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Coupled Conduction
& Enclosure Radiation Problems

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.
Sandia

A National
ALY =) ESP300: Coupled Conduction and Enclosure Radiation Laboratories

ESP = Engineering Sciences Program

ESP100 is a course on computational solid mechanics

ESP200 is a course on digital signal processing with MATLAB

ESP300 is a course on heat transfer analysis using the finite element method
There are plans to offer additional courses in the future.

All of these courses are intended to provide a continuing education opportunity — in
the spirit of the INTEC courses some years ago
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}i Introductory Info

Evacuation Procedures:
« Exits are located...

e Restrooms out back

Classification:
e Absolutely no classified discussions
e If you have a concern, let us know

 Some material may be OUOQ, it will be marked
as such

ESP300: Coupled Conduction and Enclosure Radiation
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} Summary for Coupled

Conduction & Enclosure Radiation

Begin with:
» General IBVP statement for heat conduction and
the radiative transfer equations for enclosures
and end with:

» Understanding of the assumptions employed and
details of this class of coupled problems

» Procedure for coupling the discretized heat
conduction and enclosure radiation problems

» Overview of analyst considerations

ESP300: Coupled Conduction and Enclosure Radiation
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i Questions for Coupled

Conduction & Enclosure Radiation

« What are the equations describing heat conduction and enclosure
radiation?

« Which variables are common to and passed between the two sets of
equations?

« Are there inconsistencies in the assumptions used in each set? If
s0, what are the inconsistencies and how do we address them?

« What assumptions are made to couple these two sets of equations?
* What approaches do we use to solve this coupled set?

« What are the advantages and disadvantages to the different coupling
approaches?

ESP300: Coupled Conduction and Enclosure Radiation
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Coupled Heat Conduction and
Enclosure Radiation

We need to solve the equations for

» conduction within the solids

» enclosure radiation between the solids

To do so, we will consider
« the governing equations,
» how they are related/coupled

« options for solving them

ESP300: Coupled Conduction and Enclosure Radiation
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Outline of Topics for Today

We will consider the following:

« Discretized form of the conduction equations and associated
boundary conditions

¢ Enclosure radiation equations and associated boundary
conditions

« Consistency and compatibility between the two sets of equations
« Approaches for coupling conduction and enclosure radiation
« Advantages/disadvantages of the coupling strategies

* An example problem that demonstrates some of these issues

ESP300: Coupled Conduction and Enclosure Radiation
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}- Initial Boundary Value Problem
.

he basic PDE description of heat conduction in the region () with

boundary T is
cOT_ [, T
ot ox| "ox,

]

The boundary conditions are

T=1"(s,t) on r

:
With [kij ﬂ]nj 0. +0; + Qe = fe (Si ’t) on Fq
OX;
q=h, (5T, O[T -T,]
o =Fo[T*-T*]=h (5. T.t,0,6.)[T-T,]

_4 “ H H ” H
qem:f(si’T ,t) comes from the “enclosure radiation” equations

ESP300: Coupled Conduction and Enclosure Radiation

This is the standard IBVP where all of the parameters and terms were defined
previously.

For our problems, the “enclosure radiation” fluxes are computed from radiative
transfer equations for enclosures consisting of diffuse-gray surfaces and a non-
participating (transparent) media. Cast in this form, the enclosure radiation fluxes
appear as unknowns.
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} Initial Boundary Value Problem (2)

You will recall that early on, we developed the equations describing
the radiative transfer within an enclosure. When applied to an
enclosure defined by ‘N, discrete surfaces, this equation yields
the “net heat flux” conducted away from the surface into the body.

Niure o . l-¢. & T.
2 {%‘ Foj {S—JJ] Ty = 2, (6= Fj)o T’
=1 | ¢ J =

Qnet,j
A.

i
These equations provide the radiative heat fluxes to completely
define our IBVP. We will consider it in more detail later.

where Oret,j =

ESP300: Coupled Conduction and Enclosure Radiation

This form of the enclosure radiation equations is known as the “net-radiation”
formulation.  This set of equations involves both the surface temperatures and the
surface radiative heat fluxes and provides the closure of the IBVP.

Note: We have used both “net” and “enc” subscripts on the radiative heat flux
interchangeably. In the conduction equations, “enc” refers to the fact that these
fluxes come from the enclosure radiation equations. In the enclosure radiation
equations, “net” refers to the net heat flux conducted to the radiating surface. For
our purposes here, both the “enc” and “net” subscripts refer to the same flux.
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FE Formulation for IBVP

Assume the standard (spatial) finite element approximation for the
temperature and use the Galerkin form of the MWR

T(,D=3 p ()T, 0= () T

w(x ) =y ;(%)="Y(x)
Substituting these approximations into the weak form produces the
finite element equations for the nodal values of temperature.
Comments:

* We assume a temperature profile that varies over each element.

« How does that fit with the assumptions for the enclosure radiative
transfer?

¢ Uniform surface temperatures and uniform surface heat fluxes

ESP300: Coupled Conduction and Enclosure Radiation

Recall that the development of the enclosure radiation equations assumed uniform
surface temperatures and surface heat fluxes.
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}. FE Form for IBVP

The discretized equation set is

dQT=

oT J-a‘l‘
ot ;0 “y 6x

[¥Qda+[¥(q,-q.—q - dF
or in matrix form ? i /

M(T)T+K(T) T=F,(T)+F(T) + 27??

ij\IfTTdQ
Q

We have ‘N’ equations with ‘N’ unknown temperatures and additional
unknown radiative surface heat fluxes for the enclosure.

Where are the boundary fluxes that will come from solving the
enclosure radiation equations?

ESP300: Coupled Conduction and Enclosure Radiation

If all the heat flux boundary conditions for the enclosure are known, we can
compute the nodal temperature field from this set of equations.

On the next slide we will consider different approaches for handling the heat flux
associated with the enclosure radiation. One approach is to leave the enclosure
radiation heat flux boundary terms as unknowns in this set of equations. If we did
so, we would have more unknowns than equations and would need additional
equations. Those additional equations are obviously the equations describing the
radiative transfer within the enclosure.
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}. Comments on the FE Form for IBVP

The discretized equation set is
ij\IfTTanT j [ . JdQT:
5 ot ;0 OX;
[
Q

QdQ+[¥(d,—d, —0, - dF

r

or in matrix form
M(T)T+K(T)T=F,(T)+F(T)-Eq,,

Here the enclosure fluxes are shown as dependent variables

Can we treat them “explicitly” or “implicitly”? What difference will it
make? Why one approach over the other?

ESP300: Coupled Conduction and Enclosure Radiation

With all the flux boundary conditions known, we could compute the nodal
temperature field from this set. Typically, we do not know the enclosure radiation
component, so this is really a vector of unknown heat fluxes (dependent variables).
As such, we could explicitly leave the enclosure radiation boundary heat flux terms
in this set of equations as dependent variables. If we did so, we would have more
unknowns than equations and would need additional equations. Again, we will need
the equations describing the radiative transfer within the enclosure to provide
closure of the equation set.

Note that this is a set of “N, 4~ €quations with “N, 4.~ unknown nodal
temperatures and “N,¢” unknown surface radiative fluxes.
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Radiative Heat Transfer Between
Surfaces Within Enclosures

Recall that radiative HT between surfaces depends on:
o radiative properties of surfaces
e geometric relationship between surfaces
¢ the medium between surfaces (honparticipating in our case)

We discussed:
¢ radiation “view factors”
e conservation of radiative energy for enclosures

e equations describing radiative transfer in “enclosures”
— we looked at two different forms of the equations

e coupling with equations for conduction heat transfer

In this discussion, we will get into the details of the coupling options

ESP300: Coupled Conduction and Enclosure Radiation

Some general comments on enclosure radiation before we get going and a little peek
at what we will cover.
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% Review of the Assumptions For
Radiative Transfer in Enclosures
In the development of the equations o
for the radiative energy transfer N radiating surfaces

within enclosures, the following
assumptions were used:

Non-participating media
Diffuse-gray surfaces

Uniform surface temperatures
Uniform surface heat fluxes

In our discussion today, we will @

change our notation on the

radiosity, Jk , anduse (

ESP300: Coupled Conduction and Enclosure Radiation

We started our development with an energy balance on a typical surface. With
those concepts for a single surface, we can applied them to the entire enclosure,
simply a collection of all the individual surfaces.

We used the following assumptions:
*Media is non-participating (transparent)
*Temperatures are uniform over each surface.
*Radiative properties are independent of wavelength and direction.
*All energy is emitted and reflected diffusely.
eIncident and reflected energy flux is uniform over each surface.

Using these assumptions, we previously developed the “radiosity” and “net-
radiation” formulations describing the radiative heat transfer within enclosures.
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Radiative Transfer for Enclosures

},_'

Using the “Radiosity” Formulation

For an enclosure with ‘N, surfaces with known surface temperatures
* How are the surfaces defined?
« What is an appropriate “surface” temperature?

We have a set of ‘N, equations for the radiosity given by

Nsurf

=0 T 4
Z(5kj_ (1-&)F; )qj =&0T,
j=1
Once the radiosities are computed, the net heat flux on each surface is
given by

N surf

q_net,k = Z(é‘kj _ij )q_?

i-1

ESP300: Coupled Conduction and Enclosure Radiation

In a coupled problem, we generally use temperatures computed from the heat
conduction equation as known inputs to the radiosity equations. With the surface
temperatures known, the radiosities can be easily computed from this set of linear
algebraic equations; followed by the net heat flux calculation.

In this case, we have a set of “N,;” equations with “2xNg,;” unknown surface
radiative fluxes and surface temperatures.
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Radiative Transfer for Enclosures
Using the “Net-Radiation” Formulation

The equations describing the radiative transfer in an enclosure can
be written in terms of the “net heat flux” conducted away from the
surface and the surface temperature.

In the “net-radiation” formulation, the set of equations becomes

| S, 1-¢. o =
> {A_ Fi; {g—lﬂ Gt = 2. (51(,- - ij)O'TJ.“

i-1 | €j j i=1

Qnet,j
A.

j
These equations provide the second set of ‘N,,,; equations that
relate the surface temperatures and radiative surface heat fluxes.

where Onet,j =

ESP300: Coupled Conduction and Enclosure Radiation

Again, we now have a set of “N,¢” equations, with “2xN,” unknowns (surface
temperatures and net heat fluxes).

Knowing any “N,” of these, we can solve the remaining “Ng,;” unknowns.

For example, given surface temperatures for all the surfaces, then the net heat flux
can be computed.
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} Radiative Transfer for Enclosures Using
the “Net-Radiation” Formulation (2)

The “net-radiation” formulation set of equations can be expressed as

N N
wr | 5 - )| _ _

j j =1

or in matrix form as
A(T)q,, =BT’

which relates the surface temperatures and radiative surface heat
fluxes. There are N, equations in this set.

ESP300: Coupled Conduction and Enclosure Radiation

We should note here that the coefficient matrix, A(T), is an “Ng,+” by “Ng," matrix
that may be densely populated (could be completely full) and asymmetric.
Depending on the number of radiating surfaces, it can be very large; creating
significant demands on memory. However, when the temperatures are known, it is
a linear set of equations; often solved using methods such as Gauss-Seidel.
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} Compatibility Issues Between
Conduction and Enclosure Radiation

In general, we will assume that the surfaces making
up the enclosure are defined by exposed element
faces of the finite elements in the mesh.

Recall, radiative surfaces are assumed to have
uniform temperatures and uniform heat fluxes

We will use an “element based” approach to define
our radiation surfaces.

In some finite volume approaches, “node-based”
approaches may be used to define the radiation
surfaces.

ESP300: Coupled Conduction and Enclosure Radiation

An “element” based approach simplifies the computation of view factors because
the radiative surfaces are simply defined as quads or triangles, etc of the element
faces. If we used elements with curved surfaces, additional complexity would
result.

A “nodal” based approach requires the construction of a geometrically complex
(polygon) around the node that would be used as a “surface” in the enclosure
radiation formulation.

13 -17



|

Compatibility Issues Between

i Conduction and Enclosure Radiation (2)

Radiative fluxes applied to the element boundaries k

F; =[¥q,.(x)dr
1—~e

Genc
A~ y \
quenc = J. \I’ qenc (S) ds | i \\ qenc

For elements with a linear shape function over the face

Fe —}\i'(s) ds= /2
Oenc _0 qenc _qenc h/2

Recall that the rows in this element matrix correspond to the
“t" and “f" rows in the global system of equations

ESP300: Coupled Conduction and Enclosure Radiation

The applied heat flux from the enclosure has contributions to the global equations

for nodes “i” and “j”
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In conduction equations, temperatures defined at
nodes and assumed to vary over element surfaces
using the shape functions (linear or bi-linear in
many cases)

In enclosure radiation equations, temperatures are
assumed constant over each of the radiating 4
surfaces.

The challenge is to relate the fourth power surface
temperatures in the enclosure radiation equations
to the (often linear) nodal temperature field in the
FEM formulation.

ESP300: Coupled Conduction and Enclosure Radiation

Compatibility Issues Between
Conduction and Enclosure Radiation (4)
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} Compatibility Issues Between
Conduction and Enclosure Radiation (5)

There are several candidate approaches:

« Assume that the surface temperature is the temperature at the
centroid of the element face. Allows the surface temperature to
be expressed in terms of the nodal temperatures (important in an
implicit formulation)

T = (\,l\’(éao’no))T T

where é:o y 770 are the natural coordinates of the centroid of the
element face

* Integration over the element to compute an effective surface
temperature that has the appropriate emissive power (T4
dependence). Amenable to a staggered formulation.

ESP300: Coupled Conduction and Enclosure Radiation

13-20



|l
Compatibility Issues Between Conduction

5 ; and Enclosure Radiation (6)

The surface temperatures over radiation surfaces can be
approximated using the temperature at the centroid of the
element face,

T =T

Clearly, this is an approximation for T#

An advantage of this approach is that the nodal
temperatures can be factored out, which allows
T# terms to be included in the coefficient matrix implicitly.

Depending on the whether we use an implicit or explicit
formulation, the nodal temperatures may be evaluated at either
time “n” or “n+1”

ESP300: Coupled Conduction and Enclosure Radiation

Here we have basically interpolated the temperature over the element face. We
could have also interpolated T4 (computed at the nodes) over the face. In that
case, T_bar =% (T_i*4+T_j"4), which is clearly a different value than interpolating
the temperature directly.

The differences in these two approaches can be computed analytically. The error
associated with this approximation depends on the temperature gradients over the
face of the element.
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Compatibility Issues Between Conduction
and Enclosure Radiation (7)

A more rigorous approach for approximating radiative surface
temperatures is to integrate the temperature distribution over the
element face and compute an effective T# temperature with an
equivalent emissive power.

[(T(s))"ds

S Ids

0.25

Clearly, this is a more rigorous approximation
for the radiative temperature of the surface

One disadvantage of this approach is that the nodal temperatures
can not be factored out; which prevents us from including the T#
terms implicitly in the coefficient matrix.

ESP300: Coupled Conduction and Enclosure Radiation

This amounts to an area-averaged surface temperature that has the same emissive
power as the radiating surface (element face).

13 - 22



Three Approaches for Coupling
Will Be Discussed in Detail

e “Staggered” or “cyclic” formulation

¢ Solve the two sets equations separately
— Conduction equations (N unknown temperatures)
— Radiosity enclosure radiation equations (N,; unknown radiative fluxes)

¢ lterate between the two sets of equations
e “Semi-implicit” formulation

e Solve two sets of equations similar to staggered formulation, but
modify the heat fluxes to provide some implicitness (partial
contributions to the stiffness matrix)

e “Fully-coupled” or “implicit” formulation
e Form one set of nonlinear equations consisting of both
— Conduction equations and net-radiation enclosure radiation equations

¢ Solve the one set of equations for the N unknown temperatures and
N+ unknown radiative heat fluxes

ESP300: Coupled Conduction and Enclosure Radiation

Actually, we will briefly consider another fully implicit formulation, but will rule it
out of further consideration due to the undesirable characteristics.
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}. “Staggered” or “Cyclic” Formulation

Recall we had the matrix form of the conduction equations with the
enclosure radiation fluxes kept as unknowns

M(T)T+K(T)T=F,(T)+F(T)-Eq,,

or in final form K(T)T=1A7(T) -Eq,,.

ESP300: Coupled Conduction and Enclosure Radiation

In this formulation, we cycle between the two sets of equations; solving each set
independently. Individually, each equation set is not strongly nonlinear, but the T4
nonlinear dependence does appear during the transition between the two equation
sets.  With known temperatures, the radiosity equation is linear; possibly with

temperature dependent surface emissivities.
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Iteration Process for
Staggered or Cyclic Formulation

At the beginning of this time step, at time t" with time step Aty

1. Predict temperature Tpn+1 for the new time plane, t"*l, using Adams-Bashforth explicit predictor

2. Enter iterative loop to compute end of time step fields; T ™! and GM

N+l

A. Update the enclosure radiative heat flux field, (., using the radiosity equations

o For the first iteration, use the predicted temperatures, T; 1
o For subsequent iterations, use the corrected temperatures, Tcn+l
B. Update the corrected temperature field, TC'M, using the conduction equation

o Use radiative heat flux boundary conditions, q*j”, computed with the previously
corrected temperature field, Step A.
C. Relax corrected temperature field using corrected and previous values
o Check for iteration convergence at this time step
o |f not converged, repeat the loop by returning to Step A
D. Once converged, update the variables and continue to Step 3

n+l n+l =N+l =N+l
e Set T"" =T and " =1

3. Check for steady state convergence using norm on temperature field
4. Estimate a new time step by comparing the predicted and corrected temperature fields

End of time step at time,

tﬂ+l

ESP300: Coupled Conduction and Enclosure Radiation
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Comments on the “Staggered”
or “Cyclic” Formulation

Advantages:

« Smaller and symmetric coefficient matrices than fully-coupled

« Smaller memory requirements allows large problems

« Amenable to transient problems, adaptive timestep approaches
¢ Can use multiple correction steps to improve convergence
Disadvantages:

« Can be difficult to converge steady problems, may require
extensive relaxation between iterations (false transients)

« Convergence can be very slow, and quite often can diverge due
to the fourth-order dependence of flux on temperature

¢ Can be problematic for problems with “disconnected” regions
ESP300: Coupled Conduction and Enclosure Radiation

We are solving two sets of equations by iterating between:
*Heat conduction with “N, 4.~ unknown nodal temperatures
*Enclosure radiation with “Ng,” unknown heat fluxes
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} “Semi-Implicit” Formulation

Recall the matrix form of the conduction equation

K(T)T=F(T) -Eq_,,

Our objective is to rewrite the enclosure radiation terms more
implicitly. That is, to express the radiative heat fluxes in terms of
the surface (and nodal) temperatures.

By formulating these terms more implicitly, we will change the
behavior of the system coupled system of equations;

« Increasing the coupling between the two sets of equations

« Improving stability and convergence characteristics

ESP300: Coupled Conduction and Enclosure Radiation

We refer to this approach as semi-implicit because we rewrite the heat fluxes in a
way that a portion of those terms will end up in the global stiffness matrix, while a
portion remains in the load vector on the right hand side.

Additional information can be found in the Coyote, TACO, and Calore Theory
Manuals, as well as in our Reddy and Gartling textbook.
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“Semi-Implicit” Formulation (2)

To begin, we write the net radiative heat flux as the difference
between the emissive power and the irradiation as

N
= =4 —0
e = 06T = D F ]
i1

Next, we approximate the heat flux at the n+1 iteration using a
Taylor series expansion of this flux at the “n” iteration

| mns =
Tl = oy + 2] (T71T7)

The partial derivative will be evaluated using the net heat flux
expression above.

ESP300: Coupled Conduction and Enclosure Radiation

13 -28



A
} “Semi-Implicit” Formulation (3)

Evaluating the partial derivative
N
_ -\ 0| D F .q‘.’J
e i _ 6(O'ng4)_ (; o ~doe TP -0
oT T ot ‘

and substituting into the Taylor series

n

(fn+1 _-rn)

aq
Fgml _ Fn n ni,k
qnet,k qnet,k 8T

We obtain 3
Gﬂ;lk = q:et,k + 4og, (-rn) (-le _fn)

ESP300: Coupled Conduction and Enclosure Radiation
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} “Semi-Implicit” Formulation (4)

Reordering this expression, we obtain
_— \4 — \3) —
q:;lk = {q:et,k — 4og, (T n) }"‘ {40'5k (T n) }T "

The first bracketed term is evaluated at the previous iteration and is
“known.” The second bracketed term involves the unknown
temperature at the n+1 iteration. It will be included implicitly in
the global stiffness matrix. To do that, we again have to make
the mapping from the surface temperature to nodal temperatures.

Rewriting in matrix form for all surfaces in the enclosure
—nil o= T\, o (F3\" 0l
G =F(T,.T) +K'(T°) T

where K* has the mapping from surface to nodal temperatures.
ESP300: Coupled Conduction and Enclosure Radiation

In this equation, the radiative flux at the iteration ‘n’ is computed using the
temperatures at iteration ‘n’.
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} “Semi-Implicit” Formulation (5)

Substituting into the global system of equations, we obtain

G <F +RTD
K(T)T=F(T) {Eq_, )

[K(T)+EK*(T)] T={f<‘(T) ~EF(q, T)}

ESP300: Coupled Conduction and Enclosure Radiation

The resulting nonlinear set of N equations is still sparse, but has additional
contributions involving the temperature dependence of the radiative equations.
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Comments on the
“Semi-Implicit” Formulation

Advantages:
« Smaller and symmetric coefficient matrices than fully-coupled
« Smaller memory requirements allows large problems

« Increased the coupling between the two sets of equations
provides improved stability and convergence characteristics

¢ Amenable to both steady and transient problems

« Can use multiple correction steps to improve convergence

« Effective formulation for problems with “disconnected” regions
Disadvantages:

« Coupling may not be as robust as fully coupled formulation

ESP300: Coupled Conduction and Enclosure Radiation
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} “Fully Coupled” or
“Implicit” Formulation

Rewriting in matrix form, the conduction equations with the
enclosure radiation heat fluxes kept as unknowns is

M(T)T+K(T)T=F,(T)+F(T)-Eq,,

or in final form

K(T)T+Eq,, =F(T)

with ‘N’ equations, ‘N’ unknown nodal temperatures and ‘N,
unknown surface heat fluxes

ESP300: Coupled Conduction and Enclosure Radiation
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}-l “Fully Coupled” or
“Implicit” Formulation (2)

The “net-radiation” formulation is written in terms of surface fluxes
and surface (not nodal) temperatures

A(T)q,, =BT’

Expressing the surface temperatures in terms of the nodal
temperatures, the matrix can be rewritten as

AMq,, +B (T3)T<O

over enclosure surfaces

*
where B includes the mapping of surface temperatures to nodal
temperatures. There are N, equations in this set.

ESP300: Coupled Conduction and Enclosure Radiation

We have discussed approaches for mapping between the surface temperatures and
nodal temperatures earlier in this class. The details will be overlooked here.

Again, we note that the coefficient matrix, A(T), is an “Ng,¢” by “Ng,¢” matrix that
may be densely populated (could be completely full). Depending on the number of
radiating surfaces, it can be very large; creating significant demands on memory.
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}l “Fully Coupled” or
“Implicit” Formulation (3)

One approach to forming a single set of equations is to analytically
solve for the net heat fluxes by inverting the A matrix and
eliminate them from the set of equations

Q.= [AM] B (T°)|T

Substituting into the conduction equation, yields a strongly
nonlinear set of ‘N’ equations

[K(T) +E[AMD]" [B*(T3)HT —F(T)

*
where B includes the mapping of surface temperatures to nodal
temperatures.

ESP300: Coupled Conduction and Enclosure Radiation
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“Fully Coupled” or
“Implicit” Formulation (4)

In a general application, this approach requires inverting the
coefficient matrix in the net-radiation equations. If the emissivity
of any of the surfaces is temperature dependent, then we would
have to invert this matrix at each iteration. This would be a
serious disadvantage as the problem size increases.

An advantage of this approach is that are still only N unknown
nodal temperatures in the system of equations. The fourth-order
temperature dependence is tightly coupled in the nonlinear set of
algebraic equations.

Rather than eliminating the net radiative heat fluxes from the set of
equations, another approach is to keep both the nodal
temperatures and the net radiative heat fluxes as unknowns in
one set of equations. As we will see, this significantly increases
the size of the set of algebraic equations.

ESP300: Coupled Conduction and Enclosure Radiation
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} “Fully Coupled” or
“Implicit” Formulation (5)
Keeping both the nodal temperatures and the net radiative heat fluxes
as unknowns, the combined set of algebraic equations can be

written as R R
K E|[T| |F
BT A|lq) |0

Comments regarding this system of equations:

* Size of the coefficient matrix is increased (N + N, relative to those
for the staggered approach; matrix is asymmetric and nonlinear

 Strong coupling between systems improves convergence
« Amenable to iterative methods (Picard or Newton)

* Memory requirements are a serious limitation

ESP300: Coupled Conduction and Enclosure Radiation

Full matrix is larger, but provides strong coupling of nonlinear effects.

Note the sizes of the partitions in the coefficient matrix:

K iS N, oges X Nioges (# of nodal temperatures x # of nodal temperatures)
E is N, gges X Nyt (# of nodal temperatures x # of enclosure surfaces)
B* iS Nyt X Npoges (# of surfaces x # of nodes)

A 1S Ny X Nyt (# of surfaces x # of surfaces)
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“Fully Coupled” or

i “Implicit” Formulation (6)

Solving this set using a Newton’s method, we rewrite the system in
terms of the residuals

RT_IA(ET_ﬁ
R, BT A|lq 0

Now, applying Newton’s method, the system becomes

n

oR, OR,
{JTT JTqT {AT}””: oT  oq {AT}MZ {RT}H
Jo Jo| lAg oR, OR, | |Aq R,
oT  &q

where ‘n’ and ‘n+1’ superscripts refer to the subsequent iterations

ESP300: Coupled Conduction and Enclosure Radiation

In general, the resulting Jacobian matrix is densely populated and asymmetric. The
Jacobian is constructed to include the dominant nonlinear coupling terms with
temperature dependent material properties and boundary conditions neglected. The
matrix problem can be solved with an iterative method appropriate for asymmetric

matrices; such as GMRES.
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Iteration Process for
Fully Coupled Formulation

At the beginning of this time step, at time t" with time step At,

1. Predict temperature T:” for the new time plane, t"”, using Adams-Bashforth explicit predictor

2. Enter iterative loop to compute end of time step fields; T"* and g™

N+l

A. Update the both the corrected enclosure radiative heat flux field, (. ", and the

corrected temperature field, TC"”, using the coupled set of conduction and net-radiation
equations
e For the first iteration, use the predicted temperatures, T; "

e For subsequent iterations, use the corrected temperatures, TCn+1

B. Relax corrected temperature field using corrected and previous values
e Check for iteration convergence at this time step
« |f not converged, repeat the loop by returning to Step A

C. Once converged, update the variables and continue to Step 3

n+l n+l N+l n+l
e Set T =T and 0"~ =0

3. Check for steady state convergence using norm on temperature field
4. Estimate a new time step by comparing the predicted and corrected temperature fields

End of time step at time, t"**

ESP300: Coupled Conduction and Enclosure Radiation
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} Comments on the “Fully Coupled”
or “Implicit” Formulation

Advantages:

« Strong coupling between radiation and conduction
 Improved stability and rates of convergence

« Amenable to steady problems

¢ Coupling effective for “disconnected” domains
Disadvantages:

+ Coefficient matrix is larger with staggered approach, ‘N + N,/
 Coefficient is non-symmetric and fully-populated

« Memory requirements increase significantly with problem size

ESP300: Coupled Conduction and Enclosure Radiation
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Example Problem

q=4.0x105 W/m?K Material Properties
(typical of steel)
p = 7800 kg/m3

/ Specified heat flux boundary

Insulated
/ boundary C, =473 J/kg-K
k =35W/m-K
€ =038
— 1800
Insulated
boundary g 1
2
1200
P
600
\ Specified temperature 550 . . .
boundary 300 °C d By me MR

ESP300: Coupled Conduction and Enclosure Radiation

Note that steady-state is reached in approximately 1200 seconds. We would like the
automatic time step algorithm to increase the time step to increase as we approach

steady conditions.

What happens to the set of heat conduction equations for the blue domain as we
approach steady-state?
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Objectives of this Example Problem

With this problem, we will investigate the staggered and the fully-
coupled approaches. We will consider:

« Timestep behavior

« Number of iterations required
 Single verses multiple corrector steps
* Memory required

¢ CPU time required

We will end with some general observations regarding the two
approaches.

ESP300: Coupled Conduction and Enclosure Radiation
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Advancing a time step involves a predictor,
a corrector, and an adaptive timestep algorithm

At the beginning of this time step

1. Predict temperature for the new time plane using Adams-
Bashforth explicit predictor

2. Procedure to compute temperature field at the new time
plane

— Update temperature field using either the “staggered”
formulation or the “fully coupled” formulation

— Check for convergence of new temperature field

3. Estimate a new time step by comparing the predicted and
corrected temperature fields

End of time step

ESP300: Coupled Conduction and Enclosure Radiation

We have discussed this process for each of the formulations we are considering. It
is included here, just as a reminder of the overall process.
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Overview of “Staggered” and
“Fully Coupled” Formulations

Staggered or cyclic formulation
e Smaller & symmetric conduction matrix
* Smaller memory requirements

* Less stable, poorer convergence rates

Fully coupled formulation (w/Newton’s method)
« Larger & asymmetric coefficient matrix
¢ Much larger memory requirements

 Better stability, better convergence rates

Better choice depends on the specific problem

ESP300: Coupled Conduction and Enclosure Radiation
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} Review of
Adaptive Time Step Algorithm

Adaptive time step algorithm maintains solution accuracy within
user-defined tolerance. Timesteps are based on difference
between predicted and corrected solution fields at time ‘n+1’

t m

5

d At “integration tolerance”
n+1

At =At |b-

m=1/3  b=3(1+At,_/At,)

2 1/2
At 1 Nnodes " "
_ N+l T n+
dn+1 - N -|-2 z (T' Ti,p )
nodes ~ 'max =1

ESP300: Coupled Conduction and Enclosure Radiation

We will vary the “integration tolerance” to automatically adjust the time step to
maintain a desired integration accuracy. Varying this parameter adjusts the time
step to control the difference between the “predicted” and ‘corrected’ temperatures.
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A

single corrector

120

Staggered Formulation

Multiple correctors suffered from convergence issues

multiple correctors

Time (sac)

— 10503
—1.05-04 ||
— 10505
1.0E-06
. —— 10507
L4
&
-3
g
g
g
=
1200 1800 2400

Timestep (sec)

of”
0

— 1.0E-03
—— LOE-04| |
—— LOE-05
1.0E-06
1.0E-07 |

600 1200 1800 2400
Time (sec)

ESP300: Coupled Conduction and Enclosure Radiation

With a single corrector, the auto time step algorithm reduces the time step to

maintain the integration tolerance. The solution continues to advance because the

inner loop is not tightly converged with a single corrector.

With multiple correctors, the inner loop attempts to converge the conduction
equations, but the matrix becomes singular as the problem approaches steady

conditions and eventually the coefficient matrix essentially becomes singular. At
that time, the solution will not converge. This behavior occurs because the smaller

square is basically “disconnected.”
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500

400

Timestep (sec)
N
=]
=]

100

Coupled Formulation Using
Newton’s Method

In general, a single corrector adequately maintained integration
tolerances (exception is 1.0E-03 tolerance)

single corrector

—1.0E-03
— 1.0E-04
—— 1.0E-05
— 1.0E-06
1.0E-07

500

400

Timestep (sec)

100

0 600

0
Time (sec)

multiple correctors

— T.OE-03
— T.OE-04
— T.OE-05
- T.OE-06
1.0E-07

1200 1800 2400 0

600 1200
Time (sec)

ESP300: Coupled Conduction and Enclosure Radiation

1800

2400

With the fully coupled formulation, the time step grows as the problem becomes
more steady. It grows most for lower values of the integration tolerance.

For multiple correctors, the time step behavior is similar to the single corrector
because the adaptive time step algorithm is keeping the predicted and corrected
temperature fields very close. In general, the multiple corrector converged in two

iterations (predictor close to the solution and not terribly nonlinear!).
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Comparison ©

Coupled formulation provides much larger
timesteps for a given integration tolerance

f Solution Methods (int tol = 1.0E-03)

500

Timestep (sec)

400}

Stag - singla
—&— Stag - multi
Coup - single
——— Coup - multi

300+

200+

100+

22 timesteps
161 matrix solves

30 timesteps

;a'? 30 timesteps
’5{ 3 72 matrix solves
]
j ,_— 858timesteps
600 1200 1800
Time (sec)
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2400

As clearly shown here, the coupled formulation outperformed the staggered solution
in terms of increasing the time step. We will see on the next slide that the total cpu

time is also smaller for the coupled formulation for this problem.
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Staggered — single corrector Staggered — multiple correctors
Integration tolerance (1.0Exx) Integration tolerance (1.0Exx)
-3 -4 5 6 7 3 -4 5 -6 7
steps 858 876 895 992 1176 22 43 89 200 1172
Mtrx iters 858 876 895 992 1176 161 330 418 558 1183
Time (sec) 35 3.1 3.8 35 4.3 dnc dnc dnc dnc 4.3
Coupled - single corrector Coupled — multiple correctors
Integration tolerance (1.0Exx) Integration tolerance (1.0Exx)
-3 -4 5 -6 -7 -3 -4 5 -6 -7
steps 30 52 99 200 547 30 52 99 200 545
Mtrx iters 30 52 99 200 547 72 108 198 400 550
Time (sec) 0.5 0.7 1.2 2.1 57 1.0 1.3 2.3 4.3 5.6
ESP300: Coupled Conduction and Enclosure Radiation

Because the auto time step algorithm limited large changes in the solution, the
multiple correctors were really not effective. The initial correctors were reasonably
close to the converged solution. The 1.0xe-03 integration tolerance was the minor
exception to that observation. Because the integration tolerance was smaller and the
time steps larger, on average, slightly more than two correctors were used (72
correctors for 30 time steps).
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For ‘large’ problems, memory issues
may be a limiting factor in many cases

For the example problem used here (2-D problem with 325
elements, 396 nodes, and 60 radiating surfaces)

o For the staggered formulation (396 dof)
— 3138 non-zero coefficients in the conduction matrix

e For the coupled/Newton formulation (454 dof)
— 10458 non-zero coefficients in the combined matrix

For a typical practical problem (3-D problem with 431K elements,
89K nodes, and a total of 47K radiating surfaces)

o For the staggered formulation (89K dof)
— 1.2 million non-zero coefficients in the conduction matrix

o For the coupled/Newton formulation (136K dof)
— 943 million non-zero coefficients in the combined matrix
— Number of dof increased by 1.5x, number of coefficients by 786x

ESP300: Coupled Conduction and Enclosure Radiation

For our example problem, the number of unknowns increased only slightly (396 to
454 ---- by 58 unknowns) and the number of non-zero coefficients increased by a
factor of 3 or so (3138 to 10458). The “real-world” problem clearly demonstrates

this trend.
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“Upper bound” of memory requirements
shows N? dependence for coupled formulation

For the coupled formulation, the number of non-zero coefficients
representing contributions of enclosure radiation depends on the
number of radiating surfaces

The upper-bound in the increase in the number of non-zero
coefficients due to enclosure radiation is

Nenclosures

A < Z 2N.* + N, x npf.

non—zeros —

where
. Ni is the number of radiating surfaces and
3 npfi is the number of nodes per radiating surface (face)

ESP300: Coupled Conduction and Enclosure Radiation
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Accuracy assessment for coupled
and staggered formulations

Temperature differences referenced to coupled formulation with
1.0E-06 integration tolerance

6 . ; :

5l " Vaxrel it <030 | 06) o3|
- —— cf6) - 5(-6)
< 4 ——of0)-s¢3) |
3
g 9
£ 2l Max rel diff < 0.01% |
5
£
b~ | |
o LI o
5 -1 A
= Ila ¢

A4

1200 1800 2400
Time (sec)
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Here we are considering differences in the solutions as a function of integration
tolerance. The largest differences are less than 0.3%. This type of information is
useful in assessing acceptable simulation parameters from a practical perspective.
Recall that the solution is being compared on the face of the smaller block. Other

locations may behave differently.
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Comments for the Example Problem

So, what's the “Best” approach??
Turns out “BEST” requires a problem dependent answer!

Consideration must be given to
e Accuracy requirements
¢ Performance requirements
¢ Problem size and memory limitations

Overview of these characteristics has been presented

o Benefits/cost of coupled formulation with Newton’s method has been
demonstrated

ESP300: Coupled Conduction and Enclosure Radiation
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A

Reviewed equations describing conduction and enclosure radiation
¢ Reviewed assumptions employed in each system of equations

Summary of Today’s Class

Discussed in detail
¢ Variables common to both sets of equations that provide the coupling
¢ Inconsistencies and incompatibilities between these assumptions
e Formulations used to resolve or accommodate these inconsistencies
e Staggered and fully coupled formulations for solving these equations
e Characteristics, advantages, and disadvantages to each formulation

With our example problem, we
e Demonstrated some of the characteristics of coupling options
e Considered behavior transient response progressing to steady state

ESP300: Coupled Conduction and Enclosure Radiation
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Id We Answer our Questions for Coupled
Conduction & Enclosure Radiation?

« What are the equations describing heat conduction and enclosure
radiation?

* Which variables are common to and passed between the two sets or
equations?

« Are there inconsistencies in the assumptions used in each set? If
so, what are the inconsistencies and how do we address them?

« What assumptions are made to couple these two sets of equations?
« What approaches do we use to solve this coupled set?

* What are the advantages and disadvantages to the different
approaches?

ESP300: Coupled Conduction and Enclosure Radiation
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