H
SAND2007- 0899P
W "

LAME

* Material model implementation in LAME

— Object Oriented Programming provides the interface with Adagio/Presto
» Base class
» Material model is derived from the base class

— Implementation of material model requires the following
» Creation of a class for the material model that is derived from the base class
» Fortran / C / C++ routines that have the core model routines

* Add model to a list of models that can be used (This is changing — for the better
too!)

— The derived class will have simple “look and feel”
* Some freedom will be restricted for now
» Interface will involve stress, kinematics, state variables, etc...

LAME

Capabilities must be the same for all models

— Return a stress — mechanics
— Update state variables — mechanics
— Return effective incremental moduli — numerical
* Moduli defined by model
» Numerical moduli defined in base class
— Return tangent moduli — numerical
» Consistent tangent where possible
» Numerical tangent defined in the base class

— We need to clearly identify where, when and how we want use this information
in the application codes

» Preconditioner, critical time step, hourglass control, etc...

Interface with Adagio/Presto

The stress passed between Adagio/Presto and LAME is the un-rotated
stress

I, =RouR, 5 I, =RU =V,R,

ij ij

The “strain-rate” passed between Adagio/Presto and LAME is the un-
rotated rate of deformation

dgj = R/a'Dszgj

— This 1s done for to preserve objectivity for hypoelastic models (Green-Mclnnis
stress rate)

— Hypothetically (hypoelastoetically?) this makes writing constitutive models
easy... unless you want to write something different

VA

Interface with Adagio/Presto

e A state variable array is passed between Adagio/Presto and LAME

— The size of the array is set by the constitutive model

— Allocating space for the state variables 1s done by the application code
(Adagio/Presto)

— The updating of the state variables is done by the constitutive model

— Output 1s done by the application code (Adagio/Presto); there is a method to
associate a state variable name with the variable in the array

Interface with Adagio/Presto

Kinematic variables are passed from Adagio/Presto to LAME

— The kinematic variables are calculated by the application code
— Availability depends on what is / can be calculated
— With Adagio and Presto we have a lot of control over this
— Kinematic quantities that are available are:
» Un-rotated rate of deformation tensor
 Left stretch tensor
» Rotation tensor
» Inverse deformation gradient tensor
* Deformation gradient tensor

— For problems where the temperature changes we need to calculate the thermal
strain

* We currently do “legacy” thermal strain, but we might want to change this

Interface with Adagio/Presto

e Additional quantities can be passed to and from LAME

— Temperature is an example
— Other quantities will come up, especially with code coupling

— This part of the interface is not fully developed since we are not sure what we
will want

— When the interface is developed it must be flexible and easy to use

Interface with Adagio/Presto

Init

Interface with Adagio/Presto

o
—

Interface with Adagio/Presto

 (Constructor

— The material properties are stored in an array of double precision variables

— The number of state variables is set
» Adagio/Presto will have Sierra set aside memory for the state variables

— The names of state variables are identified with terms in state variable array
» These names are used so that Adagio/Presto can output state variables

— Well defined instructions in the code will exist for how to write the constructor

Interface with Adagio/Presto

Material Init

Interface with Adagio/Presto

e Material Initialization

— A number of things may have to be initialized for a material model

— Initialization is done in a material initialization method
« Example: initial values of state variables (radius of the yield surface)

Interface with Adagio/Presto

 Load Step
Init

Interface with Adagio/Presto

» Load step 1nitialization

— Material properties may need to be initialized at the start of a load step
« example: temperature dependent quantities

Interface with Adagio/Presto

e
—

Interface with Adagio/Presto

e Stress calculations

— The stress calculation is the “meat” of the constitutive model

— Stress (un-rotated) 1s updated

— State variables (in appropriate configuration if necessary) are updated
— If they can be calculated, the effective moduli are calculated

— If they can be calculated, the tangent moduli are calculated

Example Model

#ifndef ELASTIC PLASTIC H_
#define _ELASTIC PLASTIC H_

#include <models/Material.h>
#include <Lame Fortran.h>

namespace materials {
namespace lame {
class ElasticPlastic : public Material{
public:
ElasticPlastic(MatProps props) ;

ElasticPlastic(MatPropsNew props)
~ElasticPlastic() ;

’

int initialize(int & npoints,
double dt,
double * state_old,
double * state new);

int getStress(matParams * p);

//***

//
// FORTRAN subroutine definitions
//

//***

extern "C" wvoid
LAME FORTRAN (elastic_plastic_initialize)
(const int & nelem,
const double * props,
double * state_old,
double * state new);

extern "C" void
LAME FORTRAN (elastic_plastic_get stress)
(const int & npts,
const double dt,

&
const double * props ,
double * strain rate,
double * stress_old ,
double * stress_new ,
double * state_old ,
double * state new);

} // lame
} // materials

#endif

Example Model

#include <models/ElasticPlastic.h>

using namespace std;

namespace materials {

namespace lame {

//**
// This is the Elastic Plastic Linear Hardening model
// The properties it reads into the properties array are:
// YOUNGS_MODULUS
// POISSONS_RATIO
// YIELD STRESS
// HARDENING MODULUS

// BETA

// There are 8 state variables. All of them are aliased for output

// 0 - equivelent plastic strain

// 1 to 6 - components of the back stress tensor
// 7 - radius of yield surface

//

//**

Example Model

ElasticPlastic: :ElasticPlastic(MatProps props) {

//

// Material Property Definitions

//

// 1) the number of material properties is given by
// the variable num material properties

//

// 2) memory is allocated for a property array
// of length equal to the number of material
// properties

//

// 3) the values are set by calling

// getMaterialProperty (“PROPERTY NAME”, props);
//

num material properties = 5;

properties = new double[num material properties];

properties[0] = getMaterialProperty ("YOUNGS_ MODULUS", props);
properties[l] = getMaterialProperty ("POISSONS RATIO", props)
properties[2] = getMaterialProperty ("YIELD STRESS", props);
properties[3] = getMaterialProperty ("HARDENING MODULUS", props);

properties|[4] getMaterialProperty ("BETA", props);

Example Model

ElasticPlastic: :ElasticPlastic(MatProps props) {

//

// State Variable Definitions

//

// 1) the number of state variables is given

// by the variable num state vars

//

// 2) names for state variables that are used for

// output can be defined through an alias

// the alias is set using set_state variable alias

//

num_state vars = 8;

set_state_variable_alias("EQPS",0);
set_state_variable alias("ALPHA XX",K1);
set_state_variable alias("ALPHA YY", 2);
set_state_variable alias("ALPHA ZZ",3);
set_state_variable alias("ALPHA XY", 4);
set_state_variable alias("ALPHA YZ",K5);
set_state_variable alias("ALPHA ZX",6);
set_state_variable alias("RADIUS",7);

Example Model

//**
// The destructor for the Elastic Plastic Linear Hardening
// model frees up the memory created for the material properties.

//

//**
ElasticPlastic: :~ElasticPlastic() {

//

// these two lines should appear in order to free up memory
//

// delete [] properties;

// properties = NULL;

delete [] properties;
properties = NULL;

Example Model

//**
// The initialize method for the Elastic Plastic Linear
// Hardening model initializes the state variables

//

//**

int ElasticPlastic::initialize(int & npoints,
double * state_old,
double * state_new) {

// state variables are initialized at the start of an analysis
// using this method

// npoints : number of material points
// state old : state variables at time t n
// state new : state variables at time t n+l

//

// properties: material property array

//

LAME FORTRAN (elastic_plastic_initialize) (npoints,
properties,
state_old,

state_new);

return 0;

Example Model

//**
//

// The getStress method for the Elastic Plastic Linear

// Hardening model finds the new stress for the material

//

//**

int ElasticPlastic::getStress (matParams *p) {

//
// matParams * p : a pointer to memory of a structure that has
// information we need to evaluate the new stress
// state
//
// properties : material property array
//
LAME FORTRAN (elastic_plastic_get stress) (p->nelements,
p->dt,
properties,

p->strain_rate,
p->stress_old,
p->stress_new,
p->state_old,
p->state_new) ;

return 0;

Example Model

struct matParams { d
int nelements; y n
int n_intg; T
double dt; y
double * strain rate;
double * stress_old;
double * stress new; €¢— Tn+1
double * state_old; U
double * state_new;
double * temp old;
double * temp new;
double * left stretch;
double * rotation; \ V”H'l
double * entropy; \ U
double * energy balance_ term;
double lambda; Rn+1
double twomu; U
double * tangent moduli;
double * ym old;
double * ym new;
double * nU new;
double * nU old;
double * bulk _scaling;
double * shear scaling;

}

LAME - Future Work

e Needs:
— Implementation of effective moduli / tangent moduli interface
— Improve function definition / evaluation

— Allocation of scratch space

 Wants:
— Integer / logical material property types
— General kinematics

— Thermal strains

e Goals for FYO07:

— Default location for constitutive models
— Documentation for developers, application codes and users

VA

LAME and Application Codes

* What is needed in Adagio/Presto?
— Input 1s handled by Adagio/Presto — this includes material properties

— For Adagio/Presto to use a constitutive model — some work needs to be done in
Adagio/Presto

o xml file
— xml file defines the material model and the material properties for the model

 Smod Material Input Structural.C
— Location of input parameters for constitutive models — parser handler?

»

VA

LAME and Application Codes

<?xml version='1.0'"?>

<!DOCTYPE sierraCommandSyntax SYSTEM "/home/sntools/Src/Sierra/Config/sierra.dtd" >

<!-- XML File for individual Sierra Commands -->

<?xml-stylesheet href="http://www.engsci.sandia.gov/Sierra/codes/scms/xml_html/sierra.xsl" type="text/xsl"?>
<?cocoon-process type="xslt"?>

<sierraCommandSyntax version="1.0">

<!--
BEGIN PARAMETERS FOR MODEL ELASTIC PLASTIC
-=>
<block command usage="MATERIAL" physics="STRUCTURAL" instance="200">
<keyword> PARAMETERS FOR MODEL ELASTIC PLASTIC </keyword>
<line_parameter> </line parameter>
<summary>
Material parameters for elastic plastic linear hardening model.
</summary>
<!--

YIELD STRESS = sigma y :: defined in another file

LAME and Application Codes

<t--
HARDENING MODULUS = H

-=>
<line_command usage="MATERIAL" physics="STRUCTURAL" instance="201" >
<keyword>HARDENING MODULUS</keyword>
<parameter type="ENUMERATED">Delimiter</parameter>
<parameter type="REAL">H<nonnegative/></parameter>
<summary>
Supplies a value for the material's hardening modulus. This
is a linear term in the relation between the material's equivalent
stress and equivalent plastic strain
</summary>
</line_command>

LAME and Application Codes

<!--
BETA = beta

-=>
<line command usage="MATERIAL" physics="STRUCTURAL" instance="202" >

<keyword>BETA</keyword>

<parameter type="ENUMERATED">Delimiter</parameter>

<parameter type="REAL">Beta
<minInclusive>0.0</minInclusive>
<maxInclusive>l.0</maxInclusive>

</parameter>

<summary>
Specifies the mix of isotropic and kinematic hardening for the
model. This is especially useful if the material in question
has some Bauschinger effect.

When Beta = 0 the hardening is entirely kinematic.
When Beta = 1 the hardening is entirely isotropic.
When Beta is between 0 and 1 the hardening is a combination.
</summary>
</line_command>
</block_pommand><!—— END PARAMETERS FOR MODEL ELASTIC PLASTIC -->
</sierraCommandSyntax>

LAME and Application Codes

Smod_MateriallnputStructural.C

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Structural material properties

Material property identifiers (some are
shared between models)

Convention:

* Identifiers that are multiples of
100 are for model blocks

* Properties that are shared between
models have ids 101-199

* Properties that are specific to a
single model have ids of model block
id + [1..99]

If a material property identifier is
unique for a model, then it is referenced
directly with the parser id number.

Steps for a new model are as follows.
(See below for examples.)

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

(1) Create space for a block of code and
label the block

"'Material Name' Material Model".

(2) Define a const Prsr::Identifier object
with the material model name.
The argument list will be

(material, structural, ####)
Here the number corresponds to the
parser info for the material in the

xml file.

(3) Create a reference to an
Apub: :MaterialInput object

LAME and Application Codes

Smod_MateriallnputStructural.C

// (4) Call the Abub::MaterialInput object's // 900 USED

// property command method as many times // 1000 FOAM PLASTICITY

// as needed. The argument will be one // 1100 ELASTIC FRACTURE

// of the following "const Prsr::Identifier™ // 1200 VISCOPLASTIC

// objects, or one that is specific to // 1300 USED

// the material. If it is specific to the // 1400 SOLDER

// material then it needs to have the

// argument list

//

// Prsr::Identifier(material, structural, ####) // 5300 NLVE POLYMER

// // 5400

// Here the number corresponds to the parser // 5500

// info for the material in the xml file. // 5600 MOONEY RIVLIN

// // 5700 USED

// Here is a list of the material model //

// T"centuries" // * (The ELASTIC model is not a century, but
// // it was put in a long time ago, before we
// 199 ELASTIC* // really understood how we wanted to

// 200 ELASTIC PLASTIC // organize this.)

// 300 EP POWER HARD //

// 400 INCOMPRESSIBLE SOLID [/
// 500 ORTHOTROPIC CRUSH

// 600 POWER LAW CREEP

// 700 THERMOELASTIC

// 800 CURING EPOXY

LAME and Application Codes

Smod_MateriallnputStructural.C

const Prsr::Identifier ELASTIC_PLASTIC(material, structural, 200);

Apub: :MaterialInput & ep = root.nested input(ELASTIC_ PLASTIC,
property completion);

Smod: :General Solid Support::self() .parser blk map["ELASTIC_ PLASTIC"] = & ep;

ep.property command(YOUNGS_MODULUS) ;

ep.property command(POISSONS_RATIO) ;

ep.property command(BULK MODULUS) ;

ep.property command(SHEAR MODULUS) ;

ep.property command(LAMBDA) ;

ep.property command(TWO_MU) ;

ep.property command(YIELD STRESS) ;

ep.property command(Prsr::Identifier(material, structural, 201));
ep.property command(Prsr::Identifier(material, structural, 202));

LAME and Adagio/Presto

« After a model is implemented — it must be tested

— Model developer/implementer must test model
— Model developer/implementer owns all of the mechanics
— It should be easy!

* Impossible to foresee all needs

— If interface does not have what you need...
* Modify interface on LAME side
* Modify interface on Adagio/Presto side

 We want a flexible interface that is easy to use

