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IS required in high consequence applications

Yucca Mountain engineered barriers Microelectronic devices in weapon
require 106 yr lifetimes: Ni-Cr-Mo alloys  systems require 10?1 yr lifetimes: Al
interconnects are prevalent
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‘ Corrosion results from a significant

attenuation or loss of passivity

AGe . :-1852 kJ-mol?

oxide*

Rate oc SAI3*/5t oc k e FERT

the passive oxide regulates both electronic &
mass transport at the interface

Corrosion can be uniform or localized

Chloride anion is a critical agent in
localization resulting in pitting

Pit initiation location is considered
random — site observation is very difficult
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‘ Current models of localized anodic dissolution
processes do not adequately explain site specificity

Models invoke either intrinsic or evolving defects as specific sites for initiation

Pit initiation: 21
Oxide fiim = 3thinned oxide
VAl,,. j Volume v
L Lk @ % Hz Structure

A k/)j “flaws
lvacancy condensation it electrolyte Does nanostructure

— PDM (D. Macdonald)  2nano-corrosion cells act as pitting site
(McCafferty) precursors?

The location of pore initiation is also viewed as defect driven:
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Our work contributes to the corrosion and nanosciences communities @ National
Laboratories

Benefit: integrated optical or ultra
capacitor based sensors
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. Our goal is to identify relevant nanostructure
and establish casual links with pit initiation

pitting reaction coordinate

initiation propagation

o—o o >
local oxide vl _ meta-stable pit formation
breakdown I pit nucleation - - _ _ R
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Zavadil, JES 153 (8), B296 (2006) possible metastable pits

sufficient chemical and physical descriptions do not exist for these entities
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‘ Model passive oxides on pure Aluminum
are our starting point for initiation studies

Al single & polycrystals  Capillary electrochemical systems* — statistical sampling

' ' vary oxide type:

O, derived Probes:
H,O derived ]
O derived — plasma TOF-SIMS
TEM
add markers:
180, FE-SEM
l add microstructure XPS
SPM

*developed through past LDRD and RF investments @ ﬁg?igil?al
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‘ Potentiodynamic scans reveal variation in
passive oxide response in advance of stable pitting

Al(110), 3 nm anhydrous oxide (O,), equilibrated 12 hrs, 50 mM CI-
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‘ Nanoscale voids nucleate at the oxide: Al
interface and grow into the oxide

O, formed oxide on Al(110)

13 hr OC, -495 mV, 4 hr OC, -518 mV,

42chm2_

> Increasmg ratolextent of oxide growth "

Void shape factor: oblate hemispherical shape (d ~ 2) increased size with

maJ m|n

no penetration of the substrate plane — the origin is the oxide

some alignment with substrate defect structure — nucleation sites @ Sandia
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Analytical electron microscopy confirms
the presence of voids

- O (Al Ay voids -
C l
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£ @) oxide

Cl is not present

Al within the voids
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multivariate statistical analysis
applied to EDS images

Ar is not detected in thin films —fills voids after they form (Goodhew J.
Nucl. Mater. 1988)

voids are consistent with a point defect mechanism for initial oxide
modification as opposed to reagent penetration S
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. Void formation appears generalized across a
range of substrate microstructure and oxide types

Al(110) + O, d_erived oxide' polycrystalline Al + O, derived oxide

bulk

: s | 100 NM 100 nm

nanocrystalline Al + H,O derived oxide

4 L Y

nanocrystalline Al + O, derived oxide =

films

pores originate
as voids
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‘A vacancy pairing reaction produces void

nucleation
parallel paths for ion (vacancy) solution
transport : @
 oxide growth (vacancy filling) ejection
«void nucleation (vacancy pairing) T
Factors that contribute to oxide A
the site specificity of void e
nucleation: vacancy pairing | |
«jonic conductivity of the @ — Void ”“C:ea_t'cl’”
oxide Vo | — al :jn;?éc?g'a
e oxide:Al interfacial lonization T """"" diffusion

structure
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. Stable pitting potential studies are not
sufficient for establishing causal relatlonshlps
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Void-to-pore transitions take place below
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A
Voids can be generated by polarizing

Potential (V vs. Ag/AgCl)

at constant anodic current densities
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Voids nucleate at facet boundaries in
nanocrystalline thin films

Z-range: 18.84 nm ; Mean:-0.7923 nm
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Decreasing the ionic conductivity of the
oxide results in spatially random void nucleation

an attempt at decoupling the oxide properties from oxide:Al interfacial structure

O derived (plasma) oxide on Al(111): d,, = 4.5 nm, R,, = 7x10° Q-cm-
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Local variations in oxide conductivity appear to be the more dominant driver for where
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“hloride acts to catalyze the ejection
of the aluminum cation
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‘ Pit nucleation event detection is one

approach to correlate voids with pit initiation

void population is programmed _ pit nucleation events are probed & characterized
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‘ Nanostructure characterization must

accompany these statistical studies

attempting to account for localized contributions to anodic current

event tracking — structural features that exhibit a size increment with time

secondary goal — define the physical scale of pit nuclei and metastable pits

30 to 50 um diameter ucapillaries make SEM and AFM imaging manageable
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In situ methods appear promising for

locally inducing and imaging oxide breakdown

Pt-coated cantilever as a counter electrode
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‘ Initiation studies in low dimensional water
films are used to study atmospheric corrosion

Tungsten corrosion
% 16 hour, 94% RH @ 23°C

20002000

48 hour, 94% RH

exposure time
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additional electrochemical
characterization can be implemented —
scanning electrochemical microscopy on
an AFM

This approach can be applied to study
initiation site susceptibility in corrosion
resistant, engineered barrier materials
— C22 alloy (Ni-Cr-Mo) for Yucca

Mountain repository Sandia
@ National
Laboratories



Summary of Accomplishments

First identification of interfacial void formation for Al under typical polarization
conditions

Galvanostatic techniques shown to yield signatures for void nucleation

Demonstrated that site specificity for void formation is controlled by oxide
lonic conductivity

Evidence provided for the catalytic role of chloride in facilitating the ejection
of Al cations into solution in void nucleation

Demonstrated an ability to electrochemically tailor a void population
Pit nucleation event measurement and characterization demonstrated

Demonstrated novel in situ methods for inducing and tracking oxide
breakdown
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‘ Our mechanistic understanding and methods
Impact Sandia’s predictive capability

A nanoscale breakdown process that can be related to oxide properties and
possibly pit nucleation is identified and described

* These correlations are the first step in mapping a complex degradation path
that culminates in accumulated damage responsible for material function loss

« Continued effort in mapping this pathway will provide additional critical details
for predicative model input:

sources of pit nucleation site specificity

physical and compositional descriptors for high probability initiation-to-
propagation events

» Our overall approach, knowledge and tools are applicable to other nanoscale,

stochastic phenomena
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Zavadil, MS&T Jan07



