SAND2007- 0576P

Layered Ballistic Protection System

Key elements:

e lightweight state-of-the-art metallic materials
* load spreading
* high strength to prevent perforation
» energy absorbing layers

e modular design
» panels/plates for vehicles
 personnel “scales” for vital organ protection
e integrated into uniform or vest
» tailorable (threat specific)
* replaceable



Layered Ballistic Protection System

making use of state-of-the-art metallic
components

* hard layers

for energy dissipation & spreading

(eg. amorphous metal coatings) g ongt e 2000 MPa

« high-strength, lightweight alloys BT
core structural component e .
(eg. 7075 Al, Al-50%B4C

composites, nanocrystalline Al)

» metal foams for energy absorption
(tailorable properties)

YR 1:

YR2:

YR3:

Proof of Principle

» Material selection & characterization
» Model development
* First impact test specimens

Demonstration

* 1st generation ballistic system
» Testing and modeling validation

System Production

» System optimization
 Layered construction &
manufacturability

$500K/year

Leverages existing SNL programs
* physical and mechanical metallurgy of
nanocrystalline Al alloys
* high strain rate testing
» material and system structural modeling

Leverages existing expertise of staff
* physical and mechanical metallurgy of Al-
based composites and foams

Integration of experience and tasks
* materials science
* mechanics



Preliminary concept of layered barrier system

\

\
O —

Light weight aluminum foam for
energy absorption:

Density < 1 g/cm?

High strength light weight structural aluminum:
Strength = 400 MPa

Hard coating for energy dissipation and spreading:
Strength ~ 2000 MPa, < 1 mm thick



Background

Materials

* hard layers

 high-strength Aluminum-based materials
e aluminum foams, tailorable
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High-strength aluminum-based alloys

P DU \ 1
X288 108Mm 93 (36 BEC

Conventional high-strength
aerospace grade aluminum
alloys
» combination of high strength
and high toughness

*YS > 400 MPa

* K,c > 35 MPa m1/2
* relatively inexpensive

Ref

Strain Rate Sensitivity,

Composites
* high strain rate sensitivity
* strength can be improved
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Nanocrystalline alloys
» combination of high strength
and high ductility
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Aluminum-based foam materials

* high energy absorption
o tailorable properties
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Background

Mechanical testing

* high strain rate testing
e materials characterization

e Impact testing (gas gun)
« Component performance



stress (psi)

Material Characterization Of Shuttle Thermal
Protection System For Impact Analyses
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ANALYTICAL IMPACT MODELS AND
EXPERIMENTAL TEST VALIDATION
FOR THE COLUMBIA SHUTTLE WING
LEADING EDGE PANELS
Winner of the Otto Hamberg
Technical Paper Award, the 22nd
Aerospace Testing Seminar
W-Y Lu, B. Antoun, J. Korellis,
SNL/CA
K. Gwinn, K. Metzinger, SNL/NM



ngh Strain Rate Testing
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Strain Rate < 10 s-1

Ts

Load cell
Laser extensometer
Temperature chamber
Inside the chamber
Foam specimen
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High Rate Data
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Schematic Diagram of SHPB
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Strain History of SHPB
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Schematic Diagram of Gas Gun
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 Model validation

>
* Performance evaluation .
* Microstructure characterization of

post-experiment specimen v=0 V=0 —

Arrest  Ballistic Limit  Perforation




Background

Modeling

e expertise In
e materials characterization
e dynamically loaded structures



Material Modeling Team - R&D 100 Award

Microstructure-Property Model Software Package —precisely predicts the

stress state and failure during manufacturing processes.
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True Stress (psi)

True Stress (psi)

Extensive Material Modeling Capabillities

Temperature Sensitivity Advanced material models
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Analysis

Modeling Structures Subjected to
Dynamic Loading and Impact

Linear and nonlinear dynamic response
Modal analysis

Large deformation modeling
Failure modeling

Blast loads on structures
Component isolation




Example: Submarine Vulnerability Experiments
(Steel Plates Loaded by Focused Blasts)

Analysis Experiment
Problem: Technical Approach:
Predict response of steel (HY100) plate with + Model blast pressure time history with
initial 1 inch diameter hole loaded by blast Eulerian code.
wave produced by 38 grams of explosive. - Apply the BCJ constitutive model,

utilizing the strain rate and temperature
dependence and ductile failure capabilities



