

Sensitivities and Optimization:

Going Beyond the Forward Solve

(to Enable More Predictive Simulations)

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, November 8th, 2006

Outline

- Mathematical overview of sensitivities and optimization
- Minimally invasive optimization algorithm for MOOCHO
- ModelEvaluator software
- Wrap it up

Outline

- Mathematical overview of sensitivities and optimization
- Minimally invasive optimization algorithm for MOOCHO
- ModelEvaluator software
- Wrap it up

Why Sensitivities and Optimization?

The Standard Steady-State Forward Simulation Problem

For a given set of input parameters $p \in \mathbf{R}^{n_p}$, solve the square state equations

$$f(x, p) = 0$$

for the state variables $x \in \mathbf{R}^{x_x}$ then compute observation(s) $g(x)$.

Example applications

- Discretized PDEs (e.g. finite element, finite volume, discontinuous Galerkin, finite difference, ...)
- Network problems (e.g. circuit simulation, power grids)
- ...

Why is a forward solver is not enough?

- A forward solve $p \rightarrow g(x(p), p)$ can only give point-wise information, it can't tell you what you ultimately want to know:
 - How to characterize the error in my model so that it can be improved? → [Error estimation](#)
 - What is the uncertainty in x given uncertainty in p ? → [QMU](#)
 - What is the “best” value of p so that my model $f(x, p) = 0$ fits exp. data? → [Param. Estimation](#)
 - What is the “best” value for p to achieve some goal? → [Optimization](#)

What are some of the tools that we need to answer these higher questions?

- [Sensitivities and Optimization!](#)

Steady-State Simulation-Constrained Sensitivities

Steady-State Simulation-Constrained Response

Compute $g(x, p) \in \mathbf{R}^{n_x} \times \mathbf{R}^{n_p} \rightarrow \mathbf{R}^{n_g}$

such that $f(x, p) = 0$

(where $f(x, p) \in \mathbf{R}^{n_x} \times \mathbf{R}^{n_p} \rightarrow \mathbf{R}^{n_x}$)

Nonlinear elimination

Reduced Response Function

$$f(x, p) = 0 \rightarrow p \rightarrow x(p) \rightarrow p \rightarrow \hat{g}(p) = g(x(p), p)$$

Steady-State Sensitivities

State Sensitivity:

$$\frac{\partial x}{\partial p} = -\frac{\partial f^{-1}}{\partial x} \frac{\partial f}{\partial p}$$

Well suited for
Newton Methods

Reduced Response Function Sensitivity:

$$\frac{\partial \hat{g}}{\partial p} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial g}{\partial p}$$

Forward (Direct) vs. Adjoint Sensitivities

Forward (Direct) Sensitivity Method:

$$\frac{\partial \hat{g}}{\partial p} = \frac{\partial g}{\partial x} \left(-\frac{\partial f^{-1}}{\partial x} \frac{\partial f}{\partial p} \right) + \frac{\partial g}{\partial p}$$

Complexity

$O(n_p)$

Adjoint Sensitivity Method:

$$\frac{\partial \hat{g}^T}{\partial p} = \frac{\partial f^T}{\partial p} \left(-\frac{\partial f^{-T}}{\partial x} \frac{\partial g^T}{\partial x} \right) + \frac{\partial g^T}{\partial p}$$

$O(n_g)$

Uses for Sensitivities: Derivative-based optimization, UQ, error estimation etc ...

Steady-State Simulation-Constrained Optimization

Basic Steady-State Simulation-Constrained Optimization Problem:

Find $x \in \mathbf{R}^{n_x}$ and $p \in \mathbf{R}^{n_p}$ that:

minimizes $g(x, p)$

such that $f(x, p) = 0$

Basic example optimization formations

- Parameter estimation / data reconciliation
- Optimal design
- Optimal control
- ...

Trilinos Optimization Packages

- MOOCHO (R. Bartlett)
- Aristos (D. Ridzal)

Define Lagrangian: $L(x, p, \lambda) = g(x, p) + \lambda^T f(x, p)$

Optimality conditions

State equation:

$$\frac{\partial L^T}{\partial \lambda} = f(x, p) = 0$$

Adjoint equation:

$$\frac{\partial L^T}{\partial x} = \frac{\partial g^T}{\partial x} + \frac{\partial f^T}{\partial x} \lambda = 0$$

Gradient equation:

$$\frac{\partial L^T}{\partial p} = \frac{\partial g^T}{\partial p} + \frac{\partial f^T}{\partial p} \lambda = 0$$

$$\frac{\partial \hat{g}^T}{\partial p} = -\frac{\partial f^T}{\partial p} \frac{\partial f^{-T}}{\partial x} \frac{\partial g^T}{\partial x} + \frac{\partial g^T}{\partial p}$$

Reduced sensitivity!

Simulation-Constrained Optimization Methods

Basic Steady-State Simulation-Constrained Optimization Problem:

Find $x \in \mathbf{R}^{n_x}$ and $p \in \mathbf{R}^{n_p}$ that:

minimizes $g(x, p)$

such that $f(x, p) = 0$

Two broad approaches for solving optimization problems

- Decoupled approach (simulation constraints always satisfied): **DAKOTA**

Find $p \in \mathbf{R}^{n_p}$ that:

minimizes $\hat{g}(p) = g(x(p), p)$

Optimization method never
“sees” the state space!

- Coupled approach (converges optimality and feasibility together): **MOOCHO, Aristos**

Find $x \in \mathbf{R}^{n_x}$ and $p \in \mathbf{R}^{n_p}$ that:

minimizes $g(x, p)$

such that $f(x, p) = 0$

- Optimization method deals with the (parallel) state space and the parameter space together!
- Requires special globalization methods to converge to a minimum!

Full-Newton Coupled Optimization Methods

Optimality conditions

$$\nabla L = \begin{bmatrix} \frac{\partial L^T}{\partial x} \\ \frac{\partial L^T}{\partial p} \\ \frac{\partial L}{\partial \lambda} \end{bmatrix} = \begin{bmatrix} \frac{\partial g^T}{\partial x} + \frac{\partial L^T}{\partial x} \lambda \\ \frac{\partial g^T}{\partial p} + \frac{\partial L^T}{\partial p} \lambda \\ f(x, p) \end{bmatrix} = 0$$

A set of three coupled nonlinear equations!

Solve using Newton's method?

Full-Newton Coupled Optimization Methods (The Gold Standard)

$$\begin{bmatrix} \frac{\partial^2 L}{\partial x^2} & \frac{\partial^2 L}{\partial x \partial p} & \frac{\partial f^T}{\partial x} \\ \frac{\partial^2 L}{\partial x \partial p}^T & \frac{\partial^2 L}{\partial p^2} & \frac{\partial f^T}{\partial p} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial p} & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta p \\ \Delta \lambda \end{bmatrix} = - \begin{bmatrix} \frac{\partial g^T}{\partial x} + \frac{\partial L^T}{\partial x} \lambda \\ \frac{\partial g^T}{\partial p} + \frac{\partial L^T}{\partial p} \lambda \\ f(x, p) \end{bmatrix}$$

Also known as a full-space successive quadratic programming (SQP) method!

Aristos (D. Ridzal)

- Results in fast local quadratic (Newton) convergence
- Global convergence to a minimum requires special “globalization” methods
- Requires second derivatives (i.e. Hessians)
- Requires solution of large symmetric indefinite systems
- Hard to exploit forward-solve capabilities of an application

Reduced-Space Coupled Optimization Methods (i.e. MOOCHO)

Basic Steady-State Simulation-Constrained Optimization Problem

Find $x \in \mathbf{R}^{n_x}$ and $p \in \mathbf{R}^{n_p}$ that:
 minimizes $g(x, p)$
 such that $f(x, p) = 0$

Basic (line-search-based) reduced-space optimization algorithm

1. Initialization: Choose tolerances $\eta_f, \eta_g \in \mathbf{R}$ and the initial guess $x_0 \in \mathbf{R}^{n_x}$ and $p_0 \in \mathbf{R}^{n_p}$, set $k = 0$
2. Model/sensitivity evaluation: Compute the reduced derivative $\partial \hat{g} / \partial p$ and the residual f at (x_k, p_k)
3. Convergence check: If $\|\partial \hat{g} / \partial p\| \leq \eta_g$ and $\|f\| \leq \eta_f$ then stop, solution found!
4. Step computation:
 - (a) Feasibility step: Compute Newton step $\Delta x_N = (\partial f / \partial x)^{-1} f$ at (x_k, p_k)
 - (b) Optimality step: Compute $\Delta p \in \mathbf{R}^{n_p}$ s.t. $(\partial \hat{g} / \partial p) \Delta p < 0$
5. Globalization: Find step length α that insures progress to the solution
6. Update the estimate of the solution:
 $x_{k+1} = x_k + \alpha (\Delta x_N + (\partial x / \partial p) \Delta p)$
 $p_{k+1} = p_k + \alpha \Delta p$
 $k = k + 1$
 goto step 2

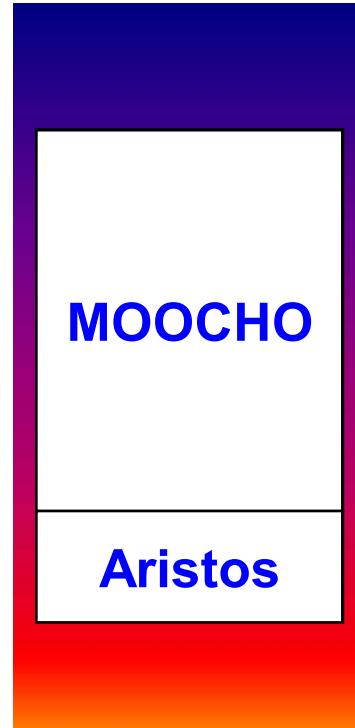
$$\begin{aligned}\frac{\partial x}{\partial p} &= -\frac{\partial f}{\partial x}^{-1} \frac{\partial f}{\partial p} \\ \frac{\partial \hat{g}}{\partial p} &= \frac{\partial g}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial g}{\partial p}\end{aligned}$$

- Strongly leverages the capabilities of applications that can be used with a Newton-based forward solver
- Direct sensitivities
 - $n_p + 1$ solves with $\partial f / \partial x$
- Adjoint sensitivities
 - 2 solves with $\partial f / \partial x$
 - 1 solve with $(\partial f / \partial x)^T$
- Quasi-Newton methods typically used to approximate reduced Hessian (second derivatives) B and to compute:

$$\Delta p = -B^{-1} (\partial \hat{g} / \partial p)^T$$

- MOOCHO implements this class and related classes of algorithms!

Fully Decoupled Optimization Method



- Decreased impact to existing app code
- Ease of interfacing

- Better scalability to large parameter spaces
- More accurate solutions
- Less computer time

Fully Coupled, Newton Optimization Method

General Inequality Simulation-Constrained Optimization

General Steady-State Simulation-Constrained Optimization Problem with Inequalities:

Find $x \in \mathbf{R}^{n_x}$ and $p \in \mathbf{R}^{n_p}$ that:

minimizes $g_0(x, p)$

such that:

$$f(x, p) = 0$$

$$g_1(x, p) = 0$$

$$g_{L,2} \leq g_2(x, p) \leq g_{U,2}$$

$$x_L \leq x \leq x_U$$

$$p_L \leq p \leq p_U$$

MOOCHO allows
inequality constraints
using active-set methods
(see QPSchur)!

Example optimization formations

- Parameter estimation / data reconciliation
- Optimal design
- Optimal control
- ...

Issues associated with handling of inequalities

- Inequalities allow a modeling capability not possible with just equalities
- Allows reformulation of some non-differentiable optimization problems
- Two broad classes of optimization algorithms for handling inequalities
 - **Active-set methods** (adds and removed inequalities from “working set”)
 - **Interior-point methods** (enforces inequalities using “barrier term”)
- Tradeoffs between direct and adjoint sensitivity methods not so obvious anymore

Transient Sensitivities and Optimization

Explicit ODE Forward Sensitivities:

Find $\frac{\partial x}{\partial p}(t)$ such that: $\dot{x} = f(x, p, t) = 0, t \in [0, T]$,
 $x(0) = x_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$

DAE/Implicit ODE Forward Sensitivities:

Find $\frac{\partial x}{\partial p}(t)$ such that: $f(\dot{x}(t), x(t), p, t) = 0, t \in [0, T]$,
 $x(0) = x_0, \dot{x}(0) = x'_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$

Find $p \in \mathbf{R}^m$ that minimizes $g(p)$

ODE Constrained Optimization:

Find $x(t) \in \mathbf{R}^n$ in $t \in [0, T]$ and $p \in \mathbf{R}^m$ that:
minimizes $\int_0^T g(x(t), p)$
such that $\dot{x} = f(x(t), p, t) = 0$, on $t \in [0, T]$
where $x(0) = x_0$

Issues associated with transient sensitivities and optimization

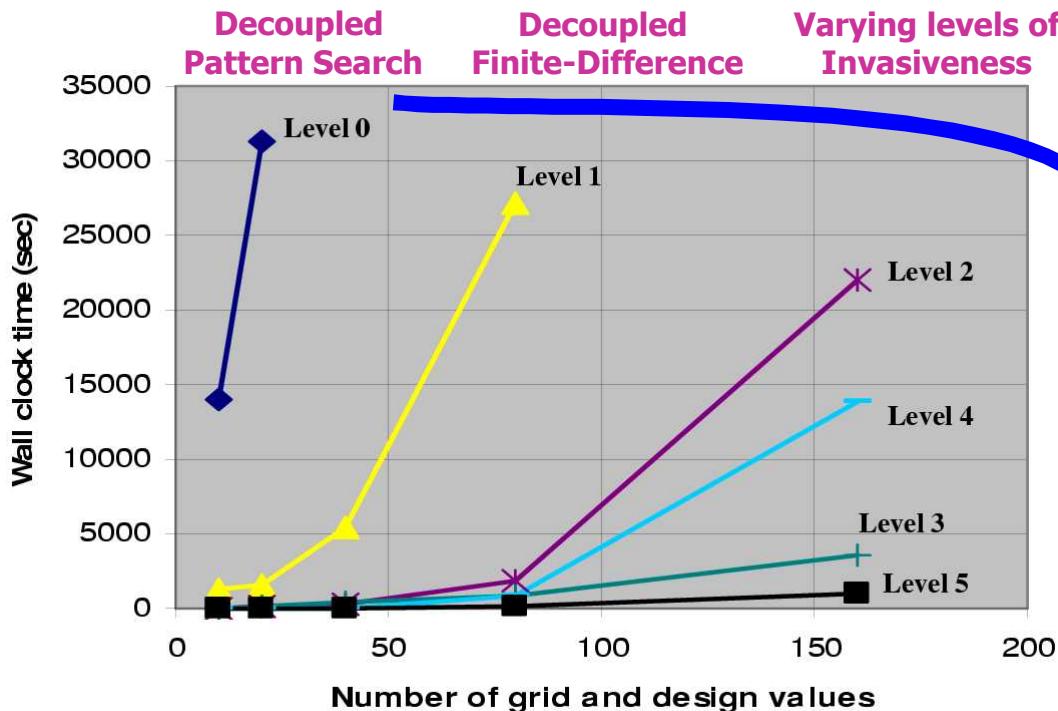
- If sufficient storage is available, then discretization in time yields a **BIG** steady-state problem
 \Rightarrow 4D approach!
- If sufficient storage is not available then time integration methods must be used to eliminate transient equations and state variables
 - Direct transient sensitivity methods scale as $O(n_p)$
 - Adjoint transient sensitivity methods scale as $O(n_g)$ but require storage/recomputation of $x(t)$
- Model/Application requirements are similar for steady-state sensitivities and optimization

I am not going to say anything more about transient sensitivities or optimization!

Outline

- Mathematical overview of sensitivities and optimization
- Minimally invasive optimization algorithm for MOOCHO
- ModelEvaluator software
- Wrap it up

Motivation for Invasive Coupled Optimization



Increasing Levels of Coupling and Derivative and Solve Capabilities

Level 2 = Decoupled forward sens.
Level 3 = Coupled forward sens.
Level 4 = Decoupled adjoint sens.
Level 5 = Coupled adjoint sens.
Level 6 = Coupled full-Newton

Large Scale Non-Linear Programming for PDE Constrained Optimization, van Bloemen Waanders, B., Bartlett, R., Long, K., Boggs, P., and Salinger, A. Sandia Technical Report SAND2002-3198, October 2002

Key Point

For many/some optimization problems, intrusive coupled optimization methods can be much more computationally efficient and more robust than the decoupled approach

But:

- It is hard to get our “foot in the door” with production codes
- It is hard to keep a “door stop” in place once we are in ... **Because ...**

Some Challenges to Incorporation of Invasive Optimization

- Lack of Software Infrastructure

- Linear algebra and linear solvers not supporting optimization requirements
- Application structure not flexible (i.e. only supports a narrow mode to solve the forward problem)

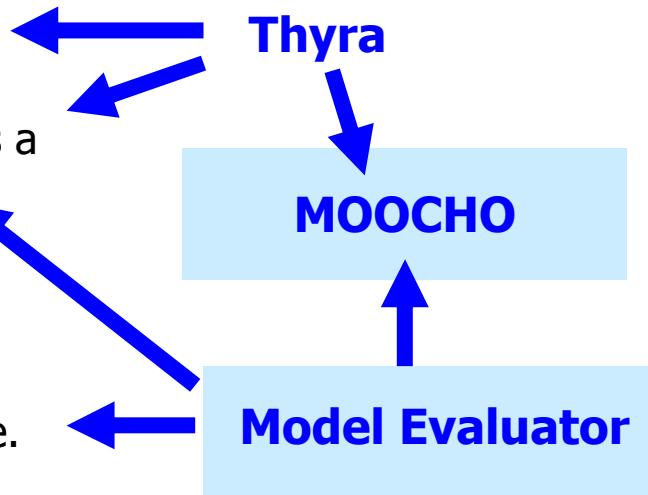
- Lack of software maintenance

- Optimization support is not tightly integrated with forward solve code and is not maintained over time.

- Lack of derivative support

- Lack of model smoothness
- No optimization variables derivatives
- Lack of transient derivatives

Where I am Involved



Automatic
Differentiation (AD)

Rythmos

Key Point

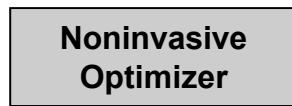
We need a strategy to reduce the threshold for getting invasive optimization into codes and for keeping the capability once it is there => **Software** and **Algorithms**

Minimally Invasive Gradient-Based Optimization

Decoupled Optimization: Assume there is no optimization capability in the “Simulator”

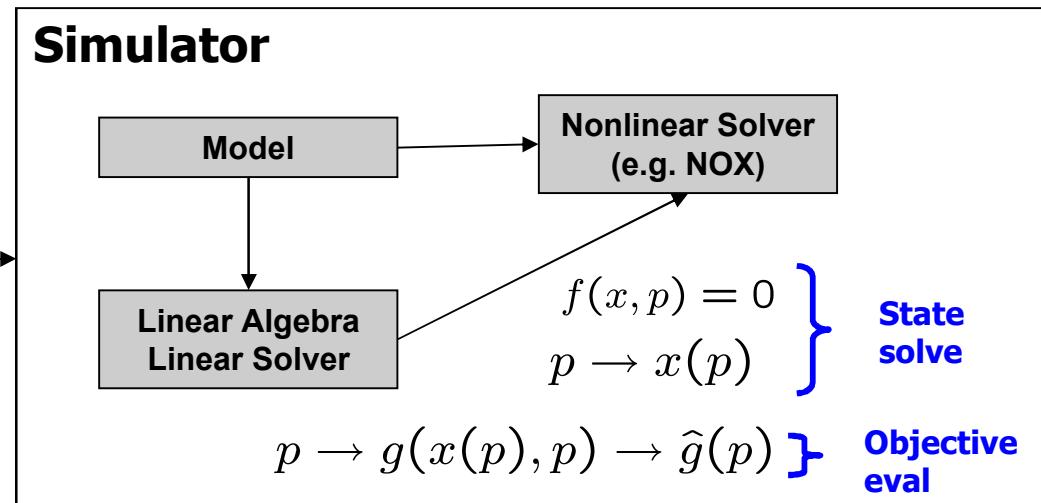
Find $p \in \mathbb{R}^m$ that:

$$\text{minimize } \hat{g}(p)$$



$$p \rightarrow \hat{g}(p)$$

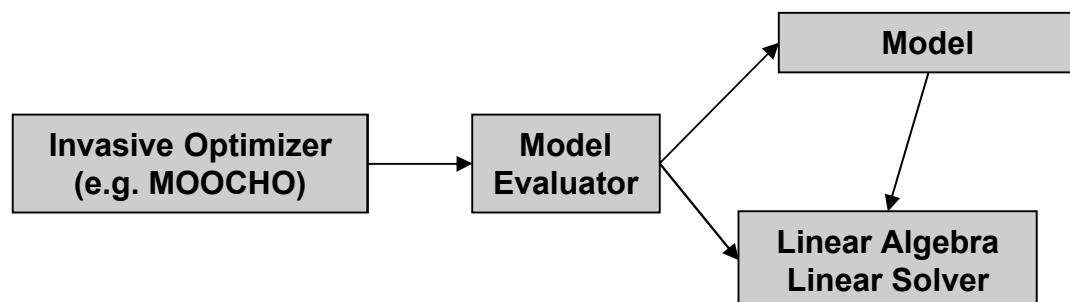
Finite difference entire simulation to get sensitivities!



Coupled Optimization: Simulator broken up and some pieces are given over to optimizer

Find $x \in \mathbb{R}^n$ and $p \in \mathbb{R}^m$ that:

minimizes $g(x, p)$
such that
 $f(x, p) = 0$



Question: How can we break the a simulator open to begin using coupled optimization methods and how can our algorithms exploit any capabilities that the simulator can provide?

Minimally Invasive Direct Sensitivity MOOCHO

Basic Simulation-Constrained Optimization Problem

Find $x \in \mathbf{R}^n$ and $p \in \mathbf{R}^m$ that:

minimize $g(x, p)$

such that

$$f(x, p) = 0$$

Defines the state simulator and direct sensitivities

$$p \rightarrow x(p)$$

$$\frac{\partial x}{\partial p} = -\frac{\partial f}{\partial x}^{-1} \frac{\partial f}{\partial p}$$

Reduced Obj. Function

$$p \rightarrow \hat{g}(p)$$

Minimal Requirements for decoupled Newton simulation-constrained optimization

- Residual Eval: $(x, p) \rightarrow f$
- Jacobian Eval: $(x, p) \rightarrow \frac{\partial f}{\partial x}$
- Objective Eval: $(x, p) \rightarrow g$

Linear Solver

State solve with NOX/LOCA
Decoupled Opt.

Minimally Invasive Direct Sensitivity MOOCHO

Derivatives desired but not required

- Residual opt. deriv: $(x, p) \rightarrow \frac{\partial f}{\partial p}$
- Objective state deriv: $(x, p) \rightarrow \frac{\partial g}{\partial x}$
- Objective opt. deriv: $(x, p) \rightarrow \frac{\partial g}{\partial p}$

Approximate using $O(n_p)$ directional finite differences!

$$\frac{\partial f}{\partial p_i} \approx \frac{f(x, p + \delta e_i) - f(x, p)}{\delta}$$

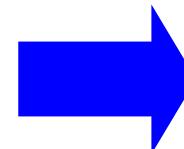
$$\frac{\partial \hat{g}}{\partial p_i} \approx \frac{g\left(x + \delta \frac{\partial x}{\partial p_i}, p + \delta e_i\right) - g(x, p)}{\delta}$$

Scalable Optimization Test Problem

Example: Parallel, Finite-Element, 2D, Diffusion + Reaction (GL) Model

$$\min \quad \frac{1}{2} \int_{\Omega} (x(y) - x^*(y))^2 dy$$

$$\text{s.t.} \quad \nabla^2 x + \alpha(x - x^3) = r(y) \quad y \in \Omega$$
$$\frac{\partial x(y)}{\partial n} = q(p, y) \quad y \in \partial\Omega$$



$$\min \quad g(x, p)$$
$$\text{s.t.} \quad f(x, p) = 0$$

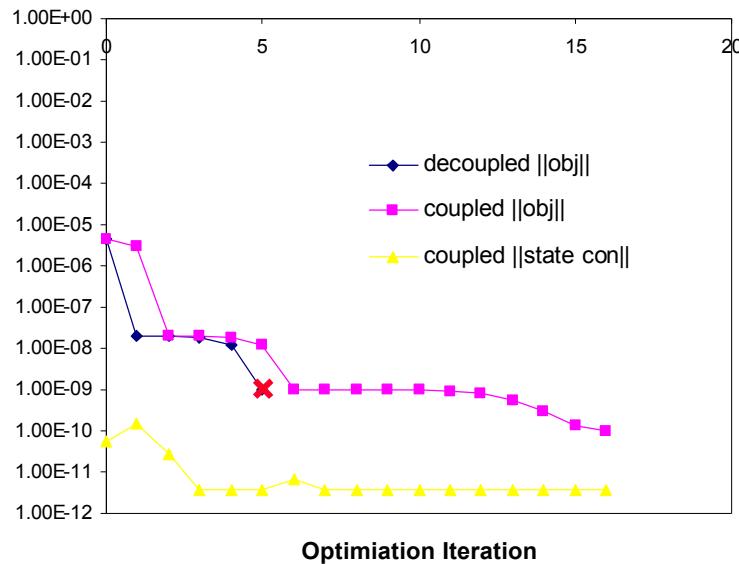
- State PDE: Scalar Ginzburg-Landau equations (based on Denis Ridzal's (1414) code)
- Discretization:
 - Second-order FE on triangles
 - $n_x = 110,011$ state variables and equations
- Optimization variables:
 - Sine series basis
 - $n_p = 8$ optimization variables
 - Note: **df/dp is constant in this problem!!!**
- Iterative Linear Solver : ILU (Ifpack), (GMRES) AztecOO

Key Points

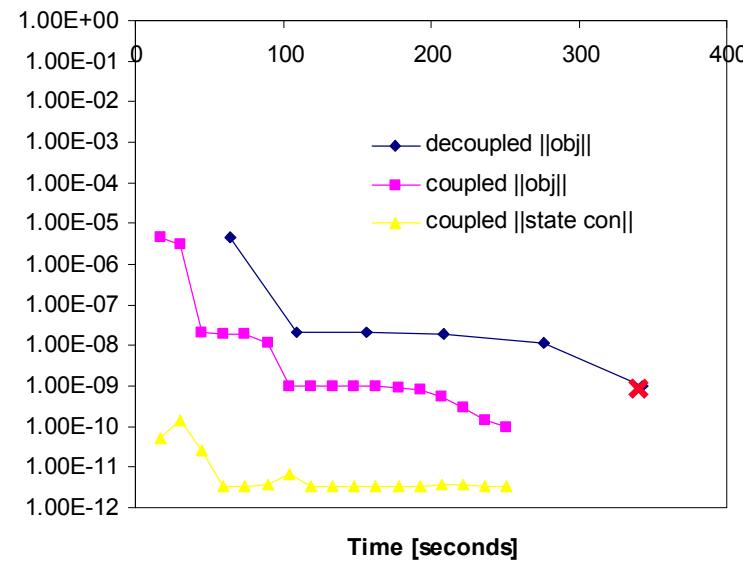
- Simple physics but leads to **very nonlinear state equations**
- Inverse optimization problem is **very ill posed** in many instances

Results: Decoupled vs. Coupled, Finite Differences

Decoupled Finite Diff. vs. Coupled Finite Diff.



Decoupled Finite Diff. vs. Coupled Finite Diff.

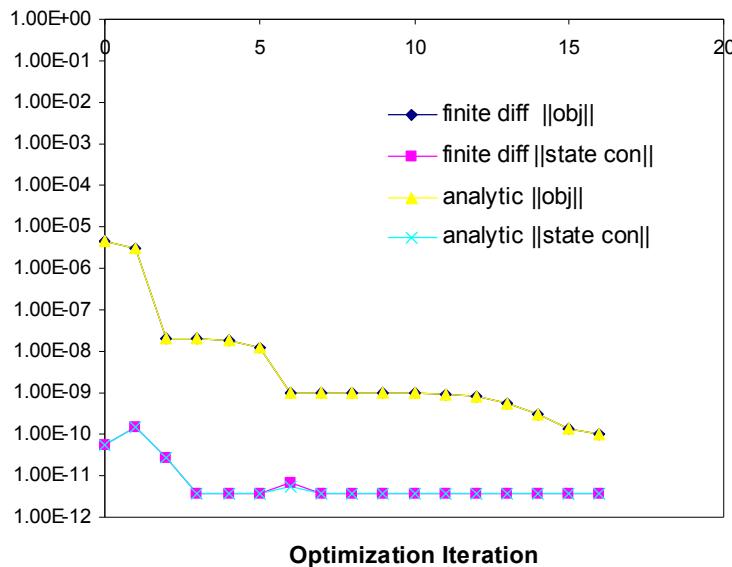


Key Points

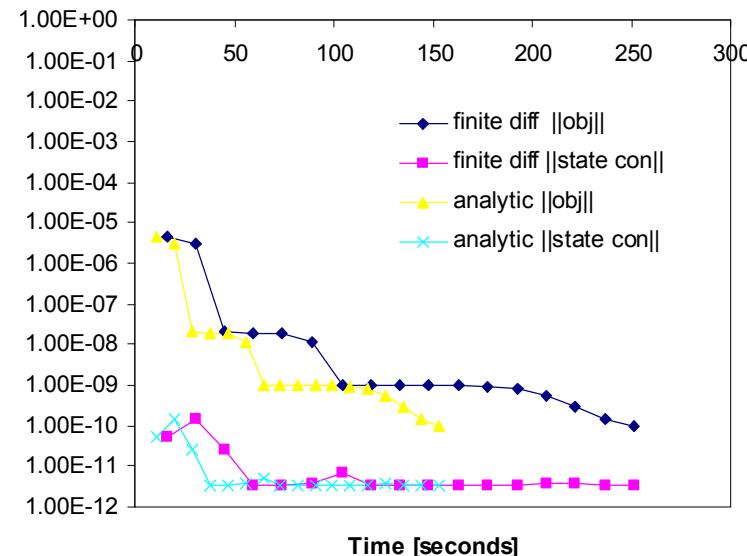
- Finite differencing the underlying functions is much **more efficient** than finite differencing entire simulation!
- Finite differencing the underlying functions is **more accurate**!
- Coupled approach requires (almost) **no extra application requirements**!

Results: Coupled Finite Diff. vs. Coupled Analytic

Coupled Finite Diff. vs. Coupled Analytic



Coupled Finite Diff. vs. Coupled Analytic



Key Points

- Analytic derivatives are **usually not faster**
- Analytic derivatives often much **more accurate**

Outline

- Mathematical overview of sensitivities and optimization
- Minimally invasive optimization algorithm for MOOCHO
- ModelEvaluator software
- Wrap it up

Overview of Nonlinear Model Evaluator Interface

Motivation: An interface for nonlinear problems is needed that will support a variety of different types of problems

- Nonlinear equations (and sensitivities)
- Stability analysis and continuation
- Explicit ODEs (and sensitivities)
- DAEs and implicit ODEs (and sensitivities)
- Unconstrained optimization
- Constrained optimization
- Uncertainty quantification
- ...

as well as different combinations of problem types such as:

- Uncertainty in transient simulations
- Stability of an optimum under uncertainty of a transient problem

Approach: Develop a single, scalable interface to address all of these problems

• **(Some) Input arguments:**

- State and differential state:
- Parameter sub-vectors:
- Time (differential):

$$x \in \mathcal{X} \text{ and } \dot{x} = \frac{dx}{dt} \in \mathcal{X}$$
$$p_l \in \mathcal{P}_l \text{ for } l = 1 \dots N_p$$
$$t \in \mathbf{R}$$

• **(Some) Output functions:**

- State function:
- Auxiliary response functions:
- State/state derivative operator (LinearOpWithSolve):

$$(\dot{x}, x, \{p_l\}, t) \Rightarrow f \in \mathcal{F}$$
$$(\dot{x}, x, \{p_l\}, t) \Rightarrow g_j \in \mathcal{G}_j, \text{ for } j = 1 \dots N_g$$
$$(\dot{x}, x, \{p_l\}, t) \Rightarrow W = \alpha \frac{\partial f}{\partial \dot{x}} + \beta \frac{\partial f}{\partial x}$$

Key Point

The number of combinations of different problem types is large and trying to statically type all of the combinations is not realistic

Key Point

All inputs and outputs are optional and the model evaluator object itself decides which ones are accepted.

Some Examples of Supported Nonlinear Problem Types

Nonlinear equations:

Solve $f(x) = 0$ for $x \in \mathbf{R}^n$

Stability analysis:

For $f(x, p) = 0$ find space $p \in \mathcal{P}$ such that $\frac{\partial f}{\partial x}$ is singular

Explicit ODEs:

Solve $\dot{x} = f(x, t) = 0, t \in [0, T], x(0) = x_0,$
for $x(t) \in \mathbf{R}^n, t \in [0, T]$

DAEs/Implicit ODEs:

Solve $f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x'_0$
for $x(t) \in \mathbf{R}^n, t \in [0, T]$

Explicit ODE Forward
Sensitivities:

Find $\frac{\partial x}{\partial p}(t)$ such that: $\dot{x} = f(x, p, t) = 0, t \in [0, T],$
 $x(0) = x_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$

DAE/Implicit ODE Forward
Sensitivities:

Find $\frac{\partial x}{\partial p}(t)$ such that: $f(\dot{x}(t), x(t), p, t) = 0, t \in [0, T],$
 $x(0) = x_0, \dot{x}(0) = x'_0$, for $x(t) \in \mathbf{R}^n, t \in [0, T]$

Unconstrained Optimization:

Find $p \in \mathbf{R}^m$ that minimizes $g(p)$

Constrained Optimization:

Find $x \in \mathbf{R}^n$ and $p \in \mathbf{R}^m$ that:
minimizes $g(x, p)$
such that $f(x, p) = 0$

ODE Constrained
Optimization:

Find $x(t) \in \mathbf{R}^n$ in $t \in [0, T]$ and $p \in \mathbf{R}^m$ that:
minimizes $\int_0^T g(x(t), p)$
such that $\dot{x} = f(x(t), p, t) = 0$, on $t \in [0, T]$
where $x(0) = x_0$

A More Advanced Optimization Example

Equality and Inequality Constrained Optimization solved using Continuation:

Find $x \in \mathbf{R}^n$ and $p_0 \in \mathbf{R}^m$ that:

minimizes $g_0(x, p_0)$
such that

$$f(x, p_0, p_1) = 0$$

$$g_1(x, p_0, p_1) = 0$$

$$g_2^L \leq g_2(x, p_0, p_1) \leq g_2^U$$

using continuation parameters p_1

- $N_p = 2$ parameter sub-vectors:
 - design p_0
 - continuation p_1
- $N_g = 3$ response functions:
 - objective $g_0 \in \mathbf{R}^1$
 - auxiliary equalities g_1
 - auxiliary inequalities g_2

Key Points

- This is a very realistic problem that could be added to MOOCHO this year!
- We can't be developing a new interface for every one of these types of mixed problem formulations!

Example : “Composite” Coupled (Multi-Physics) Models

Forward Coupled Model:

$$\tilde{f}^1(\tilde{x}^1, \tilde{p}_1^1) = 0$$

$$\tilde{p}_1^2 = \tilde{x}^1$$

$$\tilde{f}^2(\tilde{x}^2, \tilde{p}_1^2) = 0$$

“Composite” Forward Coupled Model:

$$f(x, p_1) = 0$$

where

$$x = \begin{bmatrix} \tilde{x}^1 \\ \tilde{x}^2 \end{bmatrix}$$

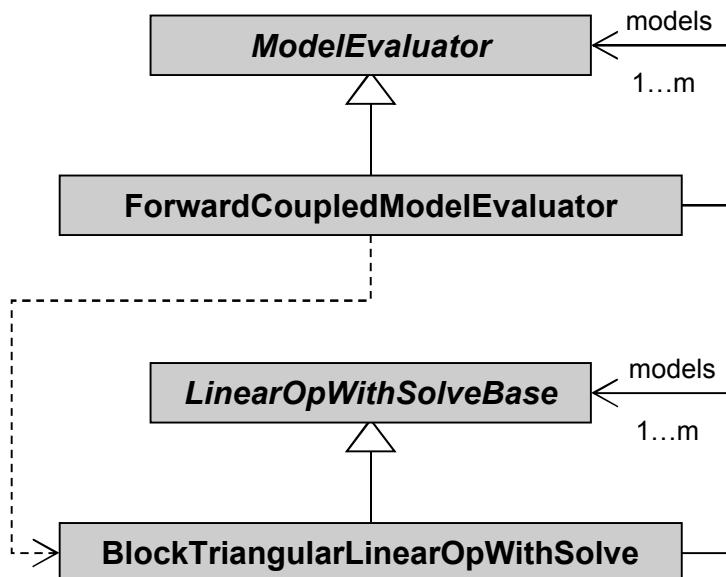
<<create>>

$$p_1 = \tilde{p}_1^1$$

$$f(x, p_1) = \begin{bmatrix} \tilde{f}^1(\tilde{x}^1, \tilde{p}_1^1) \\ \tilde{f}^2(\tilde{x}^2, \tilde{p}_1^2 = \tilde{x}^1) \end{bmatrix}$$

$$W = \beta \frac{\partial f}{\partial x} = \begin{bmatrix} \beta \frac{\partial \tilde{f}^1}{\partial \tilde{x}^1} & \\ \beta \frac{\partial \tilde{f}^2}{\partial \tilde{p}_1^2} & \beta \frac{\partial \tilde{f}^2}{\partial \tilde{x}^2} \end{bmatrix}$$

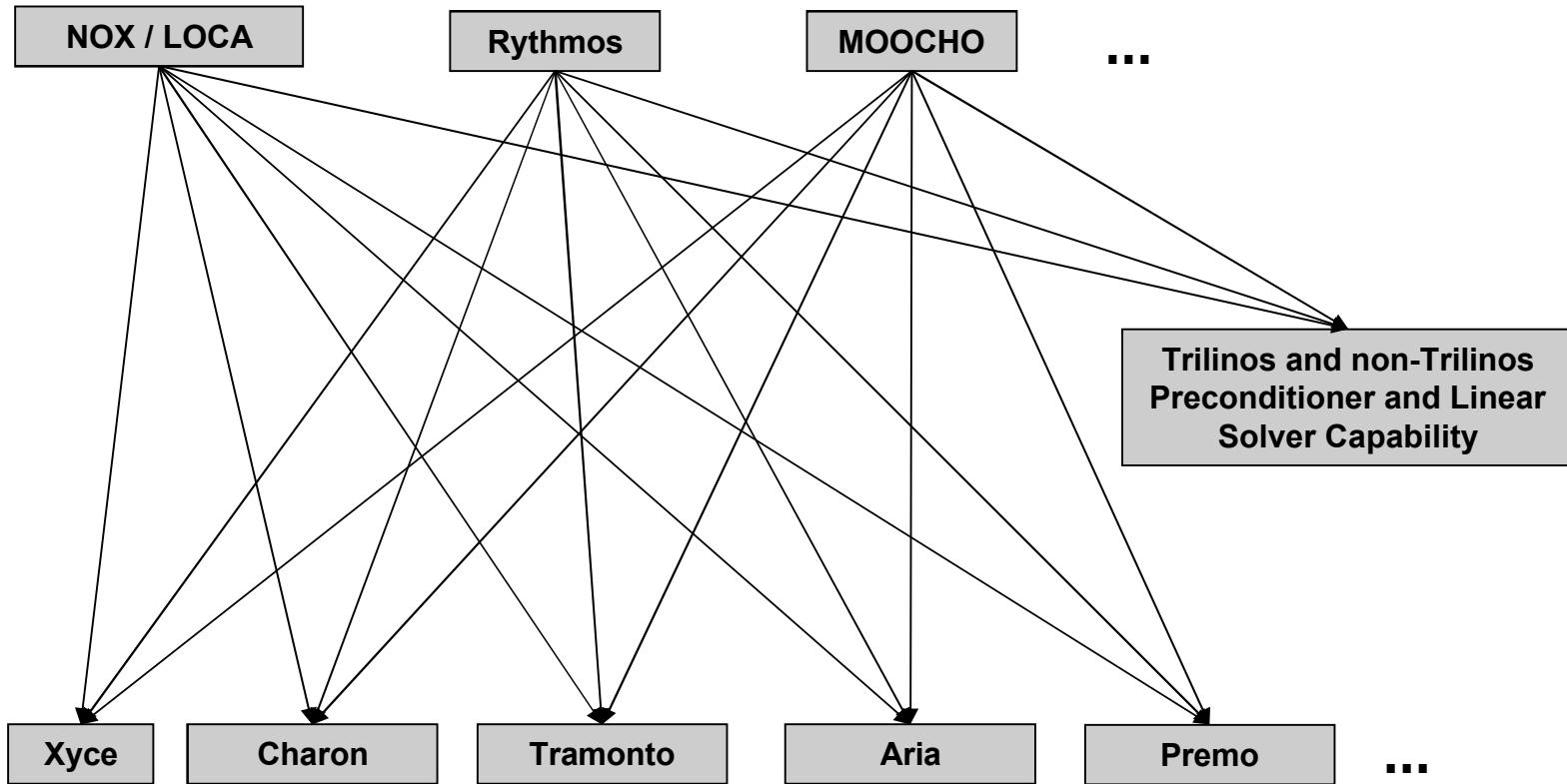
“Composite” ANA Subclasses:



Nonsingular linear operators
on the diagonal

Nonlinear Algorithms and Applications : Everyone for Themselves?

Nonlinear
ANA Solvers
in Trilinos



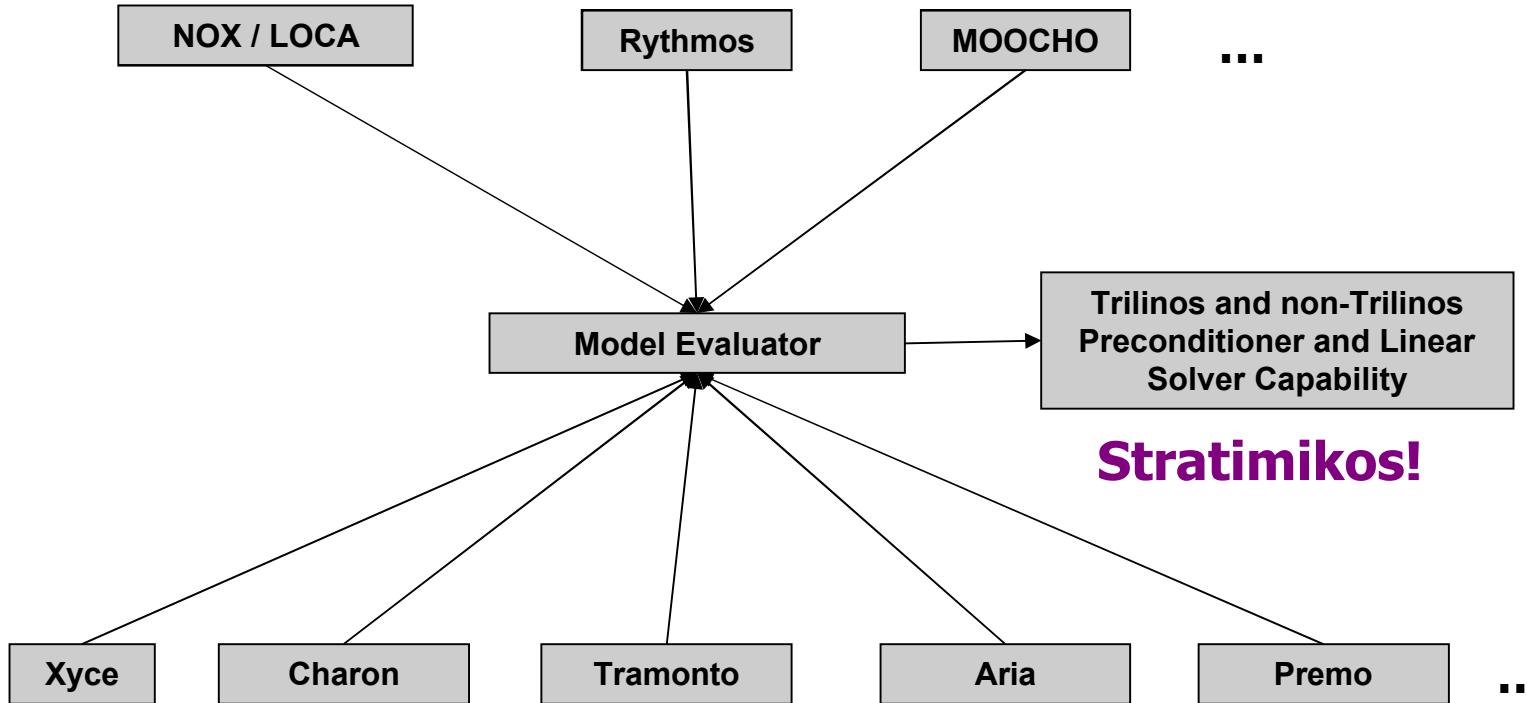
Sandia
Applications

Key Point

- BAD

Nonlinear Algorithms and Applications : Thyra & Model Evaluator!

Nonlinear
ANA Solvers
in Trilinos

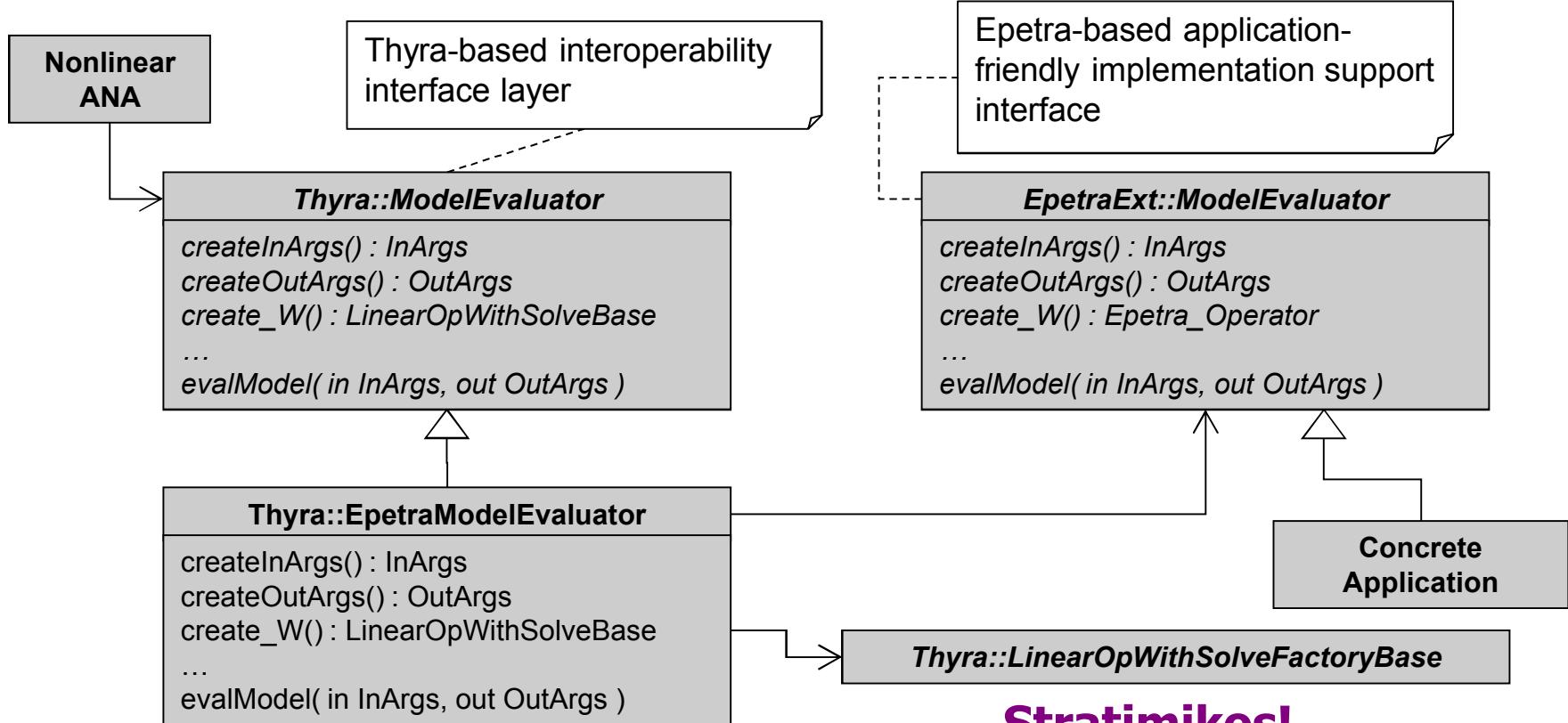


Sandia
Applications

Key Points

- Provide single interface from nonlinear ANAs to applications
- Provide single interface for applications to implement to access nonlinear ANAs
- Provides shared, uniform access to linear solver capabilities
- Once an application implements support for one ANA, support for other ANAs can quickly follow

Model Evaluator : Thyra and EpetraExt Versions



Stratimikos!

- *Thyra::ModelEvaluator* and *EpetraExt::ModelEvaluator* are near mirror copies of each other.
- *Thyra::EpetraModelEvaluator* is fully general adapter class that can use any linear solver through a *Thyra::LinearOpWithSolveFactoryBase* object it is configured with
- Stateless model that allows for efficient multiple shared calculations (e.g. automatic differentiation)
- Adding input and output parameters involves
 - Modifying only the classes *Thyra::ModelEvaluator*, *EpetraExt::ModelEvaluator*, and *Thyra::EpetraModelEvaluator*
 - Only recompilation of *Nonlinear ANA* and *Concrete Application* code

Example EpetraExt::ModelEvaluator Application Implementation

```
/** \brief Simple example ModelEvaluator subclass for a 2x2 set of
 * parameterized nonlinear equations.
 *
 * The equations modeled are:
 \verbatim

 f[0] = x[0] + x[1]*x[1] - p[0];
 f[1] = d * ( x[0]*x[0] - x[1] - p[1] );

 \endverbatim
 */
class EpetraModelEval2DSim : public EpetraExt::ModelEvaluator {
public:
    EpetraModelEval2DSim(...);
    /** \name Overridden from EpetraExt::ModelEvaluator . */
    //@{
    Teuchos::RefCountPtr<const Epetra_Map>           get_x_map() const;
    Teuchos::RefCountPtr<const Epetra_Map>           get_f_map() const;
    Teuchos::RefCountPtr<const Epetra_Vector>         get_x_init() const;
    Teuchos::RefCountPtr<Epetra_Operator>             create_W() const;
    InArgs      createInArgs() const;
    OutArgs     createOutArgs() const;
    void evalModel( const InArgs& inArgs, const OutArgs& outArgs ) const;
    //@}

private:
    ...
};
```

Complete nonlinear equations example in [epetraext/thyra/example/model_evaluator/2dsim/](https://github.com/LLNL/epetraext/tree/main/thyra/example/model_evaluator/2dsim/).

Example EpetraExt::ModelEvaluator Application Implementation

```
EpetraExt::ModelEvaluator::InArgs EpetraModelEval2DSim::createInArgs() const
{
    InArgsSetup inArgs;
    inArgs.setModelEvalDescription(this->description());
    inArgs.setSupports(IN_ARG_x,true);
    inArgs.setSupports(IN_ARG_beta,true);
    return inArgs;
}

EpetraExt::ModelEvaluator::OutArgs EpetraModelEval2DSim::createOutArgs() const
{
    OutArgsSetup outArgs;
    outArgs.setModelEvalDescription(this->description());
    outArgs.setSupports(OUT_ARG_f,true);
    outArgs.setSupports(OUT_ARG_W,true);
    outArgs.set_W_properties(
        DerivativeProperties(DERIV_LINEARITY_NONCONST,DERIV_RANK_FULL,true)
    );
    return outArgs;
}

void EpetraModelEval2DSim::evalModel( const InArgs& inArgs, const OutArgs& outArgs ) const
{
    const Epetra_Vector &x      = *inArgs.get_x();
    Epetra_Vector f_out = outArgs.get_f().get();
    Epetra_Operator W_out = outArgs.get_W().get();
    if(f_out) {
        ...
    }
    if(W_out) {
        ...
    }
}
```

Key Point

From looking at example code, there is not even a hint that other input and output parameters exist!

First Derivatives

- State function state sensitivities:

$$W = \alpha \frac{\partial f}{\partial \dot{x}} + \beta \frac{\partial f}{\partial x}$$

[[LinearOpWithSolveBase](#) or [LinearOpBase](#)]

- State function parameter sensitivities:

$$\frac{\partial f}{\partial p_l}, \text{ for } l = 1 \dots N_p$$

[[LinearOpBase](#) or [MultiVectorBase](#)]

- Auxiliary function state sensitivities:

$$\frac{\partial g_j}{\partial x}, \text{ for } j = 1 \dots N_g$$

[[LinearOpBase](#) or [MultiVectorBase²](#)]

- Auxiliary function parameter sensitivities:

$$\frac{\partial g_j}{\partial p_l}, \text{ for } j = 1 \dots N_g, l = 1 \dots N_p$$

[[LinearOpBase](#) or [MultiVectorBase²](#)]

Use Cases:

- Steady-state and transient sensitivity computations
- Optimization
- Multi-physics coupling
- ...

Forward/Direct and Adjoint Sensitivities

Steady-state constrained response:

$$g(x, p) \text{ s.t. } f(x, p) = 0$$

Reduced response function:

$$\hat{g}(p) = g(x(p), p)$$

Reduced Sensitivities:

$$\frac{\partial \hat{g}}{\partial p} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial g}{\partial p} \quad \text{where: } \frac{\partial x}{\partial p} = -\frac{\partial f}{\partial x}^{-1} \frac{\partial f}{\partial p}$$

Key Point

The form of the derivatives you need depends on whether you are doing direct or adjoint sensitivities

Forward/Direct Sensitivities (n_g large, n_p small)

$$\frac{\partial \hat{g}}{\partial p} = \frac{\partial g}{\partial x} \left(-\frac{\partial f}{\partial x}^{-1} \frac{\partial f}{\partial p} \right) + \frac{\partial g}{\partial p}$$

$$\frac{n_g}{n_p} = \left[\frac{\partial g}{\partial x} \left(-\frac{\partial f}{\partial x}^{-1} \frac{\partial f}{\partial p} \right) + \frac{\partial g}{\partial p} \right]$$

$$\frac{\partial \hat{g}}{\partial p} \quad \frac{\partial g}{\partial x} \quad \frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial p} \quad \frac{\partial g}{\partial p}$$

$$\text{MV} \quad \text{LO} \quad \left[\begin{array}{cc} \text{LOWS} & \text{MV} \end{array} \right] \quad \text{MV}$$

MV

Adjoint Sensitivities (n_g small, n_p large)

$$\frac{\partial \hat{g}^T}{\partial p} = \frac{\partial f^T}{\partial p} \left(-\frac{\partial f}{\partial x}^{-T} \frac{\partial g^T}{\partial x} \right) + \frac{\partial g^T}{\partial p}$$

$$\frac{n_p}{n_g} = \left[\frac{\partial f^T}{\partial p} \left(-\frac{\partial f}{\partial x}^{-T} \frac{\partial g^T}{\partial x} \right) + \frac{\partial g^T}{\partial p} \right]$$

$$\frac{\partial \hat{g}^T}{\partial p} \quad \frac{\partial f^T}{\partial p} \quad \frac{\partial f}{\partial x} \quad \frac{\partial g^T}{\partial x} \quad \frac{\partial g^T}{\partial p}$$

$$\text{MV} \quad \text{LO} \quad \left[\begin{array}{cc} \text{LOWS} & \text{MV} \end{array} \right] \quad \text{MV}$$

MV

Sandia
National
Laboratories

Properties of Current Approach to ModelEvaluator Software

- Strong Typing of Input/Output Object Types but Weak Typing of Problem Formulation
 - Much functionality/information resides in concrete InArgs and OutArgs classes
 - ModelEvaluator objects select which input/output arguments are recognized and the rest are ignored
 - Attempts to set or get non-supported input/output arguments throw exceptions as early as possible and result in very good error messages
 - Only subclasses of ModelEvaluator can change the set of supported arguments
- Designed for Change
 - Input and output arguments can be added at will to support new algorithms; only requires recompilation of existing clients and subclasses
- Incremental Development of Application Capabilities
 - Existing ModelEvaluator subclasses can incrementally take on new input and output objects to support more advanced algorithm capabilities
 - => Gradual addition of new function overrides and expansion of the implementations of createInArgs(), createOutArgs(), and evalModel(...).
- Self-Describing Models => Smart Algorithms
 - Clients can query InArgs and OutArgs objects to see what input and output objects are supported
 - Properties of derivative objects is provided by OutArgs object!
- Independence/Multiplicity of Input and Output Objects
 - Input and output objects are independent of the ModelEvaluator object and as many or as few as required are created on demand by the client

Impact of the Nonlinear Model Evaluator

– Incorporation into simulation codes

- Charon: QASPR project (Hoekstra(1437),...) => ASC Level-2 Milestone
- Rapid Production CSRF (Bartlett(1411), vBW(1411), Long(8962), Phipps(1416), ...)
- Aria/SIERRA (Notz(1514), Hooper(1416))
- Tramonto: Decontamination LDRD (vBW(1411),...)
- ...

– Incorporation into numerical algorithms

- MOOCHO: Simulation-constrained optimization (Bartlett(1411))
- Rythmos: Time integration and sensitivity methods (Coffey(1414))
- NOX: Nonlinear equation solvers (Pawlowski(1416))
- LOCA: Library of continuation algorithms (Salinger(1416), Phipps(1416))
- Aristos: Full-space simulation-constrained optimization (Ridzal(1414))
- ...

– Connection with other SNL projects

- 4D CSRF, Transient to steady-state (Salinger(1416), Dunlavy(1411))
- Multi-physics LDRD (Hooper(1416), Pawlowski(1416))
- ...

Outline

- Mathematical overview of sensitivities and optimization
- Minimally invasive optimization algorithm for MOOCHO
- ModelEvaluator software
- Wrap it up

ModelEvaluator Software Summary

- Motivation for Unified ModelEvaluator Approach to Nonlinear Problems

- Large overlap in commonality between requirements for many nonlinear abstract numerical algorithms (ANAs).
- Mixed problem types will become more and more common and must be easy to support

- Properties of ModelEvaluator Software

- Strong Typing of Input/Object Types but Weak Typing of Problem Formulation
- Designed for Change
- Incremental Development of Application Capabilities
- Self-Describing Models => Smart Algorithms
- Independence/Multiplicity of Input and Output Objects

- ANAs already using or can use ModelEvaluator

- MOOCHO (constrained optimization, unconstrained optimization, nonlinear equations)
- Rythmos (explicit ODEs, implicit ODEs, DAEs)
- NOX (nonlinear equations)
- LOCA (stability analysis, continuation)
- Aristos (full space, trust-region optimization)

Sensitivity and Optimization Summary

- Need to go beyond the forward solve to answer:

- How to characterize the error in my model so that it can be improved? → [Error estimation](#)
- What is the uncertainty in x given uncertainty in p ? → [QMU](#)
- What is the “best” value of p so that my model $f(x,p)=0$ fits exp. data? → [Param. Estimation](#)
- What is the “best” value for p to achieve some goal? → [Optimization](#)

- [Sensitivities](#)

- Direct vs. Adjoint methods

- [Optimization methods](#)

- Decoupled (DAKOTA) vs. Coupled (MOOCHO, Aristos)
 - Coupled methods: Full-space (Aristos) vs. reduced-space (MOOCHO)
 - Inequality constraints (MOOCHO active-set methods)

- [Minimally invasive optimization method for MOOCHO](#)

- Requires only forward state Jacobian solves and objective evaluations
 - All other computations can be approximated with directional finite differences