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Why Sensitivities and Optimization?

The Standard Steady-State Forward Simulation Problem

Example applications

• Discretized PDEs (e.g. finite element, finite volume, discontinous Gelerkin, finite difference, …)

• Network problems (e.g. circuit simulation, power grids)

• …

Why is a forward solver is not enough?

• A forward solve p  g(x(p),p) can only give point-wise information, it can’t tell you what you ultimately 
want to know:

• How to a characterize the error in my model so that it can be improved?   Error estimation

• What is the uncertainty in x given uncertainty in p ?                                 QMU

• What is the “best” value of p so that my model f(x,p)=0 fits exp. data?     Param. Estimation

• What is the “best” value for p to achieve some goal?                                Optimization

What are some of the tools that we need to answer these higher questions?

• Sensitivities and Optimziation!



Steady-State Simulation-Constrained Sensitivities

Steady-State Simulation-Constrained Response

Reduced Response FunctionNonlinear elimination

Steady-State Sensitivities

State Sensitivity:

Reduced Response Function Sensitivity:

Forward (Direct) vs. Adjoint Sensitivities

Forward (Direct) Sensitivity Method:

Adjoint Sensitivity Method:

O(np)

O(ng)

Complexity

Well suited for 
Newton Methods

Uses for Sensitivities: Derivative-based optimization, UQ, error estimation etc …



Steady-State Simulation-Constrained Optimization

Basic Steady-State Simulation-Constrained Optimization Problem:

Basic example optimization formations

• Parameter estimation / data reconciliation

• Optimal design

• Optimal control

• …

Optimality conditions

Define Lagrangian:

State equation:

Adjoint equation:

Gradient equation: Reduced sensitivity!

Trilinos Optimization Packages

• MOOCHO (R. Bartlett)

• Aristos (D. Ridzal)



Simulation-Constrained Optimization Methods

Basic Steady-State Simulation-Constrained Optimization Problem:

• Decoupled approach (simulation constraints always satisfied):

Optimization method never 
“sees” the state space!

• Optimization method deals with the (parallel) 
state space and the parameter space 
together!

• Requires special globalization methods to 
converge to a minimum!

MOOCHO, Aristos

Two broad approaches for solving optimization problems

• Coupled approach (converges optimality and feasibility together):

DAKOTA



Full-Newton Coupled Optimization Methods

Full-Newton Coupled Optimization Methods (The Gold Standard)

Optimality conditions

A set of three coupled 
nonlinear equations!

• Results in fast local quadratic (Newton) convergence

• Global convergence to a minimum requires special “globalization” methods

• Requires second derivatives (i.e. Hessians)

• Requires solution of large symmetric indefinite systems

• Hard to exploit forward-solve capabilities of an application

Solve using Newton’s 
method?

Also know as a full-space 
successive quadratic 
programming (SQP) 
method!

Aristos (D. Ridzal)



Reduced-Space Coupled Optimization Methods (i.e. MOOCHO)

Basic Steady-State Simulation-
Constrained Optimization Problem

Basic (line-search-based) reduced-space optimization algorithm

• Strongly leverages the 
capabilities of applications that 
can be used with a Newton-
based forward solver

• Direct sensitivities
• np+1 solves with f/x

• Adjoint sensitivities
• 2 solves with f/x
• 1 solve with (f/x)T

• Quasi-Newton methods typically 
used to approximate reduced 
Hessian (second derivatives) B
and to compute:

p = -B-1 (ĝ/p)T

• MOOCHO implements this class 
and related classes of algorithms!



A Spectrum of Optimization Methods form Decoupled to Coupled

• Decreased impact to 
existing app code

• Ease of interfacing

• Better scalability to large 
parameter spaces

• More accurate solutions

• Less computer time

Fully Decoupled 
Optimization Method

Fully Coupled, Newton 
Optimization Method

MOOCHO

Aristos



General Inequality Simulation-Constrained Optimization

General Steady-State Simulation-Constrained Optimization Problem with Inequalities:

Example optimization formations

• Parameter estimation / data reconciliation

• Optimal design

• Optimal control

• …

Issues associated with handling of inequalities

• Inequalities allow a modeling capability not possible with just equalities

• Allows reformulation of some non-differentiable optimization problems

• Two broad classes of optimization algorithms for handling inequalities

• Active-set methods (adds and removed inequalities from “working set”)

• Interior-point methods (enforces inequalities using “barrier term”)

• Tradeoffs between direct and adjoint sensitivity methods not so obvious anymore

MOOCHO allows 
inequality constraints 
using active-set methods 
(see QPSchur)!



Transient Sensitivities and Optimization

DAE/Implicit ODE Forward 
Sensitivities:

ODE Constrained 
Optimization:

Explicit ODE Forward 
Sensitivities:

Issues associated with transient sensitivities and optimization

• If sufficient storage is available, then discretization in time yields a BIG steady-state problem

 4D approach!

• If sufficient storate is not available then time integration methods must be used to eliminate transient 
equations and state varaibles

• Direct transient sensitivity methods scale as O(np)

• Adjoint transient sensitivity methods scale as O(ng) but require storage/recomputation of x(t)

• Model/Application requirements are similar for steady-state sensitivities and optimization

I am not going to say anything more about transient sensitivities or optimization!
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Motivation for Invasive Coupled Optimization

Large Scale Non-Linear Programming for PDE Constrained Optimization, van Bloemen Waanders, B., Bartlett, R., 
Long, K., Boggs, P., and Salinger, A. Sandia Technical Report SAND2002-3198, October 2002 

Increasing Levels of 
Coupling and Derivative 
and Solve Capabilities

Key Point

For many/some optimization problems, intrusive coupled optimization methods can be 
much more computationally efficient and more robust than the decoupled approach

But:

• It is hard to get our “foot in the door” with production codes

• It is hard to keep a “door stop” in place once we are in …  Because …

Decoupled
Finite-Difference

Varying levels of 
Invasiveness

Decoupled
Pattern Search

Level 2 = Decoupled forward sens.
Level 3 = Coupled forward sens.
Level 4 = Decoupled adjoint sens.
Level 5 = Coupled adjoint sens. 
Level 6 = Coupled full-Newton



Some Challenges to Incorporation of Invasive Optimization

• Lack of Software Infrastructure

– Linear algebra and linear solvers not supporting 
optimization requirements

– Application structure not flexible (i.e. only supports a 
narrow mode to solve the forward problem)

• Lack of software maintenance

– Optimization support is not tightly integrated with 
forward solve code and is not maintained over time.

• Lack of derivative support

– Lack of model smoothness

– No optimization variables derivatives

– Lack of transient derivatives

Thyra

Model Evaluator

Automatic 
Differentation (AD)

MOOCHO

Rythmos

Where I am Involved

Key Point

We need a strategy to reduce the threshold for getting invasive optimization into 
codes and for keeping the capability once it is there => Software and Algorithms



Minimally Invasive Gradient-Based Optimization

Nonlinear Solver 
(e.g. NOX)Model

Linear Algebra 
Linear Solver

Noninvasive 
Optimizer

Simulator

Invasive Optimizer
(e.g. MOOCHO)

Model

Linear Algebra 
Linear Solver

Decoupled Optimization:  Assume there is no optimization capability in the “Simulator”

Coupled Optimization:  Simulator broken up and some pieces are given over to optimizer

Question:  How can we break the a simulator open to begin 
using coupled optimization methods and how can our algorithms 
exploit any capabilities that the simulator can provide?

Finite difference entire 
simulation to get sensitivities!

Model 
Evaluator

State
solve

Objective 
eval



Minimally Invasive Direct Sensitivity MOOCHO

Basic Simulation-Constrained Optimization Problem

Minimal Requirements for decoupled Newton simulation-constrained optimization

– Residual Eval: 

– Jacobian Eval:

– Objective Eval:

State solve 
with

NOX/LOCA

Minimally Invasive 
Direct Sensitivity 

MOOCHO

Derivatives desired but not required

– Residual opt. deriv:

– Objective state deriv:

– Objective opt. deriv:

Defines the state 
simulator and 

direct sensitivities

Linear 
Solver

Approximate using O(np) directional finite differences!

Reduced Obj. Function

Decoupled 
Opt.



Scalable Optimization Test Problem

Example: Parallel, Finite-Element, 2D, Diffusion + Reaction (GL) Model

Key Points

• Simple physics but leads to very nonlinear state equations

• Inverse optimization problem is very ill posed in many instances

• State PDE: Scalar Ginzburg-Landau equations (based on Denis Ridzal’s (1414) code)

• Discretization:
• Second-oder FE on triangles
• nx = 110,011 state variables and equations

• Optimization variables:
• Sine series basis
• np = 8 optimization variables
• Note: df/dp is constant in this problem!!!

• Iterative Linear Solver : ILU (Ifpack), (GMRES) AztecOO



Results: Decoupled vs. Coupled, Finite Differences

Decoupled Finite Diff. vs. Coupled Finite Diff.
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Key Points

• Finite differencing the underlying functions is much more efficient than 
finite differencing entire simulation!

• Finite differencing the underlying functions is more accurate!

• Coupled approach requires (almost) no extra application requirements!



Results: Coupled Finite Diff. vs. Coupled Analytic

Coupled Finite Diff. vs. Coupled Analytic
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Key Points

• Analytic derivatives are usually not faster

• Analytic derivatives often much more accurate

Coupled Finite Diff. vs. Coupled Analytic
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Overview of Nonlinear Model Evaluator Interface

Motivation: An interface for nonlinear problems is needed that will support a variety of 
different types of problems

• Nonlinear equations (and senstitivities)
• Stability analysis and continuation
• Explicit ODEs (and sensitivities)
• DAEs and implicit ODEs (and sensitivities)
• Unconstrained optimization
• Constrained optimization
• Uncertainty quantification
• …
as well as different combinations of problem types such as:
• Uncertainty in transient simulations
• Stability of an optimum under uncertainty of a transient problem

Approach: Develop a single, scalable interface to address all of these problems

• (Some) Input arguments:

• State and differential state:

• Parameter sub-vectors:

• Time (differential): 

• (Some) Output functions:

• State function:

• Auxiliary response functions:

• State/state derivative operator 
(LinearOpWithSolve):

Key Point

All inputs and outputs are 
optional and the model 
evaluator object itself 

decides which ones are 
accepted.

Key Point

The number of 
combinations of different 

problem types is large and 
trying to statically type all 
of the combinations is not 

realistic



Some Examples of Supported Nonlinear Problem Types

Nonlinear equations:

Stability analysis:

DAEs/Implicit ODEs:

Explicit ODEs:

DAE/Implicit ODE Forward 
Sensitivities:

Unconstrained Optimization:

Constrained Optimization:

ODE Constrained 
Optimization:

Explicit ODE Forward 
Sensitivities:



A More Advanced Optimization Example

Equality and Inequality Constrained Optimization solved using Continuation:

• Np = 2 parameter sub-vectors:

• design p0

• continuation p1

• Ng = 3 response functions:

• objective g0  R 1

• auxiliary equalities g1

• auxiliary inequalities g2

Key Points

• This is a very realistic problem that could be added to MOOCHO this year!

• We can’t be developing a new interface for every one of these types of mixed 
problem formulations!



Example : “Composite” Coupled (Multi-Physics) Models

Forward Coupled Model:

“Composite” Forward Coupled Model:

where

ModelEvaluator
models

1…m

ForwardCoupledModelEvaluator

“Composite” ANA Subclasses:

LinearOpWithSolveBase
models

1…m

BlockTriangularLinearOpWithSolve

<<create>>

Nonsingular linear operators 
on the diagonal



Nonlinear Algorithms and Applications : Everyone for Themselves?

NOX / LOCA Rythmos MOOCHO

Xyce Charon AriaTramonto Premo

…

…

Trilinos and non-Trilinos 
Preconditioner and Linear 

Solver Capability

Key Point

• BAD

Nonlinear 
ANA Solvers 
in Trilinos

Sandia 
Applications



Nonlinear Algorithms and Applications : Thyra & Model Evaluator!

Model Evaluator

Trilinos and non-Trilinos 
Preconditioner and Linear 

Solver Capability

NOX / LOCA MOOCHO

Xyce Charon AriaTramonto Premo

…

…

Key Points

• Provide single interface from nonlinear ANAs to applications

• Provide single interface for applications to implement to access nonlinear ANAs

• Provides shared, uniform access to linear solver capabilities

• Once an application implements support for one ANA, support for other ANAs can 
quickly follow

Nonlinear 
ANA Solvers 
in Trilinos

Sandia 
Applications

Rythmos

Stratimikos!



Model Evaluator : Thyra and EpetraExt Versions

Thyra::ModelEvaluator

createInArgs() : InArgs
createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase
…
evalModel( in InArgs, out OutArgs )

EpetraExt::ModelEvaluator

createInArgs() : InArgs
createOutArgs() : OutArgs
create_W() : Epetra_Operator
…
evalModel( in InArgs, out OutArgs )

Thyra::EpetraModelEvaluator

createInArgs() : InArgs
createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase
…
evalModel( in InArgs, out OutArgs )

Thyra::LinearOpWithSolveFactoryBase

Nonlinear 
ANA

Concrete 
Application

Thyra-based interoperability 
interface layer

Epetra-based application-
friendly implementation support 
interface

• Thyra::ModelEvaluator and EpetraExt::ModelEvaluator are near mirror copies of each other.

• Thyra::EpetraModelEvaluator is fully general adapter class that can use any linear solver through a 
Thyra::LinearOpWithSolveFactoryBase object it is configured with

• Stateless model that allows for efficient multiple shared calculations (e.g. automatic differentation)

• Adding input and output parameters involves

• Modifying only the classes Thyra::ModelEvaluator,  EpetraExt::ModelEvaluator, and 
Thyra::EpetraModelEvaluator

• Only recompilation of Nonlinear ANA and Concrete Application code

Stratimikos!



Example EpetraExt::ModelEvaluator Application Implementation

/** \brief Simple example ModelEvaluator subclass for a 2x2 set of
* parameterized nonlinear equations.
*
* The equations modeled are:
\verbatim

f[0] =       x[0]      + x[1]*x[1] - p[0];
f[1] = d * ( x[0]*x[0] - x[1]      - p[1] );

\endverbatim
*/
class EpetraModelEval2DSim : public EpetraExt::ModelEvaluator {
public:

EpetraModelEval2DSim(...);
/** \name Overridden from EpetraExt::ModelEvaluator . */
//@{
Teuchos::RefCountPtr<const Epetra_Map>      get_x_map() const;
Teuchos::RefCountPtr<const Epetra_Map>      get_f_map() const;
Teuchos::RefCountPtr<const Epetra_Vector>   get_x_init() const;
Teuchos::RefCountPtr<Epetra_Operator>       create_W() const;
InArgs      createInArgs() const;
OutArgs     createOutArgs() const;
void evalModel( const InArgs& inArgs, const OutArgs& outArgs ) const;
//@}

private:
...

};

Complete nonlinear equations example in epetraext/thyra/example/model_evaluator/2dsim/.



Example EpetraExt::ModelEvaluator Application Implementation

EpetraExt::ModelEvaluator::InArgs EpetraModelEval2DSim::createInArgs() const
{

InArgsSetup inArgs;
inArgs.setModelEvalDescription(this->description());
inArgs.setSupports(IN_ARG_x,true);
inArgs.setSupports(IN_ARG_beta,true);
return inArgs;

}

EpetraExt::ModelEvaluator::OutArgs EpetraModelEval2DSim::createOutArgs() const
{

OutArgsSetup outArgs;
outArgs.setModelEvalDescription(this->description());
outArgs.setSupports(OUT_ARG_f,true);
outArgs.setSupports(OUT_ARG_W,true);
outArgs.set_W_properties(

DerivativeProperties(DERIV_LINEARITY_NONCONST,DERIV_RANK_FULL,true)
);

return outArgs;
}

void EpetraModelEval2DSim::evalModel( const InArgs& inArgs, const OutArgs& outArgs ) const
{

const Epetra_Vector    &x    = *inArgs.get_x();
Epetra_Vector          f_out = outArgs.get_f().get();
Epetra_Operator        W_out = outArgs.get_W().get();
if(f_out) {

...
}
if(W_out) {

...
}

}

Key Point

From looking at example code, there is not even a 
hint that other input and output parameters exist!



Model Derivatives

• State function parameter sensitivities:

[LinearOpBase or MultiVectorBase]

• Auxiliary function state sensitivities:

• Auxiliary function parameter sensitivities:

[LinearOpBase or MultiVectorBase2]

[LinearOpBase or MultiVectorBase2]

• State function state sensitivities:

[LinearOpWithSolveBase or LinearOpBase]

First Derivatives

Use Cases:

• Steady-state and transient sensitivity computations

• Optimization

• Multi-physics coupling

• …



Forward/Direct and Adjoint Sensitivities

Steady-state constrained response: Reduced response function:

Reduced Sensitivities:

where:

Forward/Direct Sensititivies (ng large, np small)

-1

= +-

Adjoint Sensititivies (ng small, np large)

MV LO LOWS MV MV

MV

-T

= +-

np

ng

ng

np

MV LO LOWS MV MV

MV

Key Point

The form of the derivatives you 
need depends on whether you are 
doing direct or adjoint sensitivities



Properties of Current Approach to ModelEvaluator Software

• Strong Typing of Input/Ouput Object Types but Weak Typing of Problem Formulation

•Much functionality/information resides in concrete InArgs and OutArgs classes

•ModelEvaluator objects select which input/output arguments are recognized and the 
rest are ignored

•Attempts to set or get non-supported input/output arguments throw exceptions as 
early as possible and result in very good error messages

•Only subclasses of ModelEvaluator can change the set of supported arguments

• Designed for Change

•Input and output arguments can be added at will to support new algorithms; only 
requires recompilation of existing clients and subclasses

• Incremental Development of Application Capabilities

•Existing ModelEvaluator subclasses can incrementally take on new input and output 
objects to support more advanced algorithm capabilities

=> Gradual addition of new function overrides and expansion of the implementations 
of createInArgs(), createOutArgs(), and evalModel(...).

• Self-Describing Models => Smart Algorithms

•Clients can query InArgs and OutArgs objects to see what input and output objects 
are supported

•Properties of derivative objects is provided by OutArgs object!

• Independence/Multiplicity of Input and Output Objects

•Input and output objects are independent of the ModelEvaluator object and as many 
or as few as required are created on demand by the client



Impact of the Nonlinear Model Evaluator

– Incorporation into simulation codes

• Charon: QASPR project (Hoekstra(1437),…)    =>  ASC Level-2 Milestone

• Rapid Production CSRF (Bartlett(1411), vBW(1411), Long(8962), Phipps(1416), …)

• Aria/SIERRA (Notz(1514), Hooper(1416))

• Tramonto: Decontamination LDRD (vBW(1411),…)

• …

– Incorporation into numerical algorithms

• MOOCHO: Simulation-constrained optimization (Bartlett(1411))

• Rythmos: Time integration and sensitivity methods (Coffey(1414))

• NOX: Nonlinear equation solvers (Pawlowski(1416))

• LOCA: Library of continuation algorithms (Salinger(1416), Phipps(1416))

• Aristos: Full-space simulation-constrained optimization (Ridzal(1414))

• …

– Connection with other SNL projects

• 4D CSRF, Transient to steady-state (Salinger(1416), Dunlavy(1411))

• Multi-physics LDRD (Hooper(1416), Pawlowski(1416))

• …
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• Motivation for Unified ModelEvaluator Approach to Nonlinear Problems

• Large overlap in commonality between requirements for many nonlinear abstract numerical 
algorithms (ANAs).

• Mixed problem types will become more and more common and must be easy to support

• Properties of ModelEvalutor Software

• Strong Typing of Input/Object Types but Weak Typing of Problem Formulation

• Designed for Change

• Incremental Development of Application Capabilities

• Self-Describing Models => Smart Algorithms

• Independence/Multiplicity of Input and Output Objects

• ANAs already using or can use ModelEvaluator

• MOOCHO (constrained optimization, unconstrained optimization, nonlinear equations)

• Rythmos (explicit ODEs, implicit ODEs, DAEs)

• NOX (nonlinear equations)

• LOCA (stability analysis, continuation)

• Aristos (full space, trust-region optimization)

ModelEvaluator Software Summary



• Need to go beyond the forward solve to answer:

• How to a characterize the error in my model so that it can be improved?   Error estimation

• What is the uncertainty in x given uncertainty in p ?                                 QMU

• What is the “best” value of p so that my model f(x,p)=0 fits exp. data?     Param. Estimation

• What is the “best” value for p to achieve some goal?                               Optimization

• Sensitivities

• Direct vs. Adjoint methods

• Optimization methods

• Decoupled (DAKOTA) vs. Coupled (MOOCHO, Aristos)

• Coupled methods: Full-space (Aristos) vs. reduced-space (MOOCHO)

• Inequality constraints (MOOCHO active-set methods)

• Minimally invasive optimization method for MOOCHO

• Requires only forward state Jacobian solves and objective evaluations

• All other computations can be approximated with directional finite differences

Sensitivity and Optimization Summary


