
LAME

• Material model implementation in LAME

– Object Oriented Programming provides the interface with Adagio/Presto

• Base class

• Material model is derived from the base class

– Implementation of material model requires the following

• Creation of a class for the material model that is derived from the base class

• Fortran / C / C++ routines that have the core model routines

• Add model to a list of models that can be used (This is changing – for the better
too!)

– The derived class will have simple “look and feel”

• Some freedom will be restricted for now

• Interface will involve stress, kinematics, state variables, etc...

SAND2007-0899P

LAME

• Capabilities must be the same for all models

– Return a stress – mechanics

– Update state variables – mechanics

– Return effective incremental moduli – numerical

• Moduli defined by model

• Numerical moduli defined in base class

– Return tangent moduli – numerical

• Consistent tangent where possible

• Numerical tangent defined in the base class

– We need to clearly identify where, when and how we want use this information
in the application codes

• Preconditioner, critical time step, hourglass control, etc...

Interface with Adagio/Presto

• The stress passed between Adagio/Presto and LAME is the un-rotated
stress

• The “strain-rate” passed between Adagio/Presto and LAME is the un-
rotated rate of deformation

– This is done for to preserve objectivity for hypoelastic models (Green-McInnis
stress rate)

– Hypothetically (hypoelastoetically?) this makes writing constitutive models
easy... unless you want to write something different

;ij ki kl lj ij ik kj ik kjT R R F R U V R  

ij ki kl ljd R D R

Interface with Adagio/Presto

• A state variable array is passed between Adagio/Presto and LAME

– The size of the array is set by the constitutive model

– Allocating space for the state variables is done by the application code
(Adagio/Presto)

– The updating of the state variables is done by the constitutive model

– Output is done by the application code (Adagio/Presto); there is a method to
associate a state variable name with the variable in the array

Interface with Adagio/Presto

• Kinematic variables are passed from Adagio/Presto to LAME

– The kinematic variables are calculated by the application code

– Availability depends on what is / can be calculated

– With Adagio and Presto we have a lot of control over this

– Kinematic quantities that are available are:

• Un-rotated rate of deformation tensor

• Left stretch tensor

• Rotation tensor

• Inverse deformation gradient tensor

• Deformation gradient tensor

– For problems where the temperature changes we need to calculate the thermal
strain

• We currently do “legacy” thermal strain, but we might want to change this

Interface with Adagio/Presto

• Additional quantities can be passed to and from LAME

– Temperature is an example

– Other quantities will come up, especially with code coupling

– This part of the interface is not fully developed since we are not sure what we
will want

– When the interface is developed it must be flexible and easy to use

Interface with Adagio/Presto

Application Code

Constructor

Material Init
Load Step

Init

Get Stress

Interface with Adagio/Presto

Application Code

Constructor

Material Init
Load Step

Init

Get Stress

Interface with Adagio/Presto

• Constructor

– The material properties are stored in an array of double precision variables

– The number of state variables is set

• Adagio/Presto will have Sierra set aside memory for the state variables

– The names of state variables are identified with terms in state variable array

• These names are used so that Adagio/Presto can output state variables

– Well defined instructions in the code will exist for how to write the constructor

Interface with Adagio/Presto

Application Code

Constructor

Material Init
Load Step

Init

Get Stress

Interface with Adagio/Presto

• Material Initialization

– A number of things may have to be initialized for a material model

– Initialization is done in a material initialization method

• Example: initial values of state variables (radius of the yield surface)

Interface with Adagio/Presto

Application Code

Constructor

Material Init
Load Step

Init

Get Stress

Interface with Adagio/Presto

• Load step initialization

– Material properties may need to be initialized at the start of a load step

• example: temperature dependent quantities

Interface with Adagio/Presto

Application Code

Constructor

Material Init
Load Step

Init

Get Stress

Interface with Adagio/Presto

• Stress calculations

– The stress calculation is the “meat” of the constitutive model

– Stress (un-rotated) is updated

– State variables (in appropriate configuration if necessary) are updated

– If they can be calculated, the effective moduli are calculated

– If they can be calculated, the tangent moduli are calculated

Example Model

#ifndef _ELASTIC_PLASTIC_H_
#define _ELASTIC_PLASTIC_H_

#include <models/Material.h>
#include <Lame_Fortran.h>

namespace materials {

namespace lame {

class ElasticPlastic : public Material{

public:

ElasticPlastic(MatProps props) ;
ElasticPlastic(MatPropsNew props) ;
~ElasticPlastic() ;

int initialize(int & npoints,
double dt,
double * state_old,
double * state_new);

int getStress(matParams * p);

} ;

//***
//
// FORTRAN subroutine definitions
//
//***

extern "C" void
LAME_FORTRAN(elastic_plastic_initialize)
(const int & nelem,

const double * props,
double * state_old,
double * state_new);

extern "C" void
LAME_FORTRAN(elastic_plastic_get_stress)
(const int & npts,
const double & dt,
const double * props ,

double * strain_rate,
double * stress_old ,
double * stress_new ,
double * state_old ,
double * state_new);

} // lame

} // materials

#endif

Example Model

#include <models/ElasticPlastic.h>

using namespace std;

namespace materials {

namespace lame {

//**
//
// This is the Elastic Plastic Linear Hardening model
//
// The properties it reads into the properties array are:
//
// YOUNGS_MODULUS
// POISSONS_RATIO
// YIELD_STRESS
// HARDENING_MODULUS
// BETA
//
// There are 8 state variables. All of them are aliased for output
//
// 0 - equivelent plastic strain
// 1 to 6 - components of the back stress tensor
// 7 - radius of yield surface
//
//**

...

}

Example Model

ElasticPlastic::ElasticPlastic(MatProps props){

//
// Material Property Definitions
//
// 1) the number of material properties is given by
// the variable num_material_properties
//
// 2) memory is allocated for a property array
// of length equal to the number of material
// properties
//
// 3) the values are set by calling
// getMaterialProperty(“PROPERTY_NAME”, props);
//

num_material_properties = 5;

properties = new double[num_material_properties];

properties[0] = getMaterialProperty("YOUNGS_MODULUS", props);
properties[1] = getMaterialProperty("POISSONS_RATIO", props);
properties[2] = getMaterialProperty("YIELD_STRESS", props);
properties[3] = getMaterialProperty("HARDENING_MODULUS", props);
properties[4] = getMaterialProperty("BETA", props);

...

}

Example Model

ElasticPlastic::ElasticPlastic(MatProps props){

...

//
// State Variable Definitions
//
// 1) the number of state variables is given
// by the variable num_state_vars
//
// 2) names for state variables that are used for
// output can be defined through an alias
// the alias is set using set_state_variable_alias
//

num_state_vars = 8;

set_state_variable_alias("EQPS",0);
set_state_variable_alias("ALPHA_XX",1);
set_state_variable_alias("ALPHA_YY",2);
set_state_variable_alias("ALPHA_ZZ",3);
set_state_variable_alias("ALPHA_XY",4);
set_state_variable_alias("ALPHA_YZ",5);
set_state_variable_alias("ALPHA_ZX",6);
set_state_variable_alias("RADIUS",7);

}

Example Model

//**
//
// The destructor for the Elastic Plastic Linear Hardening
// model frees up the memory created for the material properties.
//
//**

ElasticPlastic::~ElasticPlastic(){

//
// these two lines should appear in order to free up memory
//
// delete [] properties;
// properties = NULL;

delete [] properties;
properties = NULL;

}

Example Model

//**
//
// The initialize method for the Elastic Plastic Linear
// Hardening model initializes the state variables
//
//**

int ElasticPlastic::initialize(int & npoints,
double * state_old,
double * state_new) {

//
// state variables are initialized at the start of an analysis
// using this method
//
// npoints : number of material points
// state_old : state variables at time t_n
// state_new : state variables at time t_n+1
//
// properties: material property array
//

LAME_FORTRAN(elastic_plastic_initialize)(npoints,
properties,
state_old,
state_new);

return 0;

}

Example Model

//**
//
// The getStress method for the Elastic Plastic Linear
// Hardening model finds the new stress for the material
//
//**

int ElasticPlastic::getStress(matParams *p) {

//
// matParams * p : a pointer to memory of a structure that has
// information we need to evaluate the new stress
// state
//
// properties : material property array
//

LAME_FORTRAN(elastic_plastic_get_stress)(p->nelements,
p->dt,
properties,
p->strain_rate,
p->stress_old,
p->stress_new,
p->state_old,
p->state_new) ;

return 0;

}

Example Model

struct matParams {

int nelements;
int n_intg;
double dt;
double * strain_rate;
double * stress_old;
double * stress_new;
double * state_old;
double * state_new;
double * temp_old;
double * temp_new;
double * left_stretch;
double * rotation;
double * entropy;
double * energy_balance_term;
double lambda;
double twomu;
double * tangent_moduli;
double * ym_old;
double * ym_new;
double * nU_new;
double * nU_old;
double * bulk_scaling;
double * shear_scaling;

} ;

n
ijT

1n
ijT 

1n
ijV 

1n
ijR 

ijd

LAME – Future Work

• Needs:

– Implementation of effective moduli / tangent moduli interface

– Improve function definition / evaluation

– Allocation of scratch space

• Wants:

– Integer / logical material property types

– General kinematics

– Thermal strains

• Goals for FY07:

– Default location for constitutive models

– Documentation for developers, application codes and users

LAME and Application Codes

• What is needed in Adagio/Presto?
– Input is handled by Adagio/Presto – this includes material properties

– For Adagio/Presto to use a constitutive model – some work needs to be done in
Adagio/Presto

• xml file
– xml file defines the material model and the material properties for the model

• Smod_Material_Input_Structural.C
– Location of input parameters for constitutive models – parser handler?

LAME and Application Codes

<?xml version='1.0'?>

<!DOCTYPE sierraCommandSyntax SYSTEM "/home/sntools/Src/Sierra/Config/sierra.dtd" >

<!-- XML File for individual Sierra Commands -->

<?xml-stylesheet href="http://www.engsci.sandia.gov/Sierra/codes/scms/xml_html/sierra.xsl" type="text/xsl"?>

<?cocoon-process type="xslt"?>

<sierraCommandSyntax version="1.0">

<!--

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

-->

<block_command usage="MATERIAL" physics="STRUCTURAL" instance="200">

<keyword> PARAMETERS FOR MODEL ELASTIC_PLASTIC </keyword>

<line_parameter> </line_parameter>

<summary>

Material parameters for elastic plastic linear hardening model.

</summary>

<!--

YIELD STRESS = sigma_y :: defined in another file

-->

LAME and Application Codes

<!--

HARDENING MODULUS = H

-->

<line_command usage="MATERIAL" physics="STRUCTURAL" instance="201" >

<keyword>HARDENING MODULUS</keyword>

<parameter type="ENUMERATED">Delimiter</parameter>

<parameter type="REAL">H<nonnegative/></parameter>

<summary>

Supplies a value for the material's hardening modulus. This

is a linear term in the relation between the material's equivalent

stress and equivalent plastic strain

</summary>

</line_command>

LAME and Application Codes

<!--

BETA = beta

-->

<line_command usage="MATERIAL" physics="STRUCTURAL" instance="202" >

<keyword>BETA</keyword>

<parameter type="ENUMERATED">Delimiter</parameter>

<parameter type="REAL">Beta

<minInclusive>0.0</minInclusive>

<maxInclusive>1.0</maxInclusive>

</parameter>

<summary>

Specifies the mix of isotropic and kinematic hardening for the

model. This is especially useful if the material in question

has some Bauschinger effect.

When Beta = 0 the hardening is entirely kinematic.

When Beta = 1 the hardening is entirely isotropic.

When Beta is between 0 and 1 the hardening is a combination.

</summary>

</line_command>

</block_command><!-- END PARAMETERS FOR MODEL ELASTIC_PLASTIC -->

</sierraCommandSyntax>

LAME and Application Codes

//--

//

// Structural material properties

//

// Material property identifiers (some are

// shared between models)

//

// Convention:

//

// * Identifiers that are multiples of

// 100 are for model blocks

// * Properties that are shared between

// models have ids 101-199

// * Properties that are specific to a

// single model have ids of model block

// id + [1..99]

//

// If a material property identifier is

// unique for a model, then it is referenced

// directly with the parser id number.

//

// Steps for a new model are as follows.

// (See below for examples.)

//

// (1) Create space for a block of code and

// label the block

//

// "'Material Name' Material Model".

//

// (2) Define a const Prsr::Identifier object

// with the material model name.

// The argument list will be

//

// (material, structural, ####)

//

// Here the number corresponds to the

// parser info for the material in the

// xml file.

//

// (3) Create a reference to an

// Apub::MaterialInput object

Smod_MaterialInputStructural.C

LAME and Application Codes

// (4) Call the Abub::MaterialInput object's

// property_command method as many times

// as needed. The argument will be one

// of the following "const Prsr::Identifier“

// objects, or one that is specific to

// the material. If it is specific to the

// material then it needs to have the

// argument list

//

// Prsr::Identifier(material, structural,####)

//

// Here the number corresponds to the parser

// info for the material in the xml file.

//

// Here is a list of the material model

// "centuries"

//

// 199 ELASTIC*

// 200 ELASTIC PLASTIC

// 300 EP POWER HARD

// 400 INCOMPRESSIBLE SOLID

// 500 ORTHOTROPIC CRUSH

// 600 POWER LAW CREEP

// 700 THERMOELASTIC

// 800 CURING EPOXY

// 900 USED

// 1000 FOAM PLASTICITY

// 1100 ELASTIC FRACTURE

// 1200 VISCOPLASTIC

// 1300 USED

// 1400 SOLDER

...

// 5300 NLVE POLYMER

// 5400

// 5500

// 5600 MOONEY RIVLIN

// 5700 USED

//

// *(The ELASTIC model is not a century, but

// it was put in a long time ago, before we

// really understood how we wanted to

// organize this.)

//

//--

Smod_MaterialInputStructural.C

LAME and Application Codes

//--

//

// Elastic-Plastic Linear Hardening Material Model

//

//--

const Prsr::Identifier ELASTIC_PLASTIC(material, structural, 200);

Apub::MaterialInput & ep = root.nested_input(ELASTIC_PLASTIC,

property_completion);

Smod::General_Solid_Support::self().parser_blk_map["ELASTIC_PLASTIC"] = & ep;

ep.property_command(YOUNGS_MODULUS);

ep.property_command(POISSONS_RATIO);

ep.property_command(BULK_MODULUS);

ep.property_command(SHEAR_MODULUS);

ep.property_command(LAMBDA);

ep.property_command(TWO_MU);

ep.property_command(YIELD_STRESS);

ep.property_command(Prsr::Identifier(material, structural, 201));

ep.property_command(Prsr::Identifier(material, structural, 202));

Smod_MaterialInputStructural.C

LAME and Adagio/Presto

• After a model is implemented – it must be tested

– Model developer/implementer must test model

– Model developer/implementer owns all of the mechanics

– It should be easy!

• Impossible to foresee all needs

– If interface does not have what you need...

• Modify interface on LAME side

• Modify interface on Adagio/Presto side

• We want a flexible interface that is easy to use

