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ESP300: Coupled Conduction and Enclosure Radiation

Coupled Conduction
& Enclosure Radiation Problems

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

ESP = Engineering Sciences Program
ESP100 is a course on computational solid mechanics
ESP200 is a course on digital signal processing with MATLAB
ESP300 is a course on heat transfer analysis using the finite element method
There are plans to offer additional courses in the future.

All of these courses are intended to provide a continuing education opportunity – in 
the spirit of the INTEC courses some years ago

SAND2007-0793P
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Introductory Info

Evacuation Procedures:
• Exits are located…
• Restrooms out back

Classification:
• Absolutely no classified discussions

• If you have a concern, let us know

• Some material may be OUO, it will be marked 
as such
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Summary for Coupled 
Conduction & Enclosure Radiation

Begin with:
• General IBVP statement for heat conduction and 

the radiative transfer equations for enclosures

and end with:
• Understanding of the assumptions employed and 

details of this class of coupled problems

• Procedure for coupling the discretized heat 
conduction and enclosure radiation problems

• Overview of analyst considerations 
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Questions for Coupled 
Conduction & Enclosure Radiation

• What are the equations describing heat conduction and enclosure 
radiation?

• Which variables are common to and passed between the two sets of
equations?

• Are there inconsistencies in the assumptions used in each set?  If 
so, what are the inconsistencies and how do we address them?

• What assumptions are made to couple these two sets of equations?

• What approaches do we use to solve this coupled set?

• What are the advantages and disadvantages to the different coupling 
approaches?
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Coupled Heat Conduction and 
Enclosure Radiation

We need to solve the equations for

• conduction within the solids

• enclosure radiation between the solids 

To do so, we will consider

• the governing equations,

• how they are related/coupled

• options for solving them
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Outline of Topics for Today

We will consider the following:

• Discretized form of the conduction equations and associated 
boundary conditions

• Enclosure radiation equations and associated boundary 
conditions

• Consistency and compatibility between the two sets of equations

• Approaches for coupling conduction and enclosure radiation

• Advantages/disadvantages of the coupling strategies

• An example problem that demonstrates some of these issues
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Initial Boundary Value Problem  
The basic PDE description of heat conduction in the region      with 

boundary      is 

The boundary conditions are 

With 

comes from the “enclosure radiation” equations
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This is the standard IBVP where all of the parameters and terms were defined 
previously.   
For our problems, the “enclosure radiation” fluxes are computed from radiative 
transfer equations for enclosures consisting of diffuse-gray surfaces and a non-
participating (transparent) media.   Cast in this form, the enclosure radiation fluxes 
appear as unknowns. 
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You will recall that early on, we developed the equations describing 
the radiative transfer within an enclosure.  When applied to an 
enclosure defined by ‘Nsurf’ discrete surfaces, this equation yields 
the “net heat flux” conducted away from the surface into the body.  

where 

These equations provide the radiative heat fluxes to completely 
define our IBVP.  We will consider it in more detail later.  

Initial Boundary Value Problem (2)
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This form of the enclosure radiation equations is known as the “net-radiation”
formulation.    This set of equations involves both the surface temperatures and the 
surface radiative heat fluxes and provides the closure of the IBVP. 

Note: We have used both “net” and “enc” subscripts on the radiative heat flux 
interchangeably.  In the conduction equations, “enc” refers to the fact that these 
fluxes come from the enclosure radiation equations.  In the enclosure radiation 
equations, “net” refers to the net heat flux conducted to the radiating surface. For 
our purposes here, both the “enc” and “net” subscripts refer to the same flux.
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FE Formulation for IBVP 
Assume the standard (spatial) finite element approximation for the 
temperature and use the Galerkin form of the MWR

Substituting these approximations into the weak form produces the 
finite element equations for the nodal values of temperature. 

Comments:

• We assume a temperature profile that varies over each element.

• How does that fit with the assumptions for the enclosure radiative 
transfer?

• Uniform surface temperatures and uniform surface heat fluxes

T

1
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i k i k i
k
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( ) ( ) ( )i j i iw x x xψ= =Ψ

Recall that the development of the enclosure radiation equations assumed uniform 
surface temperatures and surface heat fluxes.
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FE Form for IBVP 
The discretized equation set is 

or in matrix form

We have ‘N’ equations with ‘N’ unknown temperatures and additional 
unknown radiative surface heat fluxes for the enclosure.

Where are the boundary fluxes that will come from solving the 
enclosure radiation equations? 
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If all the heat flux boundary conditions for the enclosure are known, we can 
compute the nodal temperature field from this set of equations. 

On the next slide we will consider different approaches for handling the heat flux 
associated with the enclosure radiation.  One approach is to leave the enclosure 
radiation heat flux boundary terms as unknowns in this set of equations.  If we did 
so, we would have more unknowns than equations and would need additional 
equations.  Those additional equations are obviously the equations describing the 
radiative transfer within the enclosure.
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Comments on the FE Form for IBVP 
The discretized equation set is 

or in matrix form

Here the enclosure fluxes are shown as dependent variables

Can we treat them “explicitly” or “implicitly”?   What difference will it 
make?  Why one approach over the other?
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With all the flux boundary conditions known, we could compute the nodal 
temperature field from this set.  Typically, we do not know the enclosure radiation 
component, so this is really a vector of unknown heat fluxes (dependent variables).  
As such, we could explicitly leave the enclosure radiation boundary heat flux terms 
in this set of equations as dependent variables.  If we did so, we would have more 
unknowns than equations and would need additional equations.  Again, we will need 
the equations describing the radiative transfer within the enclosure to provide 
closure of the equation set.
Note that this is a set of “Nnodes” equations with “Nnodes” unknown nodal 
temperatures and “Nsurf” unknown surface radiative fluxes. 



13 - 12

ESP300: Coupled Conduction and Enclosure Radiation

Radiative Heat Transfer Between 
Surfaces Within Enclosures

Recall that radiative HT between surfaces depends on:
• radiative properties of surfaces
• geometric relationship between surfaces
• the medium between surfaces (nonparticipating in our case)

We discussed:
• radiation “view factors”
• conservation of radiative energy for enclosures
• equations describing radiative transfer in “enclosures”

– we looked at two different forms of the equations 

• coupling with equations for conduction heat transfer

In this discussion, we will get into the details of the coupling options

Some general comments on enclosure radiation before we get going and a little peek 
at what we will cover.
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In the development of the equations 
for the radiative energy transfer 
within enclosures, the following 
assumptions were used:

• Non-participating media
• Diffuse-gray surfaces
• Uniform surface temperatures
• Uniform surface heat fluxes

In our discussion today, we will 
change our notation on the 
radiosity,       ,  and use 

kth surface

N radiating surfaces

kJ

jth surface

kG

,net kq

Review of the Assumptions For 
Radiative Transfer in Enclosures 

kJ 0q

We started our development with an energy balance on a typical surface.  With 
those concepts for a single surface, we can applied them to the entire enclosure, 
simply a collection of all the individual surfaces.  

We used the following assumptions:
•Media is non-participating (transparent) 
•Temperatures are uniform over each surface.
•Radiative properties are independent of wavelength and direction.
•All energy is emitted and reflected diffusely.
•Incident and reflected energy flux is uniform over each surface.

Using these assumptions, we previously developed the “radiosity” and “net-
radiation” formulations describing the radiative heat transfer within enclosures. 
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For an enclosure with ‘Nsurf’ surfaces with known surface temperatures
• How are the surfaces defined?
• What is an appropriate “surface” temperature?

We have a set of ‘Nsurf’ equations for the radiosity given by

Once the radiosities are computed, the net heat flux on each surface is 
given by

Radiative Transfer for Enclosures 
Using the “Radiosity” Formulation
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In a coupled problem, we generally use temperatures computed from the heat 
conduction equation as known inputs to the radiosity equations. With the surface 
temperatures known, the radiosities can be easily computed from this set of linear 
algebraic equations; followed by the net heat flux calculation. 
In this case, we have a set of “Nsurf” equations with “2xNsurf” unknown surface 
radiative fluxes and surface temperatures. 
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The equations describing the radiative transfer in an enclosure can 
be written in terms of the “net heat flux” conducted away from the 
surface and the surface temperature.  

In the “net-radiation” formulation, the set of equations becomes

where 

These equations provide the second set of ‘Nsurf’ equations that 
relate the surface temperatures and radiative surface heat fluxes.  

Radiative Transfer for Enclosures 
Using the “Net-Radiation” Formulation
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Again, we now have a set of “Nsurf” equations, with “2xNsurf” unknowns (surface 
temperatures and net heat fluxes).
Knowing any “Nsurf” of these, we can solve the remaining “Nsurf” unknowns.
For example, given surface temperatures for all the surfaces, then the net heat flux 
can be computed.  
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The “net-radiation” formulation set of equations can be expressed as  

or in matrix form as

which relates the surface temperatures and radiative surface heat 
fluxes.   There are Nsurf equations in this set.

Radiative Transfer for Enclosures Using 
the “Net-Radiation” Formulation (2)
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We should note here that the coefficient matrix, A(T), is an “Nsurf” by “Nsurf” matrix 
that may be densely populated (could be completely full) and asymmetric.  
Depending on the number of radiating surfaces, it can be very large; creating 
significant demands on memory.  However, when the temperatures are known, it is 
a linear set of equations; often solved using methods such as Gauss-Seidel. 
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Compatibility Issues Between 
Conduction and Enclosure Radiation

In general, we will assume that the surfaces making 
up the enclosure are defined by exposed element 
faces of the finite elements in the mesh.

Recall, radiative surfaces are assumed to have 
uniform temperatures and uniform heat fluxes

We will use an “element based” approach to define 
our radiation surfaces.

In some finite volume approaches, “node-based”
approaches may be used to define the radiation 
surfaces.

 

An “element” based approach simplifies the computation of view factors because 
the radiative surfaces are simply defined as quads or triangles, etc of the element 
faces.  If we used elements with curved surfaces, additional complexity would 
result.

A “nodal” based approach requires the construction of a geometrically complex 
(polygon) around the node that would be used as a “surface” in the enclosure 
radiation formulation.
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Compatibility Issues Between 
Conduction and Enclosure Radiation (2)

Radiative fluxes applied to the element boundaries

For elements with a linear shape function over the face

Recall that the rows in this element matrix correspond to the 
“ith” and “jth” rows in the global system of equations
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The applied heat flux from the enclosure has contributions to the global equations 
for nodes “i” and “j”
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Compatibility Issues Between 
Conduction and Enclosure Radiation (4)

In conduction equations, temperatures defined at 
nodes and assumed to vary over element surfaces 
using the shape functions (linear or bi-linear in 
many cases)

In enclosure radiation equations, temperatures are 
assumed constant over each of the radiating 
surfaces.

The challenge is to relate the fourth power surface 
temperatures in the enclosure  radiation equations 
to the (often linear) nodal temperature field in the 
FEM formulation.
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Compatibility Issues Between 
Conduction and Enclosure Radiation (5)

There are several candidate approaches:

• Assume that the surface temperature is the temperature at the 
centroid of the element face.   Allows the surface temperature to 
be expressed in terms of the nodal temperatures (important in an
implicit formulation) 

where                are the natural coordinates of the centroid of the 
element face

• Integration over the element to compute an effective surface 
temperature that has the appropriate emissive power (T4

dependence).  Amenable to a staggered formulation.
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T ξ η= ψ T

0 0,ξ η
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Compatibility Issues Between Conduction 
and Enclosure Radiation (6)

The surface temperatures over radiation surfaces can be 
approximated using the temperature at the centroid of the 
element face, 

Clearly, this is an approximation for T4

An advantage of this approach is that the nodal                 
temperatures can be factored out, which allows                  
T4 terms to be included in the coefficient matrix implicitly.

Depending on the whether we use an implicit or explicit 
formulation, the nodal temperatures may be evaluated at either 
time “n” or “n+1”
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Here we have basically interpolated the temperature over the element face.  We 
could have also interpolated T^4 (computed at the nodes) over the face.  In that 
case, T_bar = ½ (T_i^4+T_j^4), which is clearly a different value than interpolating 
the temperature directly. 

The differences in these two approaches can be computed analytically.  The error 
associated with this approximation depends on the temperature gradients over the 
face of the element.
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Compatibility Issues Between Conduction 
and Enclosure Radiation (7)

A more rigorous approach for approximating radiative surface 
temperatures is to integrate the temperature distribution over the 
element face and compute an effective T4 temperature with an 
equivalent emissive power. 

Clearly, this is a more rigorous approximation                  
for the radiative temperature of the surface

One disadvantage of this approach is that the nodal temperatures
can not be factored out; which prevents us from including the T4

terms implicitly in the coefficient matrix.
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This amounts to an area-averaged surface temperature that has the same emissive 
power as the radiating surface (element face).
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Three Approaches for Coupling 
Will Be Discussed in Detail

• “Staggered” or “cyclic” formulation
• Solve the two sets equations separately 

– Conduction equations (N unknown temperatures)
– Radiosity enclosure radiation equations (Nsurf unknown radiative fluxes)

• Iterate between the two sets of equations

• “Semi-implicit” formulation
• Solve two sets of equations similar to staggered formulation, but 

modify the heat fluxes to provide some implicitness (partial 
contributions to the stiffness matrix)

• “Fully-coupled” or “implicit” formulation
• Form one set of nonlinear equations consisting of both

– Conduction equations and net-radiation enclosure radiation equations

• Solve the one set of equations for the N unknown temperatures and 
Nsurf unknown radiative heat fluxes

Actually, we will briefly consider another fully implicit formulation, but will rule it 
out of further consideration due to the undesirable characteristics. 
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“Staggered” or “Cyclic” Formulation

Recall we had the matrix form of the conduction equations with the 
enclosure radiation fluxes kept as unknowns

or in final form ˆ ˆ − encK(T)T=F(T) Eq

Q − encM(T)T+K(T)T=F (T)+F(T) Eq
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q F qδ
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In this formulation, we cycle between the two sets of equations; solving each set 
independently.  Individually, each equation set is not strongly nonlinear, but the T^4 
nonlinear dependence does appear during the transition between the two equation 
sets.    With known temperatures, the radiosity equation is linear; possibly with 
temperature dependent surface emissivities.
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Iteration Process for 
Staggered or Cyclic Formulation

 

At the beginning of this time step, at time nt  with time step nt∆  

1. Predict temperature  1n
pT +  for the new time plane, 1nt + , using Adams-Bashforth explicit predictor 

2. Enter iterative loop to compute end of time step fields; 1nT +  and 1nq +   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Check for steady state convergence using norm on temperature field 
4. Estimate a new time step by comparing the predicted  and corrected temperature fields 

End of time step at time, 1nt +  

A. Update the enclosure radiative heat flux field, 1n
cq + , using the radiosity equations 

• For the first iteration, use the predicted temperatures, 1n
pT +  

• For subsequent iterations, use the corrected temperatures, 1n
cT +   

B. Update the corrected temperature field, 1n
cT + , using the conduction equation 

• Use radiative heat flux boundary conditions, 1n
cq + , computed with the previously 

corrected temperature field, Step A. 
C. Relax corrected temperature field using corrected and previous values 

• Check for iteration convergence at this time step 
• If not converged, repeat the loop by returning to Step A 

D. Once converged, update the variables and continue to Step 3 
• Set  1 1n n

cT T+ +=  and  1 1n n
cq q+ +=  
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Comments on the “Staggered”
or “Cyclic” Formulation

Advantages:

• Smaller and symmetric coefficient matrices than fully-coupled

• Smaller memory requirements allows large problems

• Amenable to transient problems, adaptive timestep approaches

• Can use multiple correction steps to improve convergence

Disadvantages:

• Can be difficult to converge steady problems, may require 
extensive relaxation between iterations (false transients)

• Convergence can be very slow, and quite often can diverge due 
to the fourth-order dependence of flux on temperature

• Can be problematic for problems with “disconnected” regions

We are solving two sets of equations by iterating between:
•Heat conduction with “Nnodes” unknown nodal temperatures
•Enclosure radiation with “Nsurf” unknown heat fluxes
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“Semi-Implicit” Formulation

Recall the matrix form of the conduction equation

Our objective is to rewrite the enclosure radiation terms more 
implicitly.  That is, to express the radiative heat fluxes in terms of 
the surface (and nodal) temperatures.   

By formulating these terms more implicitly, we will change the 
behavior of the system coupled system of equations; 

• Increasing the coupling between the two sets of equations

• Improving stability and convergence characteristics

ˆ ˆ − encK(T)T=F(T) Eq

We refer to this approach as semi-implicit because we rewrite the heat fluxes in a 
way that a portion of those terms will end up in the global stiffness matrix, while a 
portion remains in the load vector on the right hand side.

Additional information can be found in the Coyote, TACO, and Calore Theory 
Manuals, as well as in our Reddy and Gartling textbook. 
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“Semi-Implicit” Formulation (2)

To begin, we write the net radiative heat flux as the difference
between the emissive power and the irradiation as

Next, we approximate the heat flux at the n+1 iteration using a 
Taylor series expansion of this flux at the “n” iteration

The partial derivative will be evaluated using the net heat flux
expression above.   
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“Semi-Implicit” Formulation (3)

Evaluating the partial derivative 

and substituting into the Taylor series

We obtain
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“Semi-Implicit” Formulation (4)

Reordering this expression, we obtain 

The first bracketed term is evaluated at the previous iteration and is 
“known.” The second bracketed term involves the unknown 
temperature at the n+1 iteration.  It will be included implicitly in 
the global stiffness matrix.  To do that, we again have to make 
the mapping from the surface temperature to nodal temperatures.

Rewriting in matrix form for all surfaces in the enclosure

where K* has the mapping from surface to nodal temperatures.

( ){ } ( ){ }4 31 1
, , 4 4n n n n n

net k net k k kq q T T Tσε σε+ += − +

( ) ( )1 * 3 1,
nnn n

net netq T T+ += +q F K T

In this equation, the radiative flux at the iteration ‘n’ is computed using the 
temperatures at iteration ‘n’.  
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“Semi-Implicit” Formulation (5)

Substituting into the global system of equations, we obtain 

1 * 1n n n
net
+ += +q F K T

ˆ ˆ − encK(T)T=F(T) Eq

{ }*ˆ ,ˆ⎡ ⎤+ −⎣ ⎦K(T) T= F(EK (T) EF( )T) q T

The resulting nonlinear set of N equations is still sparse, but has additional 
contributions involving the temperature dependence of the radiative equations.
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Comments on the 
“Semi-Implicit” Formulation

Advantages:

• Smaller and symmetric coefficient matrices than fully-coupled

• Smaller memory requirements allows large problems

• Increased the coupling between the two sets of equations 
provides improved stability and convergence characteristics

• Amenable to both steady and transient problems

• Can use multiple correction steps to improve convergence

• Effective formulation for problems with “disconnected” regions

Disadvantages:

• Coupling may not be as robust as fully coupled formulation
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“Fully Coupled” or 
“Implicit” Formulation

Rewriting in matrix form, the conduction equations with the 
enclosure radiation heat fluxes kept as unknowns is

or in final form

with ‘N’ equations, ‘N’ unknown nodal temperatures and ‘Nsurf’
unknown surface heat fluxes

ˆ ˆ+ encK(T)T E =q F(T)

Q − encM(T)T+K(T)T=F (T)+F(T) Eq



13 - 34

ESP300: Coupled Conduction and Enclosure Radiation

“Fully Coupled” or 
“Implicit” Formulation (2)

The “net-radiation” formulation is written in terms of surface fluxes 
and surface (not nodal) temperatures

Expressing the surface temperatures in terms of the nodal 
temperatures, the matrix can be rewritten as

where          includes the mapping of surface temperatures to nodal 
temperatures.  There are Nsurf equations in this set.

4
netA(T)q = BT

( )* 3 0+netA(T)q B T T=
Vector of nodal temperatures 

over enclosure surfaces
*B

We have discussed approaches for mapping between the surface temperatures and 
nodal temperatures earlier in this class.  The details will be overlooked here.

Again, we note that the coefficient matrix, A(T), is an “Nsurf” by “Nsurf” matrix that 
may be densely populated (could be completely full).  Depending on the number of 
radiating surfaces, it can be very large; creating significant demands on memory.  
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“Fully Coupled” or 
“Implicit” Formulation (3)

One approach to forming a single set of equations is to analytically 
solve for the net heat fluxes by inverting the A matrix and 
eliminate them from the set of equations

Substituting into the conduction equation, yields a strongly 
nonlinear set of ‘N’ equations

where          includes the mapping of surface temperatures to nodal 
temperatures. 

*B

( )1 * 3− ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦netq = A(T) B T T

( )1 * 3ˆ ˆ−⎡ ⎤⎡ ⎤⎡ ⎤+ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
K(T) E A(T) B T T =F(T)
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“Fully Coupled” or 
“Implicit” Formulation (4)

In a general application, this approach requires inverting the 
coefficient matrix in the net-radiation equations.   If the emissivity 
of any of the surfaces is temperature dependent, then we would 
have to invert this matrix at each iteration.  This would be a 
serious disadvantage as the problem size increases. 

An advantage of this approach is that are still only N unknown 
nodal temperatures in the system of equations.  The fourth-order 
temperature dependence is tightly coupled in the nonlinear set of 
algebraic equations.

Rather than eliminating the net radiative heat fluxes from the set of 
equations, another approach is to keep both the nodal 
temperatures and the net radiative heat fluxes as unknowns in 
one set of equations.  As we will see, this significantly increases 
the size of the set of algebraic equations.  
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“Fully Coupled” or 
“Implicit” Formulation (5)

Keeping both the nodal temperatures and the net radiative heat fluxes 
as unknowns, the combined set of algebraic equations can be 
written as

Comments regarding this system of equations:

• Size of the coefficient matrix is increased (N + Nsurf) relative to those 
for the staggered approach; matrix is asymmetric and nonlinear

• Strong coupling between systems improves convergence

• Amenable to iterative methods (Picard or Newton)

• Memory requirements are a serious limitation

ˆ ˆ⎡ ⎤ ⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦ ⎩ ⎭
* 3

TK E F
qB T A 0

Full matrix is larger, but provides strong coupling of nonlinear effects.

Note the sizes of the partitions in the coefficient matrix:

K is Nnodes x Nnodes (# of nodal temperatures x # of nodal temperatures)
E is Nnodes x Nsurf (# of nodal temperatures x # of enclosure surfaces)

B* is Nsurf x Nnodes (# of surfaces x # of nodes)
A is Nsurf x Nsurf (# of surfaces x # of surfaces)
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“Fully Coupled” or 
“Implicit” Formulation (6)

Solving this set using a Newton’s method, we rewrite the system in 
terms of the residuals

Now, applying Newton’s method, the system becomes

where ‘n’ and ‘n+1’ superscripts refer to the subsequent iterations

ˆ ˆ⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎧ ⎫
= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎩ ⎭

T

* 3
q

R TK E F
R qB T A 0

1 1

n
T T

n nn n
TT Tq T

qT qq qq q

+ +
∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎡ ⎤ ∆ ∆ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ∂ ∂∆ ∆⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎩ ⎭
⎢ ⎥∂ ∂⎣ ⎦

R R
J J RT qT T
J J RR Rq q

T q

In general, the resulting Jacobian matrix is densely populated and asymmetric. The 
Jacobian is constructed to include the dominant nonlinear coupling terms with 
temperature dependent material properties and boundary conditions neglected.  The 
matrix problem can be solved with an iterative method appropriate for asymmetric 
matrices; such as GMRES. 
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Iteration Process for 
Fully Coupled Formulation

 

At the beginning of this time step, at time nt  with time step nt∆  

1. Predict temperature  1n
pT +  for the new time plane, 1nt + , using Adams-Bashforth explicit predictor 

2. Enter iterative loop to compute end of time step fields; 1nT +  and 1nq +   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Check for steady state convergence using norm on temperature field 
4. Estimate a new time step by comparing the predicted  and corrected temperature fields 

End of time step at time, 1nt +  

A. Update the both the corrected enclosure radiative heat flux field, 1n
cq + , and the 

corrected temperature field, 1n
cT + , using the coupled set of conduction and net-radiation 

equations 
• For the first iteration, use the predicted temperatures, 1n

pT +  

• For subsequent iterations, use the corrected temperatures, 1n
cT +   

B. Relax corrected temperature field using corrected and previous values 
• Check for iteration convergence at this time step 
• If not converged, repeat the loop by returning to Step A 

C. Once converged, update the variables and continue to Step 3 
• Set  1 1n n

cT T+ +=  and  1 1n n
cq q+ +=  
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Comments on the “Fully Coupled”
or “Implicit” Formulation

Advantages:

• Strong coupling between radiation and conduction

• Improved stability and rates of convergence

• Amenable to steady problems

• Coupling effective for “disconnected” domains

Disadvantages:

• Coefficient matrix is larger with staggered approach, ‘N + Nsurf’

• Coefficient is non-symmetric and fully-populated

• Memory requirements increase significantly with problem size
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Example Problem

Specified heat flux boundary
q = 4.0x105 W/m2K

Specified temperature 
boundary  300 oC

Insulated 
boundary

Insulated 
boundary

Material Properties
(typical of steel)

ρ =  7800 kg/m3

Cp = 473 J/kg-K
k = 35 W/m-K
Є =  0.8

Note that steady-state is reached in approximately 1200 seconds.  We would like the 
automatic time step algorithm to increase the time step to increase as we approach 
steady conditions.

What happens to the set of heat conduction equations for the blue domain as we 
approach steady-state?  
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Objectives of this Example Problem

With this problem, we will investigate the staggered and the fully-
coupled approaches.  We will consider:

• Timestep behavior

• Number of iterations required

• Single verses multiple corrector steps

• Memory required

• CPU time required

We will end with some general observations regarding the two 
approaches.
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Advancing a time step involves a predictor,
a corrector, and an adaptive timestep algorithm

At the beginning of this time step
1. Predict temperature for the new time plane using Adams-

Bashforth explicit predictor
2. Procedure to compute temperature field at the new time 

plane
– Update temperature field using either the “staggered”

formulation or the “fully coupled” formulation
– Check for convergence of new temperature field

3. Estimate a new time step by comparing the predicted and 
corrected temperature fields

End of time step

We have discussed this process for each of the formulations we are considering.  It 
is included here, just as a reminder of the overall process.
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Overview of “Staggered” and 
“Fully Coupled” Formulations

Staggered or cyclic formulation

• Smaller & symmetric conduction matrix

• Smaller memory requirements

• Less stable, poorer convergence rates

Fully coupled formulation (w/Newton’s method)

• Larger & asymmetric coefficient matrix

• Much larger memory requirements

• Better stability, better convergence rates

Better choice depends on the specific problem
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Review of 
Adaptive Time Step Algorithm

Adaptive time step algorithm maintains solution accuracy within 
user-defined tolerance. Timesteps are based on difference 
between predicted and corrected solution fields at time ‘n+1’

1
1

mt

n n t
n

t t b
d
ε

+ ∆
+

⎛ ⎞
∆ = ∆ ⋅⎜ ⎟

⎝ ⎠

( )
1/ 22

1 1
1 ,2

1max

1 nodesN
t n n

n i i p
inodes

d T T
N T

∆ + +
+

=

⎡ ⎤
= −⎢ ⎥

⋅⎢ ⎥⎣ ⎦
∑

( )13 1 n nb t t−= + ∆ ∆1/ 3m =

“integration tolerance”

We will vary the “integration tolerance” to automatically adjust the time step to 
maintain a desired integration accuracy.  Varying this parameter adjusts the time 
step to control the difference between the ‘predicted’ and ‘corrected’ temperatures.
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Staggered Formulation

Multiple correctors suffered from convergence issues

single corrector multiple correctors

With a single corrector, the auto time step algorithm reduces the time step to 
maintain the integration tolerance.  The solution continues to advance because the 
inner loop is not tightly converged with a single corrector.   

With multiple correctors, the inner loop attempts to converge the conduction 
equations, but the matrix becomes singular as the problem approaches steady 
conditions and eventually the coefficient matrix essentially becomes singular.  At 
that time, the solution will not converge.  This behavior occurs because the smaller 
square is basically “disconnected.”
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Coupled Formulation Using 
Newton’s Method

In general, a single corrector adequately maintained integration
tolerances (exception is 1.0E-03 tolerance)

single corrector multiple correctors

With the fully coupled formulation, the time step grows as the problem becomes 
more steady.  It grows most for lower values of the integration tolerance.  

For multiple correctors, the time step behavior is similar to the single corrector 
because the adaptive time step algorithm is keeping the predicted and corrected 
temperature fields very close.  In general, the multiple corrector converged in two 
iterations (predictor close to the solution and not terribly nonlinear!). 
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Coupled formulation provides much larger
timesteps for a given integration tolerance

30 timesteps
72 matrix solves

858 timesteps

30 timesteps

22 timesteps
161 matrix solves

As clearly shown here, the coupled formulation outperformed the staggered solution 
in terms of increasing the time step.   We will see on the next slide that the total cpu
time is also smaller for the coupled formulation for this problem.
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Summary of Performance Results

Staggered – multiple correctorsStaggered – single corrector
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Because the auto time step algorithm limited large changes in the solution, the 
multiple correctors were really not effective.  The initial correctors were reasonably 
close to the converged solution.   The 1.0xe-03 integration tolerance was the minor 
exception to that observation.  Because the integration tolerance was smaller and the 
time steps larger, on average, slightly more than two correctors were used  (72 
correctors for 30 time steps).
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For ‘large’ problems, memory issues
may be a limiting factor in many cases

For the example problem used here (2-D problem with 325 
elements, 396 nodes, and 60 radiating surfaces) 
• For the staggered formulation (396 dof)

– 3138  non-zero coefficients in the conduction matrix

• For the coupled/Newton formulation (454 dof)
– 10458 non-zero coefficients in the combined matrix

For a typical practical problem (3-D problem with 431K elements, 
89K nodes, and a total of 47K radiating surfaces)
• For the staggered formulation (89K dof)

– 1.2 million non-zero coefficients in the conduction matrix

• For the coupled/Newton formulation (136K dof)
– 943 million non-zero coefficients in the combined matrix 
– Number of dof increased by 1.5x, number of coefficients by 786x

For our example problem, the number of unknowns increased only slightly (396 to 
454 ---- by 58 unknowns) and the number of non-zero coefficients increased by a 
factor of 3 or so (3138 to 10458).   The “real-world” problem clearly demonstrates 
this trend.
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“Upper bound” of memory requirements 
shows N2 dependence for coupled formulation

For the coupled formulation, the number of non-zero coefficients 
representing contributions of enclosure radiation depends on the
number of radiating surfaces

The upper-bound in the increase in the number of non-zero 
coefficients due to enclosure radiation is

where
• is the number of radiating surfaces and 
• is the number of nodes per radiating surface (face)

22
enclosuresN

non zeros i i i
i

N N npf− ≤ + ×∆ ∑

inpf
iN
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Accuracy assessment for coupled
and staggered formulations

Temperature differences referenced to coupled formulation with 
1.0E-06 integration tolerance 

Max rel diff < 0.3%

Max rel diff < 0.01%

Here we are considering differences in the solutions as a function of integration 
tolerance.  The largest differences are less than 0.3%.  This type of information is 
useful in assessing acceptable simulation parameters from a practical perspective.   
Recall that the solution is being compared on the face of the smaller block.   Other 
locations may behave differently. 
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Comments for the Example Problem

So, what’s the “Best” approach??

Turns out “BEST” requires a problem dependent answer!

Consideration must be given to 
• Accuracy requirements
• Performance requirements
• Problem size and memory limitations

Overview of these characteristics has been presented
• Benefits/cost of coupled formulation with Newton’s method has been 

demonstrated
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Summary of Today’s Class 

Reviewed equations describing conduction and enclosure radiation
• Reviewed assumptions employed in each system of equations

Discussed in detail 
• Variables common to both sets of equations that provide the coupling
• Inconsistencies and incompatibilities between these assumptions
• Formulations used to resolve or accommodate these inconsistencies
• Staggered and fully coupled formulations for solving these equations
• Characteristics, advantages, and disadvantages to each formulation

With our example problem, we
• Demonstrated some of the characteristics of coupling options
• Considered behavior transient response progressing to steady state
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Did We Answer our Questions for Coupled 
Conduction & Enclosure Radiation?

• What are the equations describing heat conduction and enclosure 
radiation?

• Which variables are common to and passed between the two sets or
equations?

• Are there inconsistencies in the assumptions used in each set?  If 
so, what are the inconsistencies and how do we address them?

• What assumptions are made to couple these two sets of equations?

• What approaches do we use to solve this coupled set?

• What are the advantages and disadvantages to the different 
approaches?


