Point

From looking at example code, there is not even a
hint that other input and output parameters exist!

Model Derivatives

• State function parameter sensitivities:

[LinearOpBase or MultiVectorBase]

• Auxiliary function state sensitivities:

• Auxiliary function parameter sensitivities:

[LinearOpBase or MultiVectorBase2]

[LinearOpBase or MultiVectorBase2]

• State function state sensitivities:

[LinearOpWithSolveBase or LinearOpBase]

First Derivatives

Use Cases:

• Steady-state and transient sensitivity computations

• Optimization

• Multi-physics coupling

• …

Forward/Direct and Adjoint Sensitivities

Steady-state constrained response: Reduced response function:

Reduced Sensitivities:

where:

Forward/Direct Sensititivies (ng large, np small)

-1

= +-

Adjoint Sensititivies (ng small, np large)

MV LO LOWS MV MV

MV

-T

= +-

np

ng

ng

np

MV LO LOWS MV MV

MV

Key Point

The form of the derivatives you
need depends on whether you are
doing direct or adjoint sensitivities

Properties of Current Approach to ModelEvaluator Software

• Strong Typing of Input/Ouput Object Types but Weak Typing of Problem Formulation

•Much functionality/information resides in concrete InArgs and OutArgs classes

•ModelEvaluator objects select which input/output arguments are recognized and the
rest are ignored

•Attempts to set or get non-supported input/output arguments throw exceptions as
early as possible and result in very good error messages

•Only subclasses of ModelEvaluator can change the set of supported arguments

• Designed for Change

•Input and output arguments can be added at will to support new algorithms; only
requires recompilation of existing clients and subclasses

• Incremental Development of Application Capabilities

•Existing ModelEvaluator subclasses can incrementally take on new input and output
objects to support more advanced algorithm capabilities

=> Gradual addition of new function overrides and expansion of the implementations
of createInArgs(), createOutArgs(), and evalModel(...).

• Self-Describing Models => Smart Algorithms

•Clients can query InArgs and OutArgs objects to see what input and output objects
are supported

•Properties of derivative objects is provided by OutArgs object!

• Independence/Multiplicity of Input and Output Objects

•Input and output objects are independent of the ModelEvaluator object and as many
or as few as required are created on demand by the client

Impact of the Nonlinear Model Evaluator

– Incorporation into simulation codes

• Charon: QASPR project (Hoekstra(1437),…) => ASC Level-2 Milestone

• Rapid Production CSRF (Bartlett(1411), vBW(1411), Long(8962), Phipps(1416), …)

• Aria/SIERRA (Notz(1514), Hooper(1416))

• Tramonto: Decontamination LDRD (vBW(1411),…)

• …

– Incorporation into numerical algorithms

• MOOCHO: Simulation-constrained optimization (Bartlett(1411))

• Rythmos: Time integration and sensitivity methods (Coffey(1414))

• NOX: Nonlinear equation solvers (Pawlowski(1416))

• LOCA: Library of continuation algorithms (Salinger(1416), Phipps(1416))

• Aristos: Full-space simulation-constrained optimization (Ridzal(1414))

• …

– Connection with other SNL projects

• 4D CSRF, Transient to steady-state (Salinger(1416), Dunlavy(1411))

• Multi-physics LDRD (Hooper(1416), Pawlowski(1416))

• …

Outline

• Mathematical overview of sensitivities and optimization

• Minimally invasive optimization algorithm for MOOCHO

• ModelEvaluator software

• Wrap it up

• Motivation for Unified ModelEvaluator Approach to Nonlinear Problems

• Large overlap in commonality between requirements for many nonlinear abstract numerical
algorithms (ANAs).

• Mixed problem types will become more and more common and must be easy to support

• Properties of ModelEvalutor Software

• Strong Typing of Input/Object Types but Weak Typing of Problem Formulation

• Designed for Change

• Incremental Development of Application Capabilities

• Self-Describing Models => Smart Algorithms

• Independence/Multiplicity of Input and Output Objects

• ANAs already using or can use ModelEvaluator

• MOOCHO (constrained optimization, unconstrained optimization, nonlinear equations)

• Rythmos (explicit ODEs, implicit ODEs, DAEs)

• NOX (nonlinear equations)

• LOCA (stability analysis, continuation)

• Aristos (full space, trust-region optimization)

ModelEvaluator Software Summary

• Need to go beyond the forward solve to answer:

• How to a characterize the error in my model so that it can be improved?  Error estimation

• What is the uncertainty in x given uncertainty in p ?  QMU

• What is the “best” value of p so that my model f(x,p)=0 fits exp. data?  Param. Estimation

• What is the “best” value for p to achieve some goal?  Optimization

• Sensitivities

• Direct vs. Adjoint methods

• Optimization methods

• Decoupled (DAKOTA) vs. Coupled (MOOCHO, Aristos)

• Coupled methods: Full-space (Aristos) vs. reduced-space (MOOCHO)

• Inequality constraints (MOOCHO active-set methods)

• Minimally invasive optimization method for MOOCHO

• Requires only forward state Jacobian solves and objective evaluations

• All other computations can be approximated with directional finite differences

Sensitivity and Optimization Summary

