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1. General 
The effects of hydrogen on aluminum alloys are not well understood; indeed, there is much 
conflicting information. Despite the perception that aluminum alloys are immune to gaseous 
hydrogen [1, 2], the micromechanics of deformation in aluminum are strongly affected by 
hydrogen [3, 4]. Aluminum alloys can be highly susceptible to stress corrosion cracking, which 
is generally interpreted to be due to hydrogen. The literature on this topic is extensive, although 
these tests are generally performed in aqueous or “wet” environments where the solubility of 
hydrogen is many orders of magnitude greater than hydrogen solubility from dry hydrogen gas. 
Based on the available experimental data obtained in hydrogen gas [5-7], aluminum alloys 
appear to have good resistance to hydrogen-assisted fracture in dry environments.  
 
Thermodynamically, aluminum has a low solubility for hydrogen when in equilibrium with dry 
hydrogen gas [8]. Moreover, the native oxide acts as a kinetic barrier to hydrogen uptake since 
the kinetics of formation of atomic hydrogen (a necessary step to hydrogen uptake and hydrogen-
assisted fracture) is limited on the oxide surface. In the presence of electrochemical 
environments and wet hydrogen, however, atomic hydrogen can be readily produced and enter 
the aluminum lattice [1]. Under these conditions, the solubility of hydrogen in aluminum can be 
very high, equivalent to many millions of atmospheres of dry hydrogen gas [9, 10]. Significant 
degradation of properties of high-strength aluminum alloys has been reported in “wet” hydrogen 
gas [1].  
 
Hydrogen-assisted fracture in all materials depends on the characteristics of hydrogen transport; 
therefore, interpretation of testing results for aluminum alloys in hydrogen gas must be made 
with consideration of potential kinetic limitations on hydrogen transport. However, there are 
large variations in the literature data on hydrogen solubility and diffusivity [8, 11]. Studies of 
hydrogen transport in aluminum are complicated by the low solubility of hydrogen [8], the 
kinetic effects of the native oxide and the interactions of hydrogen atoms with vacancies [11, 
12], as well as hydrogen trapping in some systems [8, 11]. 
 
 
2. Permeability, Diffusivity and Solubility  
The solubility and diffusivity of hydrogen in aluminum are reviewed in Refs. [8, 11], showing 
significant scatter in the data. Reported hydrogen solubility values vary by six orders of 
magnitude when extrapolated to room temperature [8], with the largest reported value at room 
temperature being about 2.5 x 10-6 mol H2 m

-3 MPa-1/2. The low solubility of hydrogen in 
aluminum makes it particularly difficult to quantify by gas extraction techniques, which does not 
distinguish between hydrogen dissolved in the metal and hydrogen trapped by specific 
metallurgical features [8]. Thus, care should be extended to the extrapolation of hydrogen 
solubility trends from high-temperature to ambient temperature [11]. Gas permeation 
experiments allow for determination of the rate of hydrogen transport through a metal at steady 
state (i.e., permeation), as well as the diffusivity of hydrogen through the metal by analysis of 
transport transients. Solubility is the ratio of permeability and diffusivity (Ref. [13] provides 
some background on the thermodynamic origin of the relationships between permeation, 
diffusion and equilibrium dissolution), thus hydrogen solubility can be determined accordingly.  
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Reported values of hydrogen diffusivity vary by at least two orders of magnitude at elevated 
temperature, and by many orders of magnitude at ambient temperature. In particular, diffusivity 
values extrapolated to ambient temperature from elevated temperature data appear to predict 
values at the low end of this spectrum. Several studies near ambient temperature, however, report 
consistent values for hydrogen diffusivity of about 10-11 m2/s [8, 11, 12], significantly higher than 
extrapolated values. The discontinuity between hydrogen diffusivity in aluminum at high and 
low temperature is interpreted to be due to hydrogen trapping, especially the trapping by 
vacancies at elevated temperature [11, 12]. At low temperature, the vacancy concentration is 
sufficiently low that hydrogen transport is not limited by interactions with vacancies.  
 
Aluminum is often considered to be a barrier to hydrogen permeation. The native oxide on 
aluminum metal is an effective kinetic barrier to hydrogen permeation, thus as long as the oxide 
maintains its integrity the effective permeation of hydrogen through aluminum appears to be 
kinetically limited by surface processes. Using the apparent upper bounds for solubility and 
diffusivity that are quoted above, the hydrogen permeability through the aluminum lattice at 
ambient temperature is about 2.5 x 10-17 mol H2 m

-1 s-1 MPa-1/2. This value is many orders of 
magnitude greater than values extrapolated from elevated temperature and several orders of 
magnitude lower than estimates for stainless steels. The effective permeability of aluminum with 
native oxide, however, will be much lower since the kinetics of formation of atomic hydrogen on 
the oxide is very low. 
 
 
3. Mechanical Properties: Effects of Gaseous Hydrogen 
 
3.1 Tensile properties 
 
3.1.1 Smooth tensile properties  
The tensile properties of commercially pure aluminum are unaffected by testing in high-pressure 
gaseous hydrogen, Table 3.1.1.1. High-purity aluminum (99.993% annealed bar, Su = 103 MPa) 
was also found to be unaffected by hydrogen pressure up to 52 MPa [5]. Similarly, 7039-T61 
plate (Su = 434 MPa) was unaffected by 69 MPa gaseous hydrogen [5]. 
 
3.1.2. Notched tensile properties  
Notched tensile properties of commercially pure aluminum are not degraded by testing in high-
pressure gaseous hydrogen, Table 3.1.2.1. 
 
3.2 Fracture mechanics  
No known published data in hydrogen gas for pure aluminum. Fracture mechanics data on high-
strength aluminum alloys tested in hydrogen gas can be found in Refs. [1, 14]. The literature on 
the effects of hydrogen from environments (stress-corrosion cracking) is extensive and beyond 
the scope of this review; however, these effects can be substantial. 
 
 
4. Metallurgical Considerations 
Hydrogen trapping appears to play an important role in the hydrogen transport of aluminum and 
its alloys [8, 11], if not the micromechanisms of hydrogen-assisted fracture. Therefore, 
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interpretation of test results needs to be considered in the context of the specifics of the 
microstructural condition of the tested alloy. 
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Table 3.1.1.1. Smooth tensile properties of nominally pure aluminum tested at room temperature 
in high-pressure helium and hydrogen  gas. 

Material 
Thermal 

precharging 
Test 

environment 

Strain 
rate 
(s-1) 

Sy 
(MPa) 

Su 
(MPa) 

Elu 
(%) 

Elt 
(%) 

RA 
(%) 

Ref. 

None 34.5 MPa He — 110 — 42 93 
O temper 

None 34.5 MPa H2 
 

x10-3 — 110 — 39 93 
[6, 
7] 

 
 
Table 3.1.2.1. Notched tensile properties of nominally pure  aluminum tested at room 
temperature in high-pressure helium and hydrogen  gas.  

Material Specimen 
Thermal 

precharging 
Test 

environment 

Displace-
ment rate 
(mm/s) 

Sy 
(MPa) 

s 
(MPa) 

RA 
(%) 

Ref. 

34.5 MPa He 69 MPa He — 124 20 
O temper (1) 

34.5 MPa H2 69 MPa H2 
0.4 

x 10-3 — 172 21 
[6, 
7] 

† yield strength of smooth tensile bar 
(1) V-notched specimen: 60˚ included angle; minimum diameter = 3.81 mm (0.15 inch); 

maximum diameter = 7.77 mm (0.306 inch); notch root radius = 0.024 mm (0.00095 
inch). Stress concentration factor (Kt) = 8.4. 

 
  


