

Using COTS Electronic Components in High Reliability Applications - Lessons Learned

**11th International
COMPONENTS for MILITARY and SPACE ELECTRONICS
CONFERENCE
March 12-15, 2007**

**Paul V. Plunkett, R. B. Heath, J. P. Marchiondo Jr., J. N. Sweet,
R. W. Wavrik**

Sandia National Laboratories

P.O. Box 5800

Albuquerque NM 87185

pvplunk@sandia.gov

Phone: (505) 845-7646, Fax: (505) 844-8168

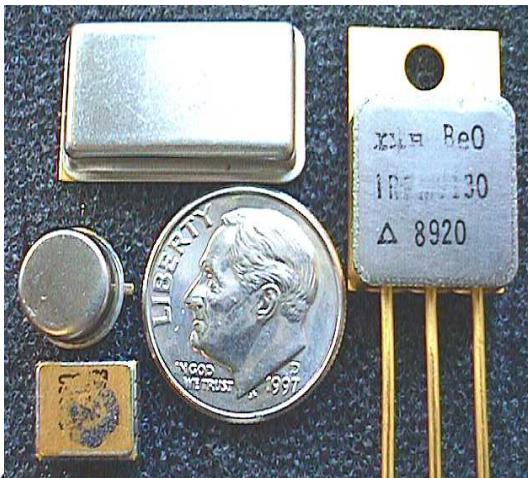
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Main Topics

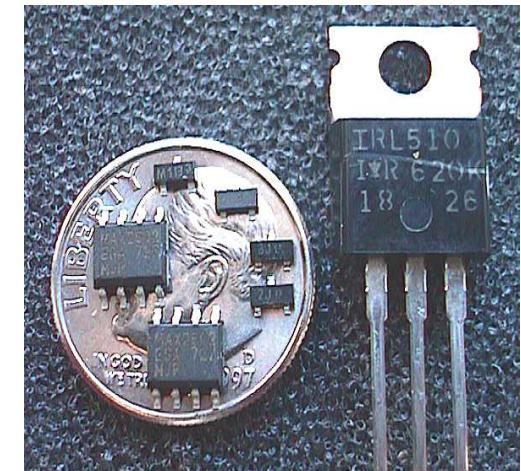
- Summary of COTS Processes
 - What are COTS parts
 - Why are we using them
 - **WRCIP (War Reserve COTS Insertion Process) Goals**
- Production Status on First System
- Summary of Lessons Learned
 - Participant Feedback
 - Procurement Results
 - Qualification Results
 - Schedule Results
- Unique Capabilities Developed for COTS

Process Summary

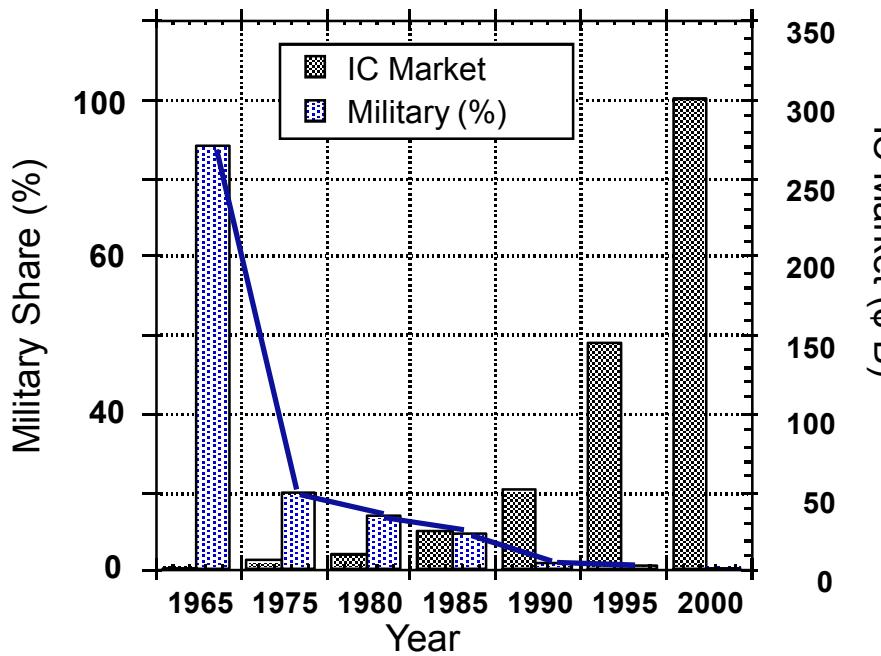
What are COTS Parts?



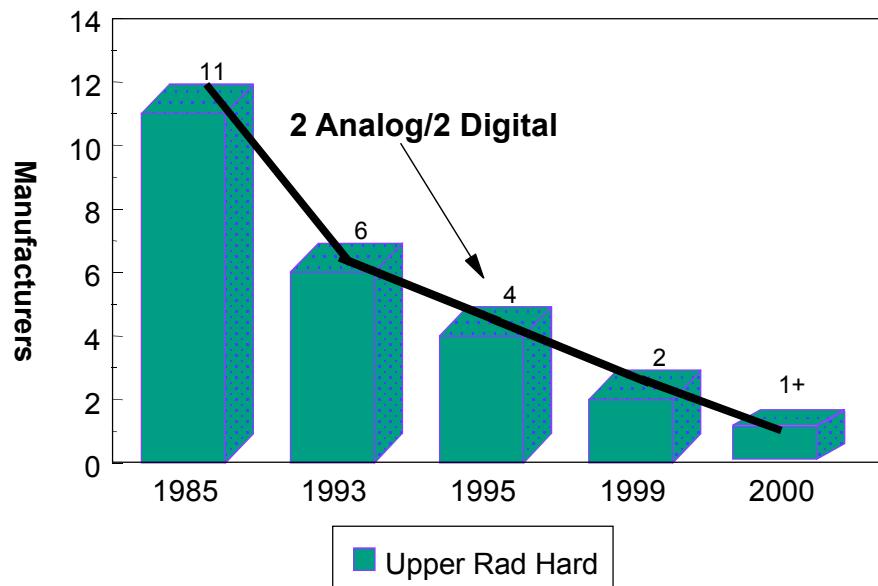
- Commercial Off The Shelf (COTS)


is not just a class of parts, also a procurement method

A definition for COTS is that the components are purchased with **NO BUYER IMPOSED REQUIREMENTS PASSED TO THE SELLER.**


- The component is purchased as the seller offers it in his catalog with no special testing, handling, packaging, labeling, etc. required by the buyer
- Both Commercial and Military grade components fit into this COTS category

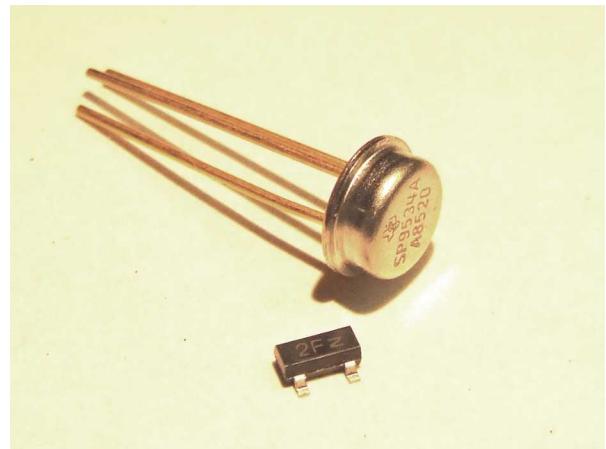
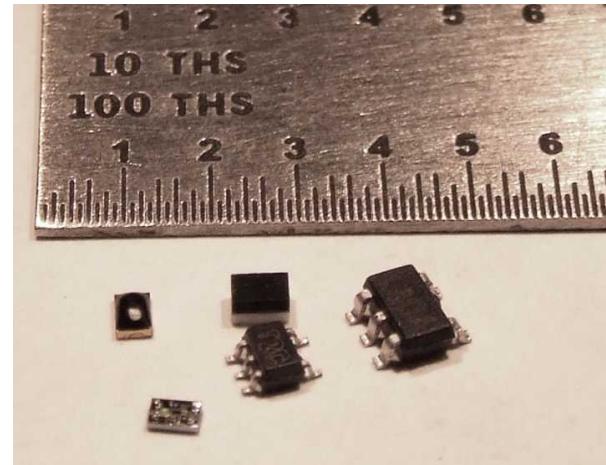
- Commercial Grade: Plastic
- Industrial Grade: Plastic
- Military Grade: Ceramic packaged
- SA Grade: Custom versions of Mil Parts



Why COTS?: Microelectronics/Rad-Hard Industry Trends

- Military market share is extremely small compared to commercial markets
- Manufacturers have followed the market and have eliminated many military products

- Commercial Electronics Now Drive the Market

Circuit designers find advantages with COTS Components

- Diminishing manufacturing sources, *and in some cases no source*, (i.e., MIL-STD, ceramic, rad hard)
- Lower cost of COTS components
- Rapid design capability
- Smaller volume
- Greater functionality of COTS components
- Greater availability of COTS part types
- Greater design flexibility
- Produced to meet stringent requirements on high volume production lines using statistically controlled processes
- Include the latest technology
- Can exhibit higher reliability than low volume production parts

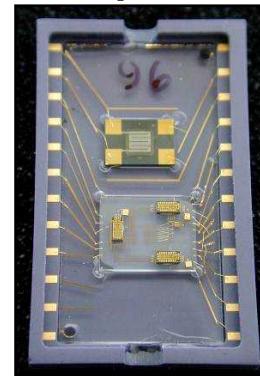
Examples of Potential Cost Savings in Using COTS Parts

- Lowers electronic part costs dramatically relative to mil-spec and source controlled (SC) parts
- Examples based on typical quantities and part types used in DOE systems

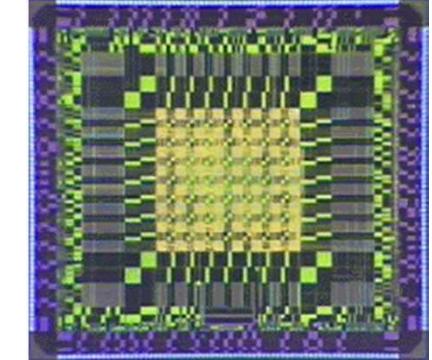
Examples of Cost Savings

	Part Type	Quantity Needed	Selection & Reliability Cost	Procurement & Qualification Cost	Purchase Price/part	Total Cost In Stores
BJT	COTS	40000	\$120,000	\$80,000	\$0.05	\$202,000
	Mil-Spec	40000	\$20,000	\$40,000	\$15.00	\$660,000
	SC	40000	\$200,000	\$200,000	\$150.00	\$6,400,000
MOSFET	COTS	20000	\$120,000	\$80,000	\$1.20	\$224,000
	Mil-Spec	20000	\$20,000	\$40,000	\$350.00	\$7,060,000
	SC	20000	\$200,000	\$200,000	\$362.00	\$7,640,000
8051	COTS	2000	\$300,000	\$300,000	\$17.00	\$634,000
	Mil-Spec	2000	\$50,000	\$20,000	\$500.00	\$1,070,000
	Mil-Spec(rad-hard)	2000	\$50,000	\$40,000	\$1,700.00	\$3,490,000
	SC	2000	\$300,000	\$300,000	\$1,700.00	\$4,000,000

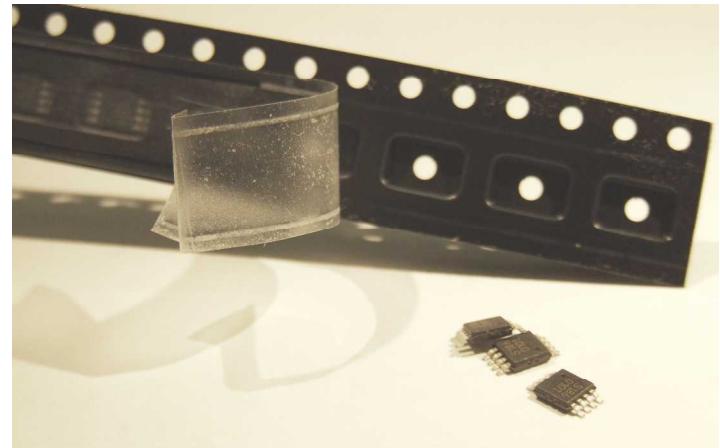
SNL Strategy is to Apply the BEST Electronic Parts Solution for System Application


Most cost effective solution:

- Evaluate cost tradeoffs at every step of circuit design and part selection
- Meet requirements using
 - COTS parts
 - High level integration (e.g. ASIC)


Electronic part hierarchy:

- Buy COTS parts and fully qualify them to meet mission requirements
- Design for industry fabrication and delivery
- Maintain in-house research, technology, and product capability - supply custom products to customers from internal fabrication facilities


Multi-Chip Module

Custom ASIC

Qualified COTS

WR COTS Insertion Program Goal

Goal:

Develop a set of standard processes and tools that enable the selection and assessment of the BEST electronic component for a stated application.

Approaches include:

- Developing the needed *knowledge, processes, and infrastructure*
- Developing processes in 5 critical areas: *parts selection, procurement and acceptance, reliability, qualification, and surveillance*
- Ensuring that our approach will serve the needs of future *DOE and DoD programs*
- Teaming with other knowledgeable groups to *pool information and accelerate learning*

Production Results

First System Use of COTS

- Utilized a Mix of Mil-Spec and Commercial PEMs
 - Most resistors & small-signal capacitors are Mil-Spec
 - Most semiconductors are commercial PEMs
- Status
 - Procurement and Qualification testing are complete
 - Qualification Engineering Releases complete
 - Over 3 million parts in WR stores

COTS Part Numbers

Diodes	35
Transistors	10
RF Devices	17
ICs (Dig + Analog)	5
FETs	4
Magnetics	34
Resistors	163
Capacitors	71
Other	3
Total	342

Board Electrical Test Results as of 12/8/06

Board	Parts per Board	Boards Tested	Total Parts	COTS Failures
A	741	37	27417	2
B	10	28	280	0
C	174	26	4524	0
D	302	30	9060	0
E	210	30	6300	0
Total			47581	2

<50 PPM
Failure
Rate

Board electrical test results meeting expectations
of <75 PPM failure defect rate

Summary of Lessons Learned

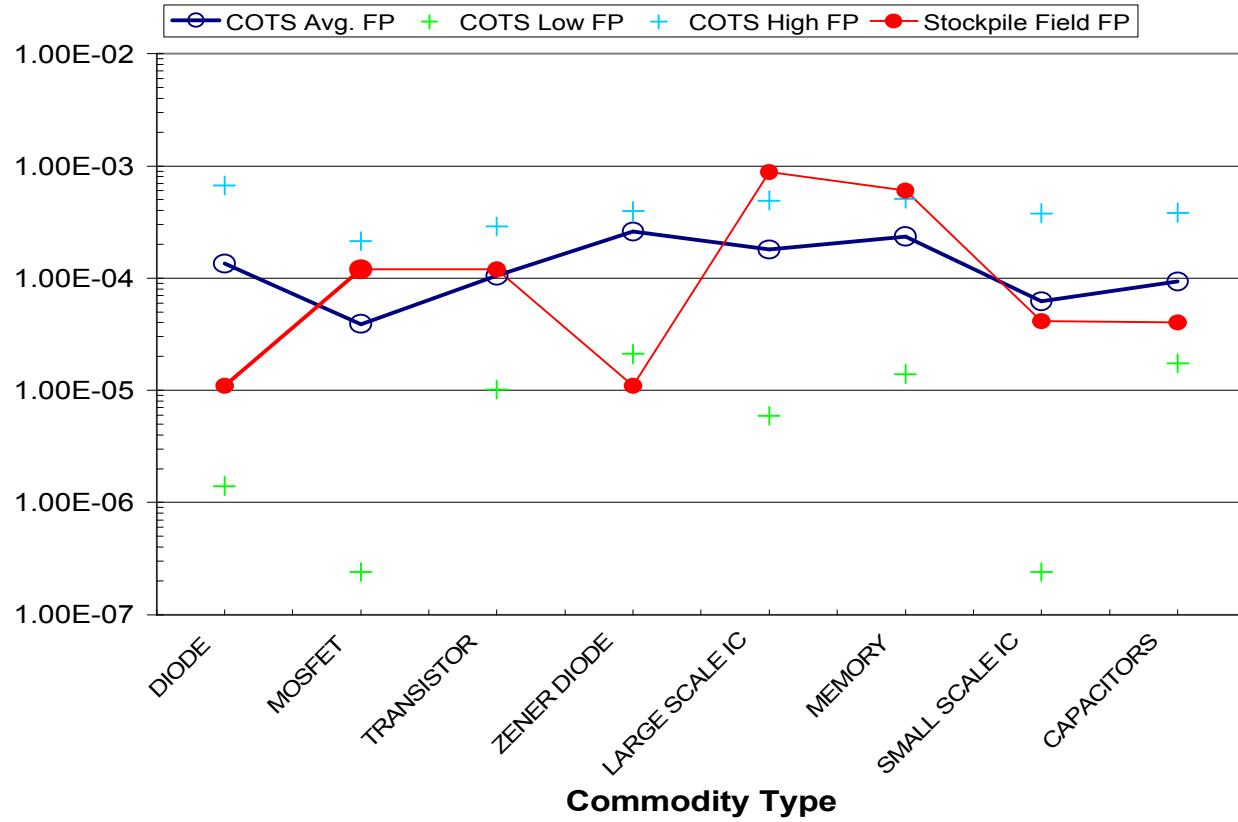
COTS Lessons Learned

Participant Feedback

- **Contributors**
 - SNL (9+1) and KCP (6+1) component engineers and managers
 - Other key people
 - Design engineers (3)
 - Reliability engineers (1)
 - KCP buyer (1)
 - Third party test house (3)
- **Process**
 - Collect input on four questions via videoconference or surveys
 - What worked well (105)
 - What did not work well (97)
 - Suggested improvements (102)
 - General comments (39)
 - Perform affinity analysis on four questions and generate categories (25)
 - Reconcile suggested improvements with what did not work well
 - Validate candidate requirements (suggested improvements) with contributors
 - Prioritize candidate requirements

Affinity Analysis Results

<u>Categories</u>	<u>What Worked Well</u>	<u>What Did Not Work Well</u>	<u>Suggested Improvements</u>	<u>General Comments</u>
3PTH = Third party test house	21	12	7	3
Communications	16	3	2	0
Design	0	9	4	1
Documentation	5	2	1	4
General	4	6	2	14
Institutionalization	1	4	3	1
Manufacturing	0	1	1	0
Moisture Sensitivity	0	6	6	0
Planning	1	1	3	1
Process	5	11	12	3
Product Definition	0	5	4	0
Purchasing	2	5	6	0
Requirements	1	4	6	0
Research	0	0	3	0
Results	4	3	0	5
Sampling	0	3	3	0
Scheduling	0	7	5	3
Status	4	1	5	0
Teamwork	19	5	2	3
Testing	2	8	15	1
Tools	3	0	5	0
Tools (eCATT)	4	0	0	0
Tools (eCIS)	8	0	2	0
Training	1	1	3	0
Workflow	4	0	2	0
Total	105	97	102	39


Summary of Lessons Learned – Participant Feedback

- **What worked well**
 - Teamwork between design and production agencies
 - Communications
 - Third Party Test House and Workflow
- **What did not work well**
 - Third Party Test House scheduling and start-up (minimal high-frequency testing knowledge)
 - Process (some tests were too accelerated and moisture sensitivity had more effect on qualification than we expected)
 - Scheduling and execution (caused last minute accelerated efforts to finish qualification on time)
- **Over 100 suggested improvements to a largely successful process**

Estimated Failure Probabilities of COTS vs Field Experience

20 Year Dormant Failure Probability

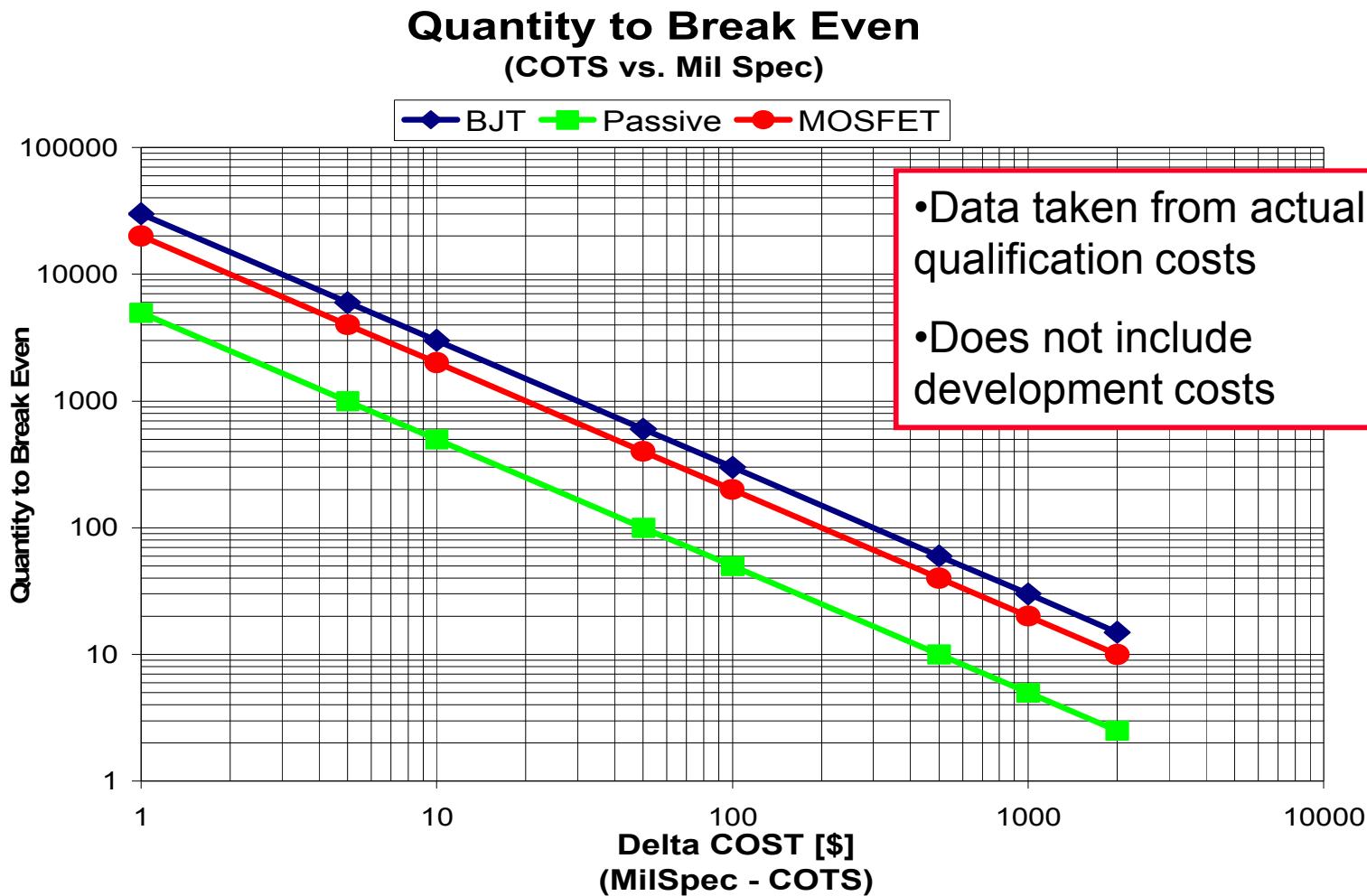
During part selection data is gathered to estimate failure probability

- The WRCIP Part Selection process is key to identifying reliable parts
- Most COTS parts exhibit estimated FPs similar to traditional SC parts

Sandia
National
Laboratories

Actual COTS Part Type Costs

Part Type		Part Type Qty	Procure Price Range Ea	Typical Price Ea	Qualification Lot Cost	Radiation Lot Cost	Total Cost for 10K Lot Size
Diodes	Commercial	20	0.01 - 1.21	\$0.03	\$22,000	\$25,000	\$47,300
	Mil-Spec	15	4.22 - 47.65	\$7.50	\$8,000	\$25,000	\$108,000
Transistors	Commercial	6	0.01 - 0.17	\$0.03	\$38,000	\$25,000	\$63,300
	Mil-Spec	4	1.40 - 8.00	\$8.00	\$8,000	\$25,000	\$113,000
MOSFET	Commercial	2	0.34 - 0.86	\$0.86	\$31,000	\$25,000	\$64,600
	Mil-Spec	2	305.00 - 377.45	\$377.45	\$12,000	\$25,000	\$3,811,500
RF Devices	Commercial	17	0.22 - 10.00	\$1.80	\$57,000	\$25,000	\$100,000
IC	Commercial	5	0.10 - 3.45	\$2.60	\$45,000	\$25,000	\$96,000
Inductors	Commercial	34	0.09 - 4.45	\$0.09	\$5,000	0	\$5,900
Resistors	Commercial	10	0.71 - 2.39	\$1.01	\$5,000	0	\$15,100
	Mil-Spec	153	0.41 - 5.30	\$0.58	\$1,000	0	\$6,800
Capacitors	Commercial	5	0.81 - 12.27	\$10.00	\$5,000	0	\$105,000
	Mil-Spec	66	0.77 - 9.80	\$2.37	\$1,000	0	\$24,700

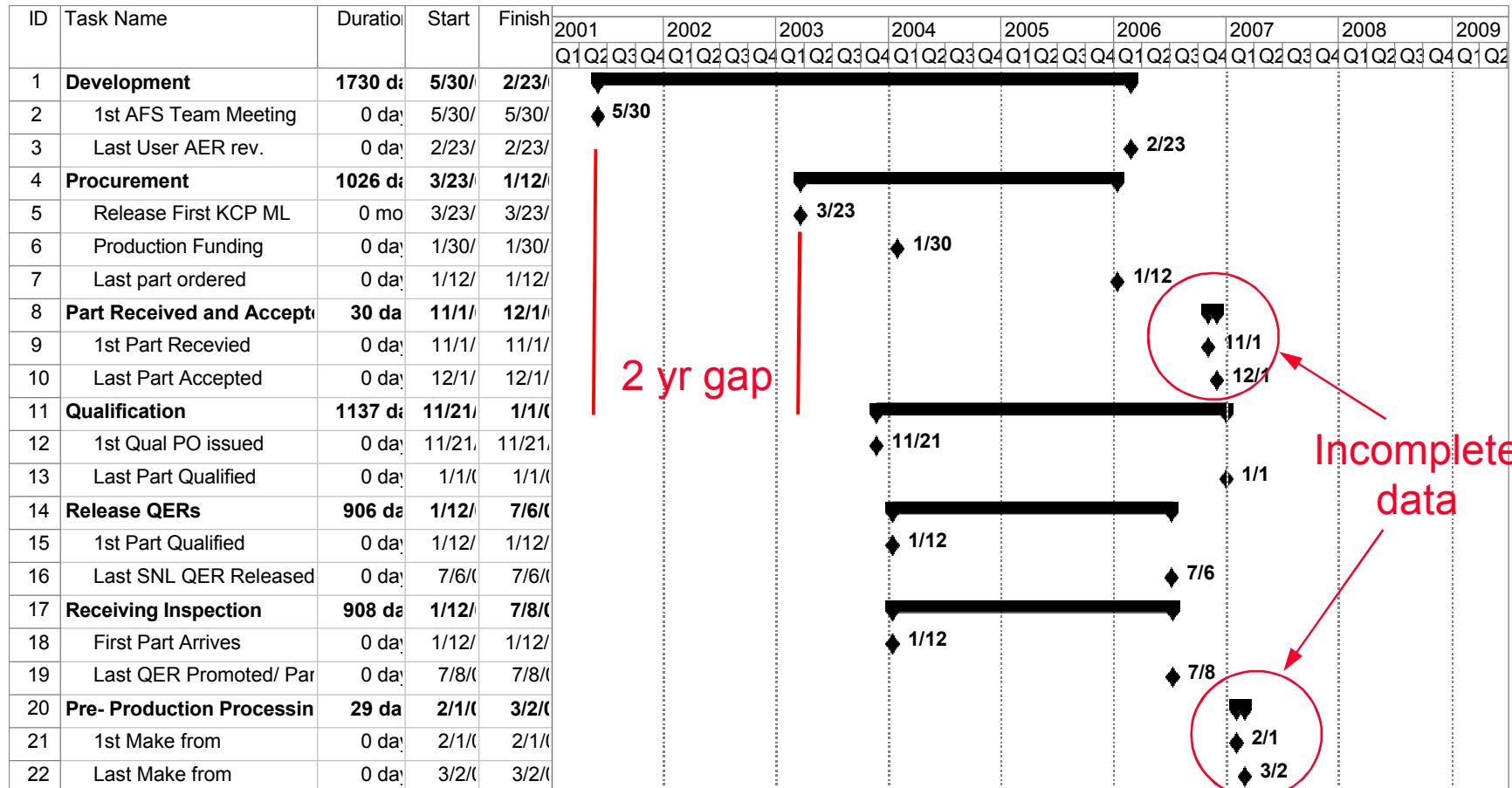


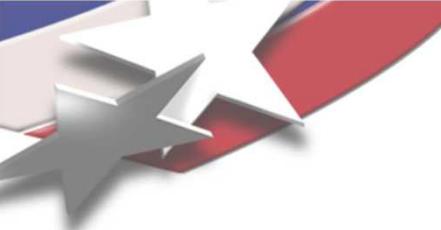
Procurement Lessons Learned

- ⚡ COTS parts can provide dramatic cost savings relative to mil-spec and source controlled (SC) parts
- ⚡ COTS parts provide availability of part types not found in MIL-SPEC
- ⚡ Low acquisition costs and times enable LoPB which mitigates obsolescence issues
- ⚡ LoPB increases likelihood of single/consecutive date codes, thereby reducing risk associated with variability
- ⚡ Minimum buy requirements often meet LoPB quantities
- ⚡ LoPB reduces qualification costs
- ⚡ Need to do life of program buys (LoPBs) earlier to use parts in QPA development evaluations

Cost Savings is a Function of Quantity & Qualification Costs

Qualification Lessons Learned


37 First Qualification Failures


Qty	Resolution	Example	Lessons Learned
22	Minor Limit Changes	Inductors with over specified lead pull strength	<ul style="list-style-type: none">⚡ Need to fully understand part requirements
6	Qualify and handle parts at higher moisture sensitivity level	Part fails stress testing after MSL 1 preconditioning	<ul style="list-style-type: none">⚡ Preconditioning affects reliability⚡ Mfg. MSL rating is based on commercial reliability requirements not WR⚡ COTS paradigm impacts next assembly techniques
5	Qualify using lower acceleration longer time tests	130°C/85%RH HAST overstresses eutectic die attach	<ul style="list-style-type: none">⚡ Need to fully understand part construction relative to stress testing
4	Acquired new lot	True failures	<ul style="list-style-type: none">⚡ COTS have lot-to-lot variability⚡ Process was successful in identifying weak parts

WRCIP Cycle Time Evaluation

Evaluated Execution and Slack Times for 7 Major Part Tasks

Task Name	Minimum Duration (days)	Maximum Duration (days)	Minimum Lag to succeeding task (days)	Maximum Lag to succeeding task (days)
Prepare ML/ERs for Procurement	0	120	NA	NA
Finalize Definition	154	437	0	484
Qualification Development	0	384	94	516
Parts Procured	14	203	17	259
Qualification	210	586	0	80
Qualification to SNL QER Released	0	19	0	1
SNL QER to KCP Stores	5	95	NA	NA

Summary of Lessons Learned on Cycle Time Evaluation

- ⚡ Large variation in time to execute major tasks and large variation in slack time between tasks
- ⚡ Need quicker response processes for failed items and changes that need to be made during qualification
- ⚡ Need formal schedule plan with tracking and reporting process for each part from beginning
- ⚡ Future: Need process to allow buying of parts (LoPB's) and establishing qualification capabilities during development for shortest schedule and less problems in qualification

High Level Lessons Learned Summary

- Overall many of the WRCIP processes and tools were implemented successfully
- Many of the WRCIP processes and tools need to be refined or adapted
 - Customized qualification
 - Improved tracking and reporting tools
 - Quicker response processes during qualification
- Procurement and qualification activities need to be implemented earlier in the development cycle
- Use of COTS is a paradigm shift requiring changes in all areas
 - Design & Part Selection (e.g. design around post-rad performance)
 - Procurement and qualification (e.g. sample based qualification)
 - Manufacturing (e.g. working with MSL3)
 - Program management (e.g. early funding, LoPB, accelerated builds)
- Need systemic training (design through manufacturing)

Unique Capabilities Developed for Utilizing COTS

- **Virtual corporation among geographically separated sites**
 - Integrates design agency, production agency and third party test houses
 - Concurrent engineering via web-based databases and workflow
- **Cross-trained personnel highly leveraged using information technology**
 - Web-based standard processes and tools
 - Enterprise Component Information System (eCIS) based on a commercial tool
 - Workflow enabled processes
 - Data and decisions saved electronically as generated in searchable databases
 - Parts data tracker
 - Electronic Component Analysis and Test Tracking (eCATT) tool
 - Test data tracker for third party test houses
 - Web-based document archiving (Docs2eCIS)

SNL Strategy for Electronic Circuits in High Reliability Applications

- Fully qualify commercial off-the-shelf (COTS) electronic parts for high reliability, severe environment applications
 - Integrated databases, processes and tools
- Model and simulate very large, complex circuits to facilitate designs and skip builds
 - Have validated physics-based hostile environment models
 - Have already done circuits with 500K-750K components on 32 processors
- Jointly develop processes and tools for virtual rapid prototyping
- Build custom electronic parts to allow high level integration
 - Design and deliver custom ASICs and other custom components (e.g. RFICs, magnetics, capacitors)