Sensitivities and Optimization:
Going Beyond the Forward Solve

(to Enable More Predictive Simulations)

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, November 8t", 2006

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2006- 6911P

Sandia
National
Laboratories

- '
} Outline

e Mathematical overview of sensitivities and optimization

e Minimally invasive optimization algorithm for MOOCHO

e ModelEvaluator software

e Wrap it up

Sandia
m National
Laboratories

il
%' Outline

e Mathematical overview of sensitivities and optimization

e Minimally invasive optimization algorithm for MOOCHO

e ModelEvaluator software

e Wrap it up

Sandia
m National
Laboratories

iy '
} Why Sensitivities and Optimization?

The Standard Steady-State Forward Simulation Problem

For a given set of input parameters p € R, solve the square state
equations

f(z,p) =0

for the state variables x € R** then compute observation(s) g(x).

Example applications

e Discretized PDEs (e.qg. finite element, finite volume, discontinous Gelerkin, finite difference, ...)
e Network problems (e.g. circuit simulation, power grids)

Why is a forward solver is not enough?

o A forward solve p — g(x(p),p) can only give point-wise information, it can’t tell you what you ultimately
want to know:

e How to a characterize the error in my model so that it can be improved? — Error estimation
e What is the uncertainty in x given uncertainty in p ? — QMU
e What is the “best” value of p so that my model f(x,p)=0 fits exp. data? — Param. Estimation

e What is the “best” value for p to achieve some goal? — Optimization

What are some of the tools that we need to answer these higher questions?

e Sensitivities and Optimziation! 'I‘ Sandia
National
Laboratories

s '
} Steady-State Simulation-Constrained Sensitivities

Steady-State Simulation-Constrained Response

Compute g(z,p) e R x R — R

such that f(z,p) =0 (where f(z,p) € R x R™” — R"™)
Nonlinear elimination Reduced Response Function

flz,p) =0 w——t p— r(p) w—) p— §(p)= g(z(p),p)

Steady-State Sensitivities N gz _ of" 19 af Well suited for
State Sensitivity: 5, T 9z op Newton Methods

0g 0Ogo 0
0§ _ 090z | g

Reduced Response Function Sensitivity: =
Op OxOp Op

Forward (Direct) vs. Adjoint Sensitivities Complexity
~ 1
Forward (Direct) Sensitivity Method: @ = 99 8f of -|- = O(n,)
op Ox Oz op 8p
Adjoint Sensitivity Method: 99" _of T oofTog" n @
op op or Ox O(ny)

Uses for Sensitivities: Derivative-based optimization, UQ, error estimation etc ...

Sandia
m National
Laboratories

}‘ Steady-State Simulation-Constrained Optimization

Basic Steady-State Simulation-Constrained Optimization Problem:

Find x € R™ and p € R™ that:
minimizes g(x, p)
such that f(z,p) =0

Trilinos Optimization Packages
- MOOCHO (R. Bartlett)
- Aristos (D. Ridzal)

Basic example optimization formations
- Parameter estimation / data reconciliation

- Optimal design
- Optimal control

Define Lagrangian: L(xz,p, \) = g(z,p) + A f(z, p)

Optimality conditions

| 0L _ tepy=0)
State equation: ax r,p) =
T T T ~T Top-Ta,T T
Adjoint equation: 8_L — @ + g A=0 @ _ _9f9f "9 + @
ox ox ox

Op __8p Oor Ox Op

Gradient equation: oL” . @T 4 g T \ =0 Reduced sensitivity!

dp ~ op = Op)

Sandia
National
Laboratories

}‘ Simulation-Constrained Optimization Methods

Basic Steady-State Simulation-Constrained Optimization Problem:

Find x € R™ and p € R™ that:
minimizes g(x, p)
such that f(z,p) =0

Two broad approaches for solving optimization problems

- Decoupled approach (simulation constraints always satisfied): DAKOTA
Find p € R™ that: Optimization method never
minimizes §(p) = g(z(p), p) “sees” the state space!

- Coupled approach (converges optimality and feasibility together): =~ MOOCHO, Aristos

Find 2 € R™ and p € R™ that: e Optimization method deals with the (parallel)
minimizes g(z, p) state space and the parameter space
such that f(z,p) =0 together!

e Requires special globalization methods to
converge to a minimum!
Sandia
m National _
Laboratories

Full-Newton Coupled Optimization Methods

;,V

Optimality conditions

VL =

L o

o’
ox
a_LT

I

A set of three coupled
nonlinear equations!

=0 - =
Solve using Newton'’s
method?

Full-Newton Coupled Optimization Methods (The Gold Standard)

02L 92L OfT]
0x?2 OxOp Oz
o2L 82 ofT
oz op2 Op
of 9
ox op

[09T oLT Also know as a full-space
9z T35 successive quadratic
—| ogt oLT programming (SQP)
ap + ap A method!
f(z,p)

Aristos (D. Ridzal)

Results in fast local quadratic (Newton) convergence

Global convergence to a minimum requires special “globalization” methods

Requires second derivatives (i.e. Hessians)

Requires solution of large symmetric indefinite systems

Hard to exploit forward-solve capabilities of an application Sandia

m National
Laboratories

il
%!educed-Space Coupled Optimization Methods (i.e. MOOCHO)

Basic Steady-State Simulation- Fi“dmﬁneinl;i; Sam(ﬂxp e) R™ that:
Constrained Optimization Problem such that f(z.p) = O

Basic (line-search-based) reduced-space optimization algorithm

1. gnui‘;isasliiatieognz gzgo;eetgspraggfi z,cv)yg € R and the initial e Strongly leverages the
0 0 ! capabilities of applications that
2. Model/sensitivity evaluation: Compute the reduced derivative Ean Iziefused \é\”th Ia Newton-
and the residual| f bt (xk, px) ased rorward solver
3. Convergence check: If ||0g/0p|| < ny and ||f|| < ny then stop, * Direct sensitivities _
solution found! ° np+1 solves with 8f/aX
4. Step computation: ¢ Adjoint sensitivities
L _ — » 2 solves with of/ox
() aFszleblgy) step: Compute Newton steplAxzy = (8f/0x)~ 1 f o 1 solve with (f/ox)T
ks Pk
(b) Optimality step: Compute Ap € R™ s.t. (95/9p)Ap <0 e Quasi-Newton methods typically
used to approximate reduced
5. Globglization: Find step length o that insures progress to the Hessian (second derivatives) B
solution and to compute:
6. Update the estimate ion: _ Ap = -B* (6g/0p)"
Tpt+1 = xf + o (Azy +H|(0z2/p) A 8_:6:_% ﬁ
Pe+1 = Pk + aAp op dz Op e MOOCHO implements this class
k=k+1 85 Ogdx . dg and related classes of algorithms!
goto step 2 —_— = —
Op OxOdp Op Sandia
m National

Laboratories

}i A Spectrum of Optimization Methods form Decoupled to Coupled

Fully Decoupled
Optimization Method

 Better scalability to large

MOOCHO parameter spaces

* More accurate solutions
» Less computer time

* Decreased impact to
existing app code

» Ease of interfacing

Aristos

Fully Coupled, Newton
Optimization Method

Sandia
m National
Laboratories

}‘ General Inequality Simulation-Constrained Optimization

General Steady-State Simulation-Constrained Optimization Problem with Inequalities:

Find x € R™ and p € R™ that:
minimizes go(x, p)

such that:
f(z,p) =0
g1 (Ll?,p) =0
gr2 < g2(z,p) < gupo
xr, < x<xy MOOCHO allows
pL < p < pu inequality constraints
L : using active-set methods
Example optimization formations (see QPSchur)!

- Parameter estimation / data reconciliation
- Optimal design
- Optimal control

Issues associated with handling of inequalities
- Inequalities allow a modeling capability not possible with just equalities
- Allows reformulation of some non-differentiable optimization problems
- Two broad classes of optimization algorithms for handling inequalities
- Active-set methods (adds and removed inequalities from “working set”)
- Interior-point methods (enforces inequalities using “barrier term”)
- Tradeoffs between direct and adjoint sensitivity methods not so obvious anymore

Sandia
National
Laboratories

g '
% Transient Sensitivities and Optimization

Explicit ODE Forward Find §2(t) such that: @ = f(z,p,t) = 0,t € [0, T],
Sensitivities: 2(0) = zq, for z(t) € R",t € [0, T]

Find g—;(t) such that: f(&(t),z(t),p,t) = 0,t € [0,T],
DAE/Implicit ODE Forward 0y = 4, #(0) = a}, for z(t) € R",¢ € [0, T]

Sensitivities:
Find p € R™ that minimizes g(p)
_ Find z(t) e R" in t € [0,T] and p € R™ that:
ODE Co_nStr_amed minimizes [g(z(t),p)
Optimization: such that z = f(x(t),p,t) =0, on t € [0, T]

where z(0) = =z

Issues associated with transient sensitivities and optimization
- If sufficient storage is available, then discretization in time yields a BIG steady-state problem
— 4D approach!

- If sufficient storate is not available then time integration methods must be used to eliminate transient
equations and state varaibles

- Direct transient sensitivity methods scale as O(n,)
- Adjoint transient sensitivity methods scale as O(n,) but require storage/recomputation of x(t)
- Model/Application requirements are similar for steady-state sensitivities and optimization

I am not going to say anything more about transient sensitivities or optimization! i sanda
Laboratories

il
%' Outline

e Mathematical overview of sensitivities and optimization

e Minimally invasive optimization algorithm for MOOCHO

e ModelEvaluator software

e Wrap it up

Sandia
m National
Laboratories

F2d

Motivation for Invasive Coupled Optimization

35000

30000

25000

20000

15000

Wall clock time (sec)

10000

5000

Number of grid and design values

Decoupled Decoupled Varying levels of
Pattern Search Finite-Difference Invasiveness
/’ Level 0
/)(Level 2
" Level4
Level 3
Level 5
0 50 100 150

200

Increasing Levels of
Coupling and Derivative
and Solve Capabilities

Level 2 = Decoupled forward sens.
Level 3 = Coupled forward sens.
Level 4 = Decoupled adjoint sens.
Level 5 = Coupled adjoint sens.

= Coupled full-Newton

Large Scale Non-Linear Programming for PDE Constrained Optimization, van Bloemen Waanders, B., Bartlett, R,,
Long, K., Boggs, P., and Salinger, A. Sandia Technical Report SAND2002-3198, October 2002

Key Point

For many/some optimization problems, intrusive coupled optimization methods can be
much more computationally efficient and more robust than the decoupled approach

But:

e Itis hard to get our “foot in the door” with production codes

e It is hard to keep a “door stop” in place once we are in ...

i
Because ...) st
Laboratories

%‘ Some Challenges to Incorporation of Invasive Optimization

e Lack of Software Infrastructure Where I am Involved

— Linear algebra and linear solvers not supporting
optimization requirements €= Thyra

— Application structure not flexible (i.e. only supports a x
narrow mode to solve the forward problem) MOOCHO
e Lack of software maintenance 1

— Optimization support is not tightly integrated with
forward solve code and is not maintained over time. === Model Evaluator

e Lack of derivative support

— Lack of model smoothness
Automatic

— No optimization variables derivatives — <«uu——— Differentation (AD)
— Lack of transient derivatives G ——————— Rythmos

Key Point

We need a strategy to reduce the threshold for getting invasive optimization into

codes and for keeping the capability once it is there => Software and Algorithms h Sandia

Laboratories

%‘ Minimally Invasive Gradient-Based Optimization

Decoupled Optimization: Assume there is no optimization capability in the “Simulator”

Find p € R™ that:

minimize g(p)

Noninvasive

Optimizer

Finite difference entire

p— g(p)

simulation to get sensitivities!

Simulator
Nonlinear Solver
Model (e.g. NOX)
Linear Algebra f(z,p) = State
Linear Solver p — x(p) solve
p — g(z(p),p) — g(p) } Oblective

Coupled Optimization: Simulator broken up and some pieces are given over to optimizer

Find x € R" and p € R™ that:

minimizes g(x, p)
such that
f(z,p) =0

Invasive Optimizer

(e.g. MOOCHO)

Model

"| Evaluator

Question: How can we break the a simulator open to begin
using coupled optimization methods and how can our algorithms
exploit any capabilities that the simulator can provide?

Model

/

Linear Algebra
Linear Solver

h

Sandia
National
Laboratories

}‘ Minimally Invasive Direct Sensitivity MOOCHO

Basic Simulation-Constrained Optimization Problem

Find x € R" and p € R™ that:

minimize g(x, p)

Reduced Obj. Function

p — g(p)
Defines thestate P — ¢ (p) /

such that simulatorand 5, afF-1of
f(z,p) =0 direct sensitivities — = ———~ —

op Or Op

Minimal Requirements for decoupled Newton simulation-constrained optimization

\

— Residual Eval: (z,p) — 7 State colve
of] with Minimally Invasive
— Jacobian Eval: el Linear Direct Sensitivity
(z,p) = 2~ =l colver NOX/LOCA ct Sensiti
— Objective Eval: (z,p) — g ¥ g::oupled)

Derivatives desired but not required

0
— Residual opt. deriv: (z,p) — 8—£

L. . 0
— Objective state deriv: (z,p) — 8_ags
. - dg
— Objective opt. deriv: (z,p) — >
P

Approximate using O(n,) directional finite differences!

of _ f(a,p+ i) — f(x,p)

8pi)
oz
. g <m+5,p+5ei> —g(x,p)
g ~ op;
(9]%' 5

Sandia
m National
Laboratories

il
%‘ Scalable Optimization Test Problem

Example: Parallel, Finite-Element, 2D, Diffusion + Reaction (GL) Model

min 5 Jo(2(y) — 2 (y))dy .
st. VZz+oalz—23) =r(y) y €82 ‘ r:Itn ilf((aajz’]19?)) =0

2w = 4(p,y) y € 052

State PDE: Scalar Ginzburg-Landau equations (based on Denis Ridzal’s (1414) code)

Discretization:
» Second-oder FE on triangles
*n, = 110,011 state variables and equations

Optimization variables:
» Sine series basis
* n, = 8 optimization variables
* Note: df/dp is constant in this problem!!!

Iterative Linear Solver : ILU (Ifpack), (GMRES) AztecOO

Key Points
e Simple physics but leads to very nonlinear state equations
e Inverse optimization problem is very ill posed in many instances

Sandia
m National
Laboratories

%‘ Results: Decoupled vs. Coupled, Finite Differences

00

Decoupled Finite Diff. vs. Coupled Finite Diff. Decoupled Finite Diff. vs. Coupled Finite Diff.
1.00E+00 w w w 1.00E+00 ‘ ‘ ‘
1.00E-01 5 10 15 P 1.00E-01 0 100 200 300
1.00E-02 - 1.00E-02 -
1.00E-03 . 1.00E-03 - —e— decoupled ||obj||
1.00E-04 - —#— decoupled fjobj| 1.00E-04 - —=— coupled ||obj||
100805 | —=— coupled [[obj] 1.00E-05 - coupled ||state con||
1.00E-06 1 coupled ||state con|| 1.00E-06 -
1.00E-07 - 1.00E-07 ~
1.00E-08 - 1.00E-08 -
1.00E-09 - 1.00E-09 -
1.00E-10 1.00E-10
1.00E-11 1.00E-11 ~
1.00E-12 1.00E-12

Optimiation Iteration Time [seconds]

Key Points

 Finite differencing the underlying functions is much more efficient than
finite differencing entire simulation!

¢ Finite differencing the underlying functions is more accurate!
e Coupled approach requires (almost) no extra application requirements!

Sandia
National
Laboratories

\

Results: Coupled Finite Diff. vs. Coupled Analytic

1.00E+00

Coupled Finite Diff. vs. Coupled Analytic

Coupled Finite

1.00E-01 -
1.00E-02 -
1.00E-03 -
1.00E-04 -

1.00E-05 -
[

1.00E-06 -
1.00E-07 -
1.00E-08 -
1.00E-09 -

1.00E-10 3

1.00E-11 -

1.00E12

=

5 10 15
—e— finite diff ||obj||
—=— finite diff ||state con||

analytic ||obj||
analytic ||state con||

FAS NN
A

PN N NN
>
N

TASNN

-
D M T S S B S

Diff. vs. Coupled Analytic

1.00E-10 | *
1.00E-11 -

-
1.00E-12

1.00E-08 - *—‘\\
1.00E-09 - -

1.00E+00 ‘ ‘ ‘ ‘ ‘
0 1.00E-01 0 50 100 150 200 250
1.00E-02
—e— finite diff ||obj||
1.00E-03 +
—=— finite diff ||state con||
1.00E-04 .)
analytic ||obj||
1.00E-05 - .
analytic ||state con||
1.00E-06 -
1.00E-07 ~

/.\:«4: S B B o o B B]

00

Optimization Iteration

Time [seconds]

Key Points

e Analytic derivatives are usually not faster
e Analytic derivatives often much more accurate

Sandia
National
Laboratories

- '
‘#. Outline

e Mathematical overview of sensitivities and optimization

e Minimally invasive optimization algorithm for MOOCHO

e ModelEvaluator software

e Wrap it up

Sandia
m National
Laboratories

Overview of Nonlinear Model Evaluator Interface

2 d

Motivation: An interface for nonlinear problems is needed that will support a variety of

different types of problems

* Nonlinear equations (and senstitivities)

« Stability analysis and continuation

» Explicit ODEs (and sensitivities)

« DAEs and implicit ODEs (and sensitivities)
» Unconstrained optimization

» Constrained optimization

« Uncertainty quantification

Key Point

The number of
combinations of different
problem types is large and
trying to statically type all
of the combinations is not
realistic

as well as different combinations of problem types such as:
* Uncertainty in transient simulations

- Stability of an optimum under uncertainty of a transient problem

Approach: Develop a single, scalable interface to address all of th

« (Some) Input arguments: p Key Point
— axr

« State and differential state: reXandxz=F X | inputs and outputs are

« Parameter sub-vectors: ppePforl=1...Np optional and the model

- Time (differential): P evaluator object itself

. decides which ones are
« (Some) Output functions: acce
: pted.
« State function: (z,z,{p1},t) = feF

« Auxiliary response functions: (£, z,{p;},t) = g; € G;

 State/state derivative operator _
(LinearOpWithSolve): (z,z,{pi},t) = W = «

ese problems

of f
ot =

Sandia
National
Laboratories

}‘ Some Examples of Supported Nonlinear Problem Types

Nonlinear equations:

Solve f(x) =0 for z € R"

Stability analysis:

For f(z,p) = O find space p € P such that 2 is singular

Explicit ODEs:

Solve z = f(z,t) = 0,t € [0,T], z(0) = xo,
for x(t) e R",t € [0,T]

DAEs/Implicit ODEs:

Solve f(z(t),z(t),t) =0,t € [0,T], z(0) = xo, #(0) = xj,
for x(t) e R",t € [0,T]

Explicit ODE Forward
Sensitivities:

Find g—g(t) such that: z = f(z,p,t) = 0,t € [0,T],
x(0) = xo, for z(t) e R",t € [0,T]

DAE/Implicit ODE Forward
Sensitivities:

Find g—;(t) such that: f(&(t),z(t),p,t) = 0,t € [0,T],
z(0) = zo, 2(0) = ay, for z(t) € R",t € [0,T]

Unconstrained Optimization:

Find p € R™ that minimizes g(p)

Constrained Optimization:

Find x € R" and p € R™ that:
minimizes g(x, p)
such that f(z,p) =0

ODE Constrained
Optimization:

Find z(t) e R" in t € [0,T] and p € R™ that:
L T
minimizes [; g(z(t),p)
such that z = f(x(t),p,t) =0, on t € [0, T] Sandia
where x(0) = zo 'I' Labormores

%‘ A More Advanced Optimization Example

Equality and Inequality Constrained Optimization solved using Continuation:

* N, =2 parameter sub-vectors:
Find z € R" and pg € R™ that:

* design p,
minimizes go(z, po) - continuation p,
such that
f(z,po,p1) =0 .
g1(x,po,p1) =0 * N, = 3 response functions:
95 < g2(x,po,p1) < g5 * objective g, € R’
using continuation parameters p; « auxiliary equalities g,

« auxiliary inequalities g,

Key Points
e This is a very realistic problem that could be added to MOOCHO this year!

e We can't be developing a new interface for every one of these types of mixed
problem formulations!

Sandia
m National
Laboratories

%‘ Example : “Composite” Coupled (Multi-Physics) Models
Forward Coupled Model:

”1 1 =1\ __
(aj 7p]_> =0 _
o 1 “Composite” ANA Subclasses:
P =2
fQ (532,ﬁ1) =0 ModelEvaluator models
/\ 1...m
“Composite” Forward Coupled Model:
ForwardCoupledModelEvaluator
f($7p1> =0 !
where X 1 | LinearOpWithSolveBase models
= t |
v 72 ssereatem VAN 1.m
P1=0P1 i_> BlockTriangularLinearOpWithSolve
1 ~1
() [f (JZ 7p]_)]
LyP1) — o ~ ~
(&2, 57 = &)
i rl T . .
ﬁaf . Nonsingular linear operators
W ﬁﬁf ozl on the diagonal
= b= —Baf? BﬁfQ -
ndia
L ap % 8$ 2 i m Paaglutmllries

iy q
} onlinear Algorithms and Applications : Everyone for Themselves?

Trilinos and non-Trilinos
Preconditioner and Linear
Solver Capability

Er\)&l igﬁﬁ,rers NOX/LOCA Rythmos MOOCHO
in Trilinos /‘\ /

17

SO —
oS
Sandia / (,<
Applications | Xyce Charon Tramonto Aria Premo
Key Point
e BAD

Sandia
National
Laboratories

}i Nonlinear Algorithms and Applications : Thyra & Model Evaluator!

Nonlinear
ANA Solvers NOX/LOCA Rythmos MOOCHO .
in Trilinos
Trilinos and non-Trilinos
Model Evaluator » Preconditioner and Linear
Solver Capability
Stratimikos!
Sandia
Applications Xyce Charon Tramonto Aria Premo
Key Points

quickly follow

 Provide single interface from nonlinear ANAs to applications
 Provide single interface for applications to implement to access nonlinear ANAs
 Provides shared, uniform access to linear solver capabilities
e Once an application implements support for one ANA, support for other ANAs can

Sandia
National
Laboratories

Nonlinear
ANA

interface layer

Thyra-based interoperability

J

Thyra::ModelEvaluator

createlnArgs() : InArgs
createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase

evalModel(in InArgs, out OutArgs)

AN

Thyra::EpetraModelEvaluator

;7‘ Model Evaluator : Thyra and EpetraExt Versions

Epetra-based application-
_______ friendly implementation support
interface

-- - EpetraExt::ModelEvaluator

createlnArgs() : InArgs
createOutArgs() : OutArgs
create_W() : Epetra_Operator

evalModel(in InArgs, out OutArgs)

AN

createlnArgs() : InArgs
createOutArgs() : OutArgs
create_W() : LinearOpWithSolveBase

evalModel(in InArgs, out OutArgs)

Concrete
Application

N

Thyra::LinearOpWithSolveFactoryBase

Stratimikos!

Thyra::ModelEvaluator and EpetraExt::ModelEvaluator are near mirror copies of each other.

Thyra::EpetraModelEvaluator is fully general adapter class that can use any linear solver through a
Thyra::LinearOpWithSolveFactoryBase object it is configured with

Stateless model that allows for efficient multiple shared calculations (e.g. automatic differentation)

Adding input and output parameters involves

* Modifying only the classes Thyra::ModelEvaluator, EpetraExt::ModelEvaluator, and
Thyra::EpetraModelEvaluator

* Only recompilation of Nonlinear ANA and Concrete Application code

(L

Sandia
National
Laboratories

i Example EpetraExt::ModelEvaluator Application Implementation

/** \brief Simple example ModelEvaluator subclass for a 2x2 set of

* parameterized nonlinear equations.
*

* The equations modeled are:

\verbatim
f[0] = x[0] + x[1]*x[1] - pl[0];
fl1] = d * (x[0]*x[0] = x[1] - pll]);
\endverbatim
*/
class EpetraModelEval2DSim : public EpetraExt::ModelEvaluator ({
public:
EpetraModelEval2DSim(...);
/** \name Overridden from EpetraExt::ModelEvaluator . */
//@{
Teuchos: :RefCountPtr<const Epetra Map> get x map() const;
Teuchos: :RefCountPtr<const Epetra Map> get f map() const;
Teuchos::RefCountPtr<const Epetra Vector> get x init () const;
Teuchos::RefCountPtr<Epetra Operator> create W() const;
InArgs createInArgs () const;
OutArgs createOutArgs () const;
void evalModel (const InArgsé& inArgs, const OutArgs& outArgs) const;
//@}
private:

}s

Complete nonlinear equations example in epetraext/thyra/example/model_evaluator/2dsim/.

Sandia
m National
Laboratories

i Example EpetraExt::ModelEvaluator Application Implementation

Epetrakxt: :ModelEvaluator: :InArgs EpetraModelEval2DSim::createlInArgs () const
{
InArgsSetup inArgs;
inArgs.setModelEvalDescription (this->description());
inArgs.setSupports (IN ARG x, true);
inArgs.setSupports (IN ARG beta, true);
return inArgs;

Epetrakxt: :ModelEvaluator: :0utArgs EpetraModelEval2DSim: :createQutArgs () const
{
OutArgsSetup outArgs;
outArgs.setModelEvalDescription (this->description());
outArgs.setSupports (OUT ARG f,true);
outArgs.setSupports (OUT ARG W, true);
outArgs.set W properties(
DerivativeProperties(DERIV_LINEARITY_NONCONST,DERIV_RANK_FULL,true)
);

return outArgs;

void EpetraModelEval2DSim: :evalModel (const InArgsé& inArgs, const OutArgsé& outArgs) const
{

const Epetra Vector &x = *inArgs.get x();
Epetra Vector f out = outArgs.get f().get();
Epetra Operator W out = outArgs.get W().get();

if (f out) f{

%f.(T/.\T. o Key Point
. From looking at example code, there is not even a
} hint that other input and output parameters exist!

Sandia
National
} m Laboratories

Model Derivatives

'}'

First Derivatives
e State function state sensitivities:

W — ag 4+ 6@ [LinearOpWithSolveBase or LinearOpBase]
ox ox
e State function parameter sensitivities:
g_f, fori=1...Np [LinearOpBase or MultiVectorBase]
Iy
o Auxiliary function state sensitivities:
%’ for j=1...Ny [LinearOpBase or MultiVectorBase?]
X
o Auxiliary function parameter sensitivities:
%, forj=1...Ng, l=1...Np [LinearOpBase or MultiVectorBase?]
Pl
Use Cases:

» Steady-state and transient sensitivity computations
e Optimization
e Multi-physics coupling

) Sandia
. m National
Laboratories

F2d

Forward/Direct and Adjoint Sensitivities

Steady-state constrained response:
g(z,p) s.t. f(z,p) =0

Reduced Sensitivities:

Reduced response function:
g(p) = g(z(p),p)

Key Point
The form of the derivatives you

09 _ 0g0x n dg where Oz Of~ 13f need depends on whether you are
Op Oxrdp Op Op Oz ap doing direct or adjoint sensitivities
Forward/Direct Sensititivies (n, large, n, small) | Adjoint Sensititivies (n, small, n, large)
95 _0g(Of 1af +_ og" afT ~of~tagt +@
8p or \ Oz Op op - 9r Oz
1 -[I*IJ 1w
8 8f g gl
89 ag of dg a
o op ap 896 %,
dp O O ap p P 8‘”” P
MV LO [Lows mv] mv MV LO [Lows mv] mv
MV MV ()

Laboratories

. ;’i Properties of Current Approach to ModelEvaluator Software

e Strong Typing of Input/Ouput Object Types but Weak Typing of Problem Formulation
e Much functionality/information resides in concrete InArgs and OutArgs classes

* ModelEvaluator objects select which input/output arguments are recognized and the
rest are ignored

e Attempts to set or get non-supported input/output arguments throw exceptions as
early as possible and result in very good error messages

*Only subclasses of ModelEvaluator can change the set of supported arguments
e Designed for Change

e Input and output arguments can be added at will to support new algorithms; only
requires recompilation of existing clients and subclasses

e Incremental Development of Application Capabilities

e Existing ModelEvaluator subclasses can incrementally take on new input and output
objects to support more advanced algorithm capabilities

=> Gradual addition of new function overrides and expansion of the implementations
of createlnArgs(), createOutArgs(), and evalModel(...).

e Self-Describing Models => Smart Algorithms

e Clients can query InArgs and OutArgs objects to see what input and output objects
are supported

e Properties of derivative objects is provided by OutArgs object!
e Independence/Multiplicity of Input and Output Objects

e Input and output objects are independent of the ModelEvaluator object and as many
or as few as required are created on demand by the client T Sanda
ational
Laboratories

—~ '
% Impact of the Nonlinear Model Evaluator

— Incorporation into simulation codes
e Charon: QASPR project (Hoekstra(1437),...) => ASC Level-2 Milestone
e Rapid Production CSRF (Bartlett(1411), vBW(1411), Long(8962), Phipps(1416), ...)
o Aria/SIERRA (Notz(1514), Hooper(1416))
e Tramonto: Decontamination LDRD (vBW(1411),...)
— Incorporation into numerical algorithms
e MOOCHO: Simulation-constrained optimization (Bartlett(1411))
Rythmos: Time integration and sensitivity methods (Coffey(1414))

NOX: Nonlinear equation solvers (Pawlowski(1416))
LOCA: Library of continuation algorithms (Salinger(1416), Phipps(1416))
Aristos: Full-space simulation-constrained optimization (Ridzal(1414))

— Connection with other SNL projects
¢ 4D CSRF, Transient to steady-state (Salinger(1416), Dunlavy(1411))
e Multi-physics LDRD (Hooper(1416), Pawlowski(1416))

Sandia
m National
Laboratories

- '
} Outline

e Mathematical overview of sensitivities and optimization

e Minimally invasive optimization algorithm for MOOCHO

e ModelEvaluator software

e Wrap it up

Sandia
m National
Laboratories

—~ '
ModelEvaluator Software Summary

e Motivation for Unified ModelEvaluator Approach to Nonlinear Problems

e Large overlap in commonality between requirements for many nonlinear abstract numerical
algorithms (ANAs).

e Mixed problem types will become more and more common and must be easy to support

e Properties of ModelEvalutor Software
e Strong Typing of Input/Object Types but Weak Typing of Problem Formulation
e Designed for Change
e Incremental Development of Application Capabilities
e Self-Describing Models => Smart Algorithms
¢ Independence/Multiplicity of Input and Output Objects

e ANAs already using or ModelEvaluator
e MOOCHO (constrained optimization, unconstrained optimization, nonlinear equations)
e Rythmos (explicit ODEs, implicit ODEs, DAESs)
(nonlinear equations)
(stability analysis, continuation)
(full space, trust-region optimization)

Sandia
National
Laboratories

}‘ Sensitivity and Optimization Summary

e Need to go beyond the forward solve to answer:

e How to a characterize the error in my model so that it can be improved? — Error estimation
e What is the uncertainty in x given uncertainty in p ? — QMU
e What is the “best” value of p so that my model f(x,p)=0 fits exp. data? — Param. Estimation

e What is the “best” value for p to achieve some goal? — Optimization

e Sensitivities
e Direct vs. Adjoint methods

e Optimization methods
e Decoupled (DAKOTA) vs. Coupled (MOOCHO, Aristos)
e Coupled methods: Full-space (Aristos) vs. reduced-space (MOOCHO)
e Inequality constraints (MOOCHO active-set methods)

e Minimally invasive optimization method for MOOCHO
e Requires only forward state Jacobian solves and objective evaluations
e All other computations can be approximated with directional finite differences

Sandia
m National
Laboratories

