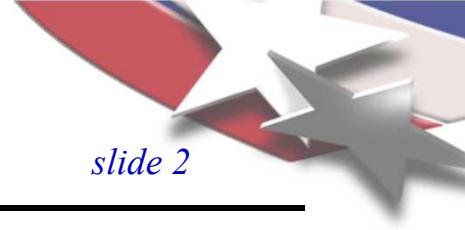


An Experiment to Determine the Accuracy of Squeeze-Film Damping Models in the Free-Molecule Regime

Hartono (Anton) Sumali

Presented at
Purdue University
April 6, 2007



Gas Damping Is Important in MEMS.

Motivation:

- Electrostatic, parallel-plate actuation is very important in many microsystems applications.
- Squeezed-film damping determines the dynamics of plates moving a few microns above the substrate. Examples abound in
 - MEMS accelerometers.
 - MEMS switches.
 - MEMS gyroscopes.
- In high-frequency or low-pressure regime, models for predicting squeezed-film damping give different results.
 - So which model to use?
 - Need experimental validation.

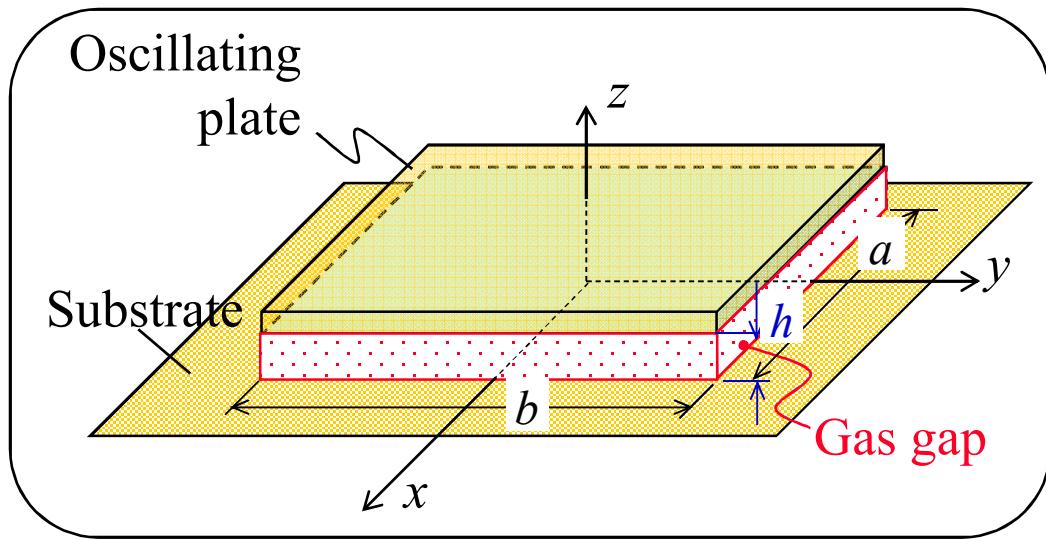
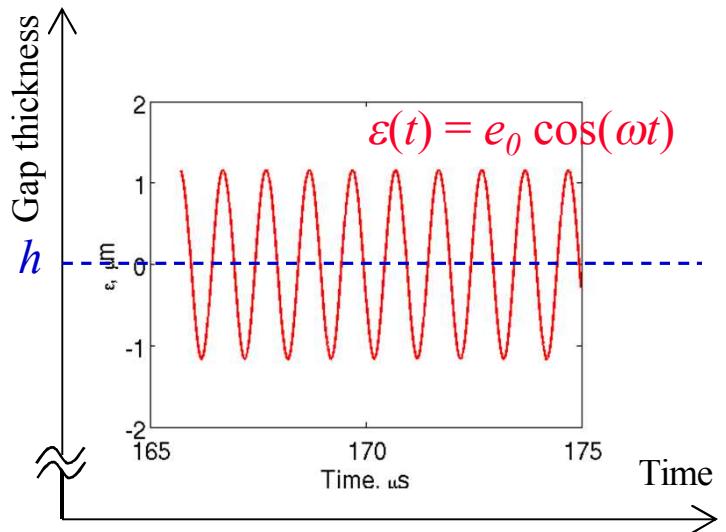
Objective:

- Provide experimental validation to widely used squeezed-film damping models for plates.

Squeezed Fluid Damps Oscillation.

slide 3

Plate oscillates at frequency ω .



The squeezed fluid between the plate and the substrate creates damping forces on the plate.

Models Abound. But Experimental Validation is Needed

slide 4

- Forces on moving plate from gas layer can be obtained from the linearized

Reynolds equation

$$\frac{Ph^2}{12\mu} \nabla^2 \left(\frac{p}{P} \right) - \frac{\partial}{\partial t} \left(\frac{p}{P} \right) = \frac{\partial}{\partial t} \left(\frac{z}{h} \right)$$

P = ambient pressure, Pa

h = gap size, m

μ = viscosity, Pa s

p = pressure at (x,y) , Pa

t = time, s

Assumptions:

1. Rigid plate
2. Small gap
3. Small displacement
4. Small pressure variation
5. Isothermal process
6. Pressure on edges = ambient pressure
7. Small molecular mean free path

- Models will be compared with measurement:

• Blech's model ← (8. Inertia of fluid neglected)

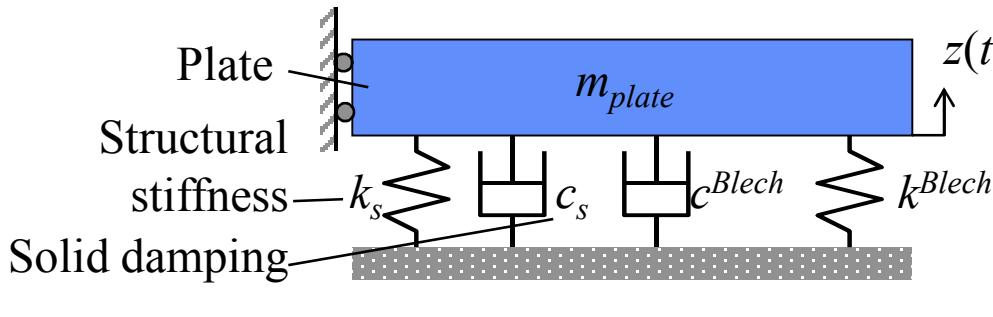
• Andrews et al.'s model ← (9. High-pressure limit of Blech's)

• Veijola's model ← (10. Inertia of fluid included)

Blech's Model Adds Damping And Stiffness to the Structure.

slide 5

- Oscillating plate has stiffness and intrinsic (non-squeeze-film) damping.



$$z(t) = e_0 \cos(\omega t)$$

$$m_{plate} \ddot{z} + c \dot{z} + k z = \tilde{f}$$
$$\underbrace{c_s + c^{Blech}}_{k_s + j\omega \kappa^{Blech}}$$

- Squeeze film causes an extra damping coefficient

- and an extra spring stiffness

$$\begin{aligned} e_0 &= \text{amplitude, m} \\ m_{plate} &= \text{plate mass, kg} \\ t &= \text{time, s} \\ z &= \text{gap displacement, m} \\ \omega &= \text{frequency, rad/s} \end{aligned}$$

For Low-Squeeze Numbers, Blech's Model Reduces to Andrew's et al.'s Model.

slide 6

- Blech's damping coefficient

$$c^{Blech}(\omega) = \frac{768}{\pi^6} \frac{a^3 b}{h^3} \mu \sum_{m,n \text{ odd}} \frac{m^2 + n^2 (a/b)^2}{m^2 n^2 [m^2 + n^2 (a/b)^2]^2 + \sigma^2 / \pi^4}$$

- Depends on the **squeeze number**

$$\sigma = 12\mu \left(\frac{a}{h_m} \right)^2 \left(\frac{\omega}{P} \right)$$

- For low squeeze numbers, $\sigma \ll \pi^2$

$$c^{Andrews} = 0.42(ab)^2 \mu / h^3$$

a = plate width, m
 b = plate length, m
 h = gap height, m
 P = ambient pressure, Pa
 μ = viscosity, Pa s
 ω = frequency, rad/s

- Sample applicable range: $\mu = 1.82(10)^{-5}$ Pa.s; $a = 144\mu\text{m}$; $h = 4.5\mu\text{m}$.
in atmosphere $P=9.3(10)^4$ Pa: $\sigma < 1$ for

$$\omega/(2\pi) < 70\text{kHz}$$

Veijola's Model Accounts for Fluid Inertia.

slide 7

- Taking into account the inertia of the gas flowing in and out of the gap, Veijola (2004) modified Reynolds equation into

$$\frac{\partial}{\partial x} \left(\frac{\rho h^3}{12\mu} Q_{pr} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\rho h^3}{12\mu} Q_{pr} \frac{\partial p}{\partial y} \right) = \frac{\partial \rho h}{\partial t}$$

h = gap size, m
 p = pressure at (x,y) , Pa
 t = time, s
 μ = viscosity, Pa s
 ρ = density, kg/m³

- If the gap oscillation is $\varepsilon(t) = e_0 \exp(j\omega t)$, then the damping force complex amplitude is

$$F^{Veij}(\omega) = j\omega e_0 \Phi(\omega)$$

$$\Phi(\omega) = \sum_{m=1,3,\dots}^M \sum_{n=1,3,\dots}^N \frac{1}{Q_{pr} G_{mn} + j\omega C_{mn}}$$

$$C_{mn} = \frac{\pi^4 h (mn)^2}{64 a b n_\gamma P}$$

$$Q_{pr} = \sum_{k=1,3,\dots} \frac{1+6K_s}{\frac{k^4 \pi^4}{96} + j\omega \frac{k^2 \pi^2 \rho h^2 (1+10K_s + 30K_s^2)}{96\mu(1+6K_s)}}$$

$$G_{mn} = \frac{\pi^6 h^3 (mn)^2}{768 \mu a b} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)$$

Knudsen number
 $K_s = 1.016 \lambda/h$

λ = mean free path, m

a = width, m
 b = length, m
 e_0 = amplitude, m
 j = $\sqrt{-1}$
 n_γ = 1 for isothermal,
 $(= c_p/c_v$ for adiabatic).
 P = ambient pressure, Pa
 μ = viscosity, Pa s
 ω = frequency, rad/s
 ρ = gas mass density, kg/m³

Gallis and Torczynski's Model Is a Direct Simulation Monte Carlo (DSMC) Method

slide 8

Instead of the trivial boundary conditions at the plate edges, introduce

$$P - p = \eta G(\hat{\mathbf{n}} \cdot \nabla p) + \zeta \left(\frac{12\mu U}{G} \right) \left(1 + \chi \frac{6\Lambda}{G} \right)^{-1}$$

DSMC simulations were used to determine correlations for the gas-damping parameters

$$\eta = \frac{0.634 + 1.572(\Lambda/G)}{1 + 0.537(\Lambda/G)} \quad \chi = \frac{1 + 8.834(\Lambda/G)}{1 + 5.118(\Lambda/G)} \quad \zeta = \frac{0.445 + 11.20(\Lambda/G)}{1 + 5.510(\Lambda/G)}$$

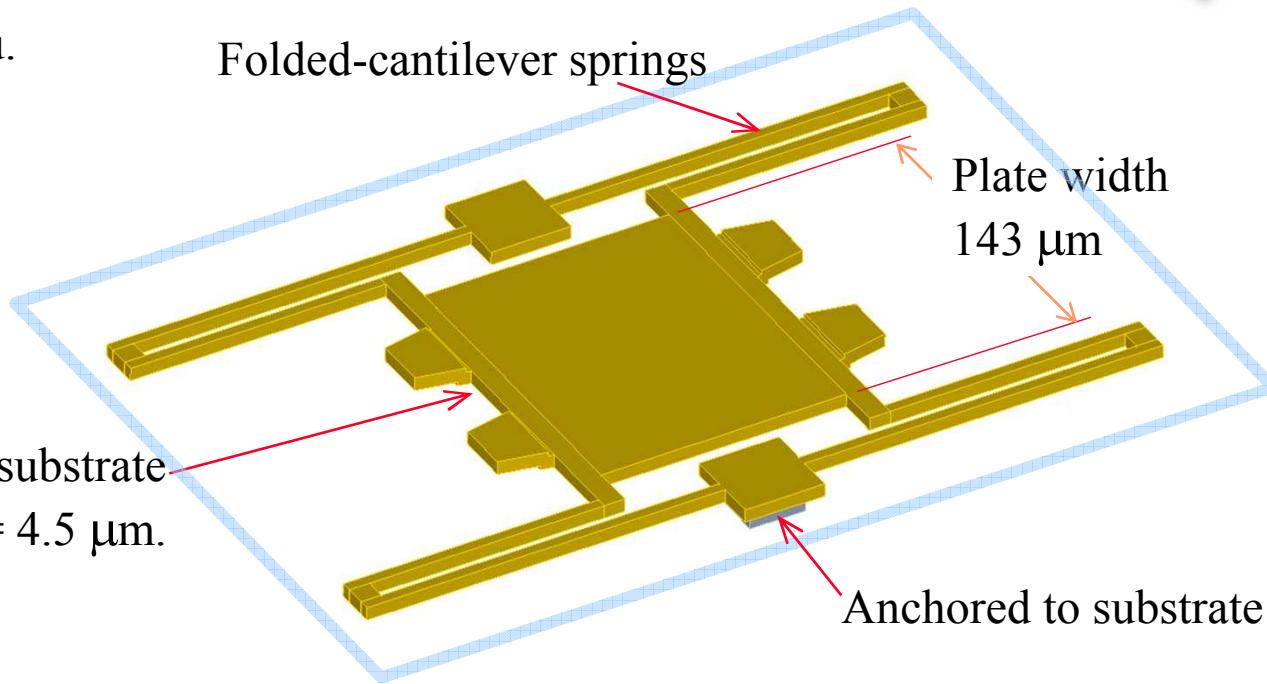
G = gas film (gap) thickness. Λ/G is modified Knudsen number $\Lambda = \frac{2-\alpha}{\alpha} \lambda \quad 0 \leq \Lambda/G \leq 1$

α = accommodation coefficient. (For this test device $\alpha = 1$).

Measurement Is Done on Oscillating Plates

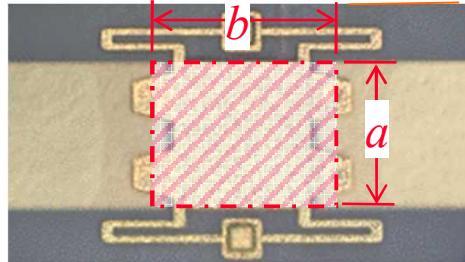
slide 9

- Structure is electro-plated Au.
- Thickness around 5.7 μm .
- Substrate is alumina.

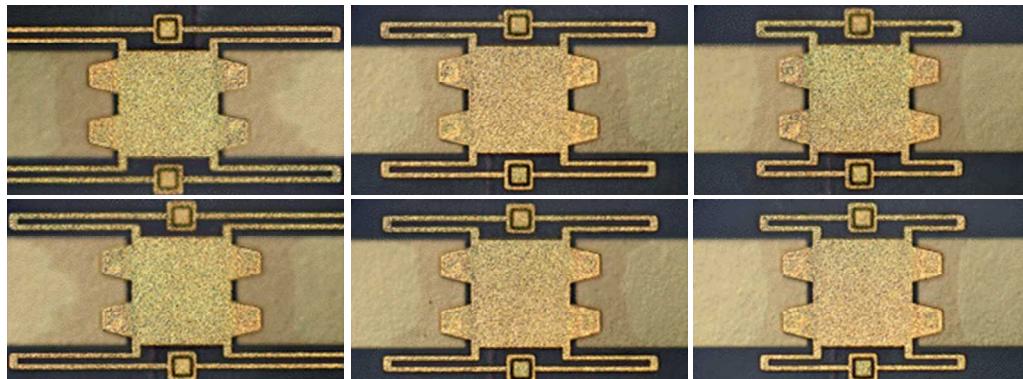


Air gap between plate and substrate
Mean thickness = 4.5 μm .

- Assumed width a and length b , where ab = true plate area.

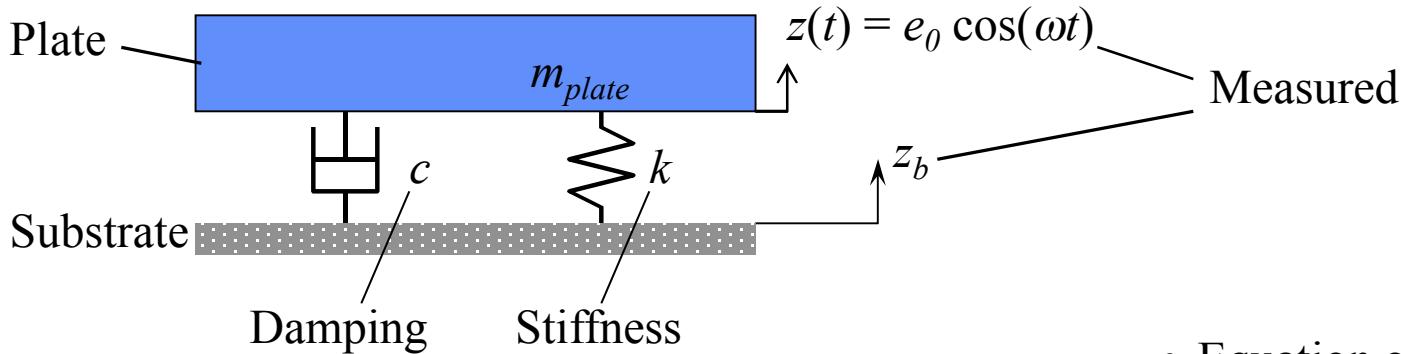


- 2x3 array of plates



The Test Structure Can Be Modeled as SDOF.

slide 10



- Equation of motion

$$m\ddot{z} = k(z_b - z) + c(\dot{z}_b - \dot{z})$$

- Frequency response function (FRF) from base displacement to plate displacement:

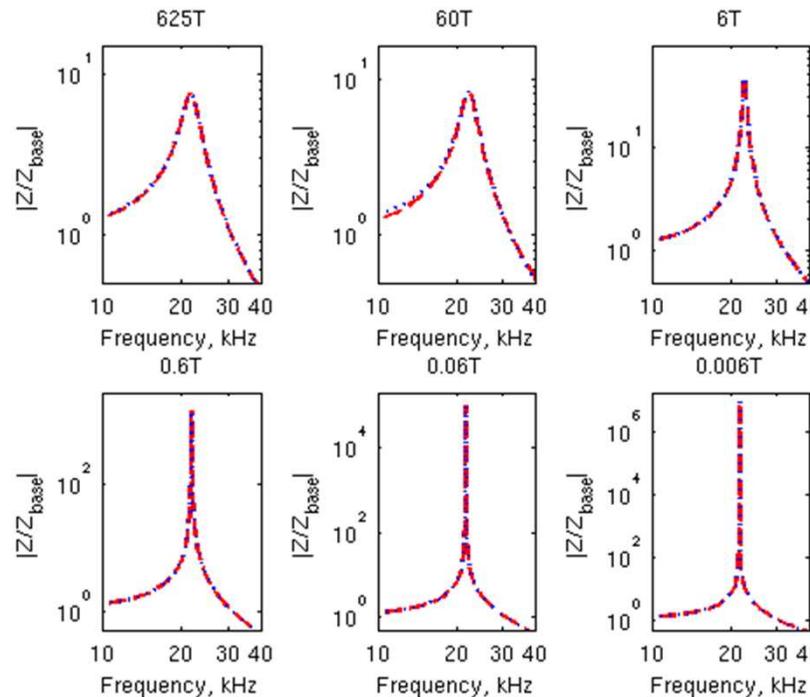
$$\frac{Z(\omega)}{Z_b(\omega)} = \frac{m\omega^2}{-m\omega^2 + j\omega(c_s + c_{gas}) + (k_s + k_{gas})} + 1$$

$\underbrace{\begin{matrix} \text{non-} \\ \text{squeeze-} \\ \text{film} \end{matrix}}_{\text{damping}} \quad \underbrace{\begin{matrix} \text{squeeze-} \\ \text{film} \end{matrix}}_{\text{damping}}$

Prediction Shows Squeeze Film Causes High Damping

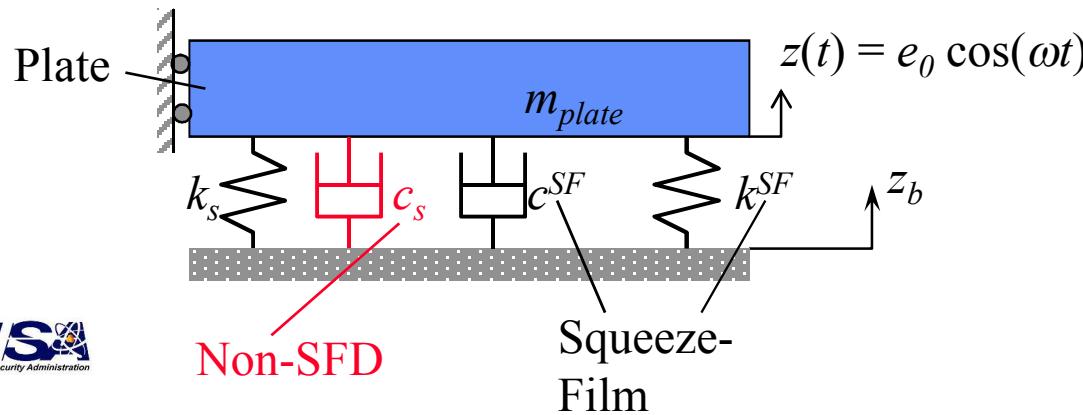
slide 11

- Blech's model with assumed structural parameters.
- Assume structural/solid damping = 0.



- In atmospheric air, $Q \sim 10$.
- At 10^{-4} atm., $Q \sim 10^7$.

- Damping *measured* in vacuum is caused by non-squeeze-film damping (Non-SFD).



$$m_{plate} \ddot{z} + c \dot{z} + kz = \tilde{f}$$
$$\underbrace{c_s + c^{SF}}_{c_{s+SF}} \quad \underbrace{k_s + k^{SF}}_{k_{s+SF}}$$

Need to Compare Computed Damping Factor c with Measured Damping Ratio ζ .

slide 12

- Models predict ***damping factor*** c in the equation of motion

$$m_{plate} \ddot{z} + c\dot{z} + kz = f_{ext}(t)$$

- Measurement method gives ***damping ratio*** ζ in the equation of motion

$$\ddot{z} + 2\zeta\omega_n\dot{z} + \omega_n^2 z = \hat{f}_{ext}(t)$$

- To compare prediction with measurement, use the relationship between c and ζ

- For Blech's model,

$$\zeta_{Blech} = \frac{c_{Blech}}{2m_{plate}\omega_n}$$

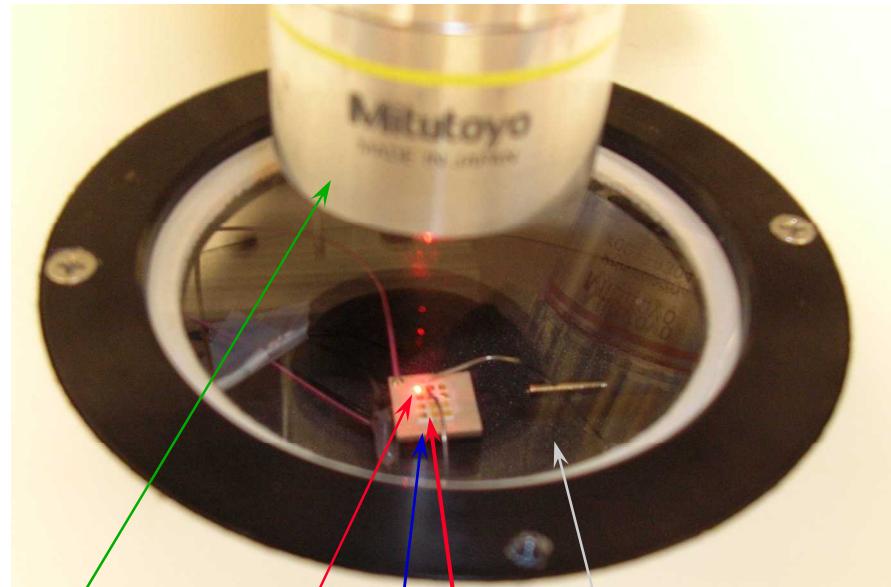
- For Veijola's model,

$$\zeta_{Veij} = \text{Re} \left(\frac{F_{Veij}}{j\omega_d e_0 2m_{plate}\omega_n} \right)$$

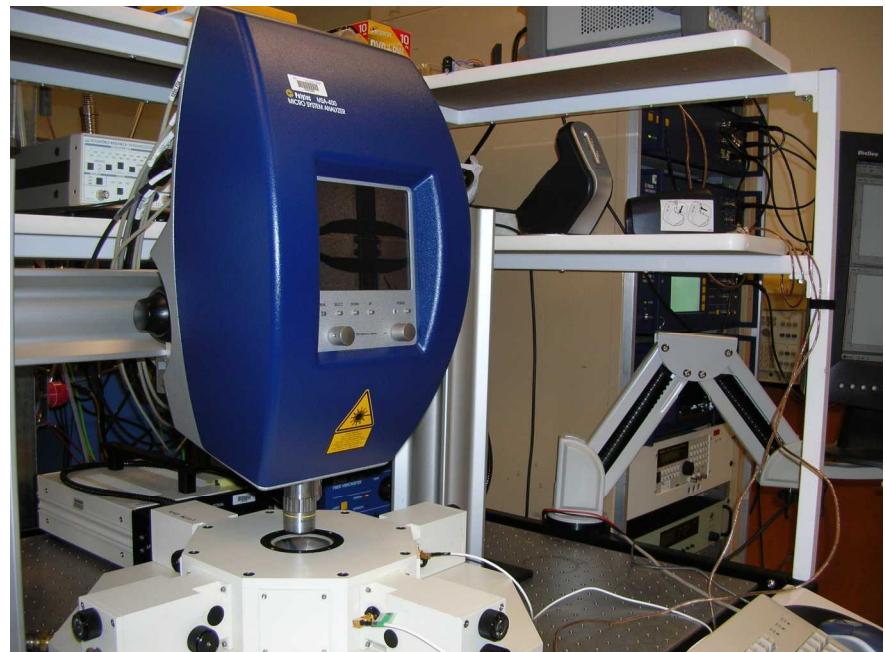
e_0 = amplitude, m
 h_{plate} = plate thickness, m
 j = $\sqrt{-1}$
 m_{plate} = plate mass, kg
 ω_n = natural frequency, rad/s

Measurement Uses Laser and Vacuum.

slide 13



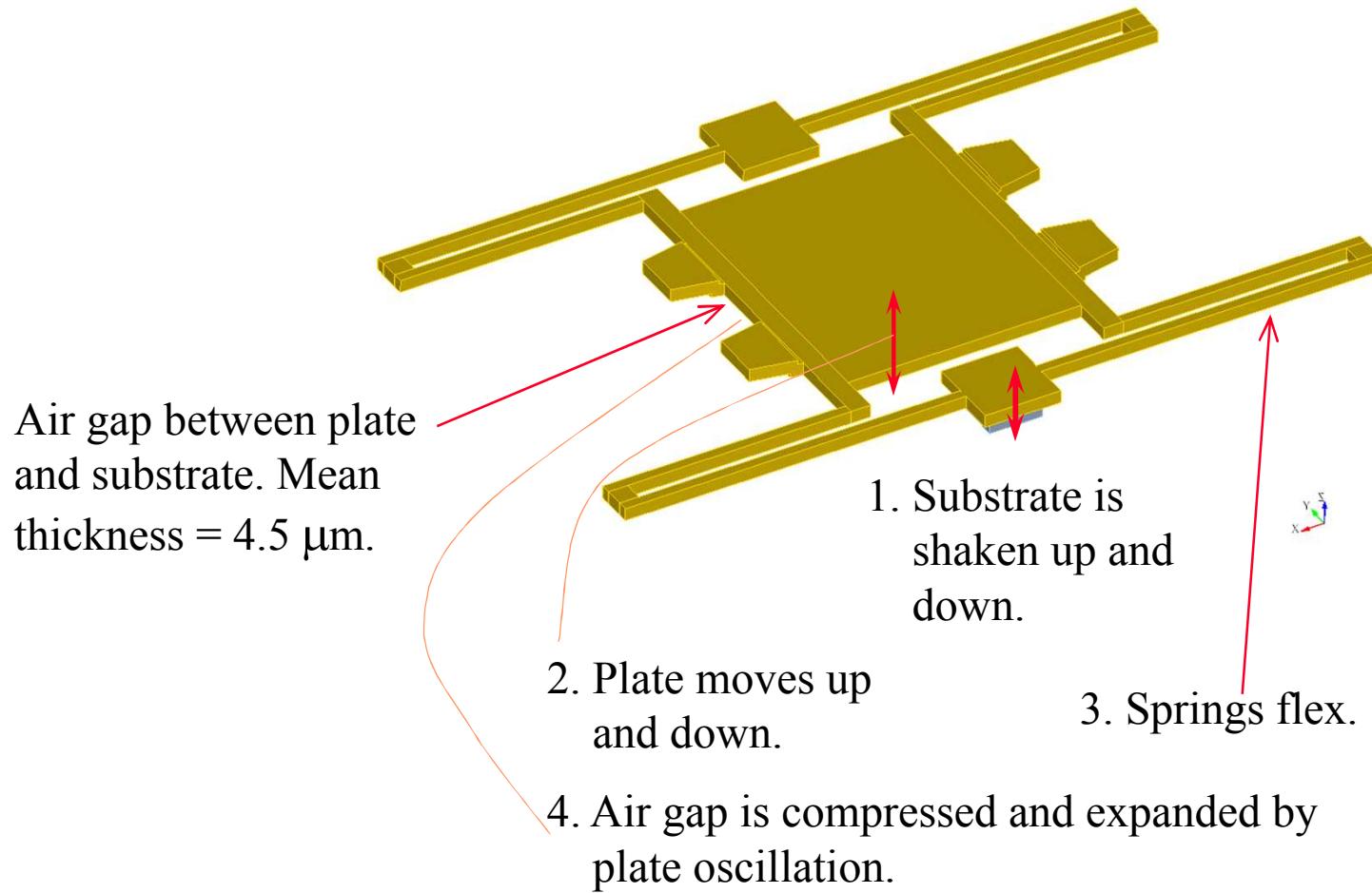
Microscope
Laser beam
PZT actuator (shaker)
Die under test
Vacuum chamber



- Excitation: Base displacement with piezoelectric actuator.
- Sensing: Scanning Laser Doppler Vibrometer.

Oscillating Plate Is Shaken through Its Support.

slide 14



- Frequency response function (FRF) from base displacement to plate displacement:

$$\frac{Z(\omega)}{Z_b(\omega)} = \frac{m\omega^2}{-m\omega^2 + j\omega(c_s + c_{gas}) + (k_s + k_{gas})} + 1$$

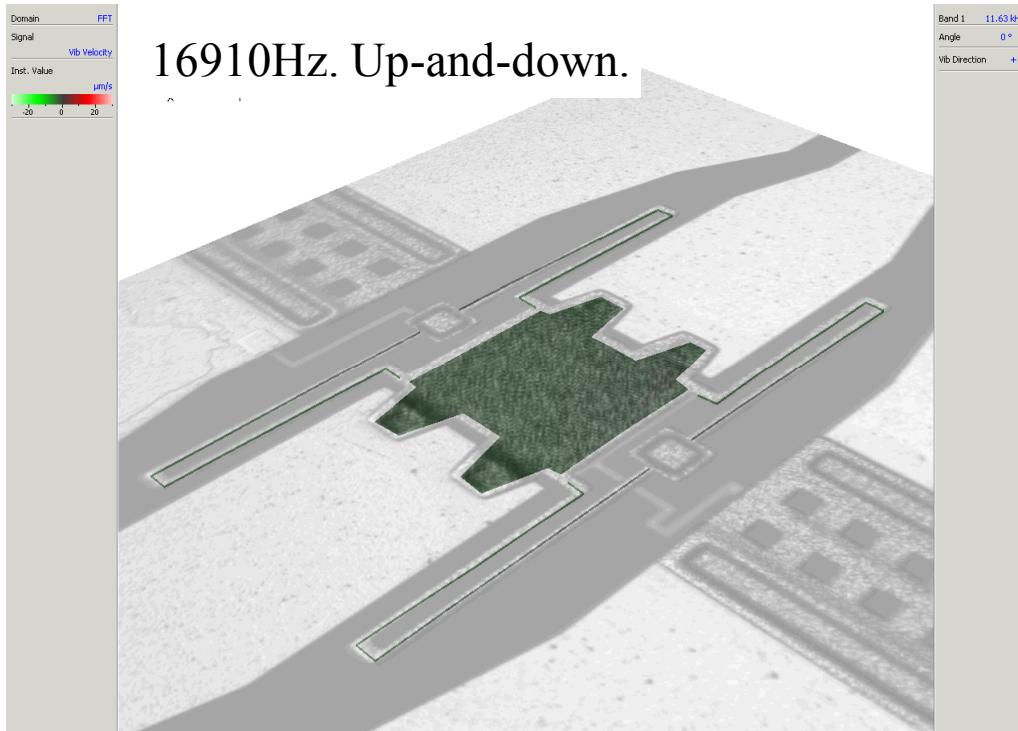
Experimental Modal Analysis Gives Natural Frequency and Damping.

slide 15

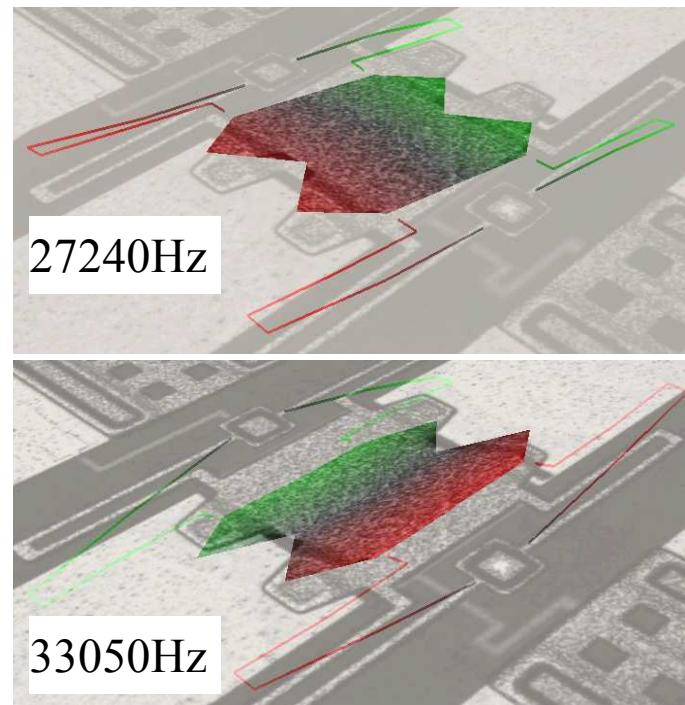
- Modal analysis was done in 2k-200 kHz.
- Tests were repeated at different air pressures from atmospheric (640 Torr) to near-vacuum (<1 milliTorr).

Measured deflection shape, first mode.

16910Hz. Up-and-down.



Higher modes are not considered.

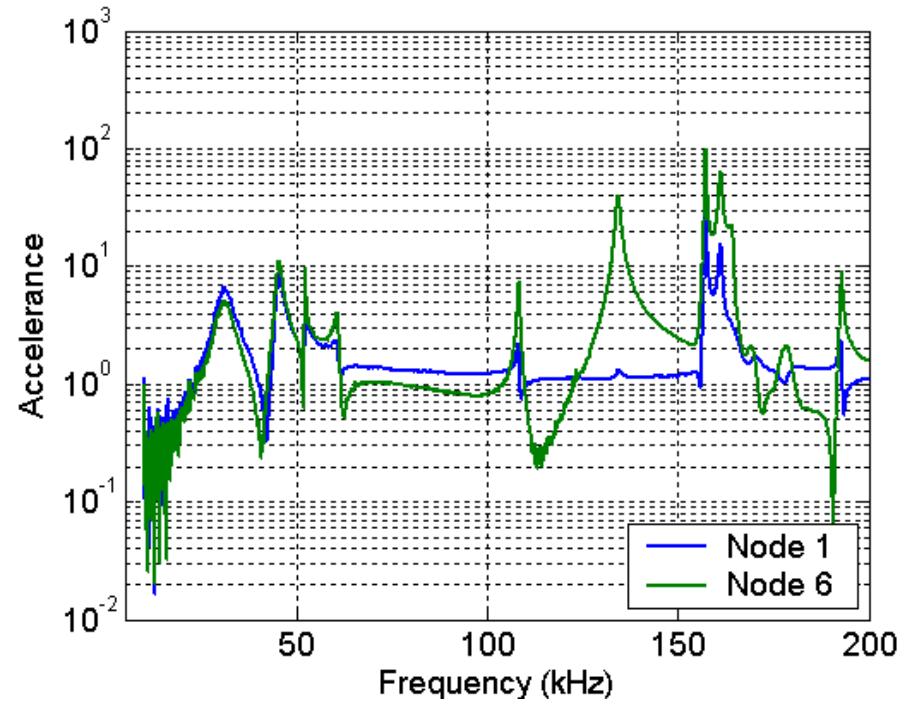


Atmospheric Pressure Suppresses Plate Oscillation.

slide 16



Near vacuum (0.06 Torr)

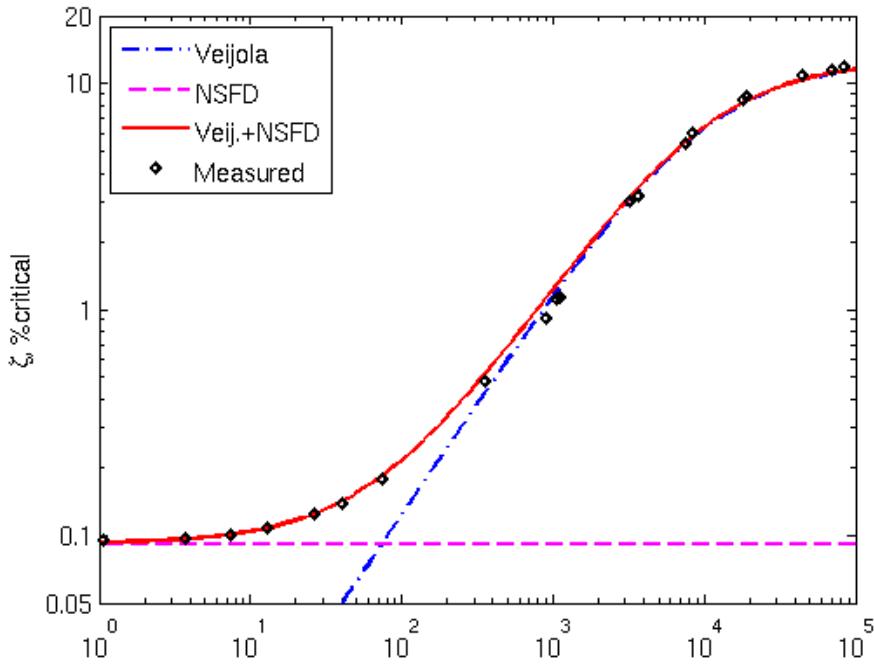


Atmospheric (625 Torr)

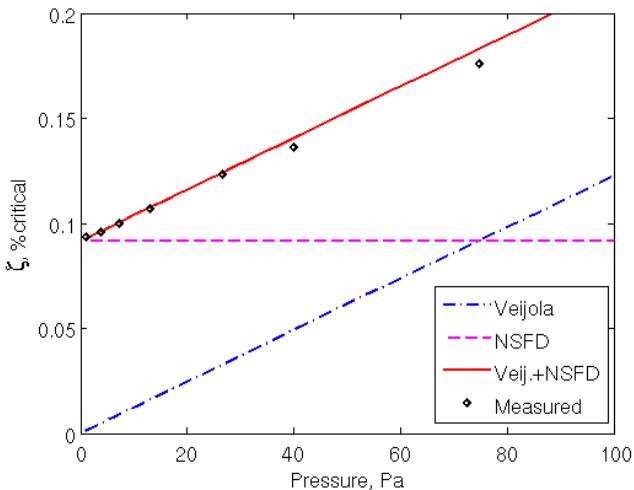
- From Frequency Response Functions (FRFs), a commercial modal analysis program computed the natural frequencies, mode shapes, and damping ratios.
- Only the lowest-frequency mode will be discussed here.
- Atmospheric air damped the first resonant response by two orders of magnitude.

Non-Squeeze-Film Damping is Estimated from Asymptote.

slide 17



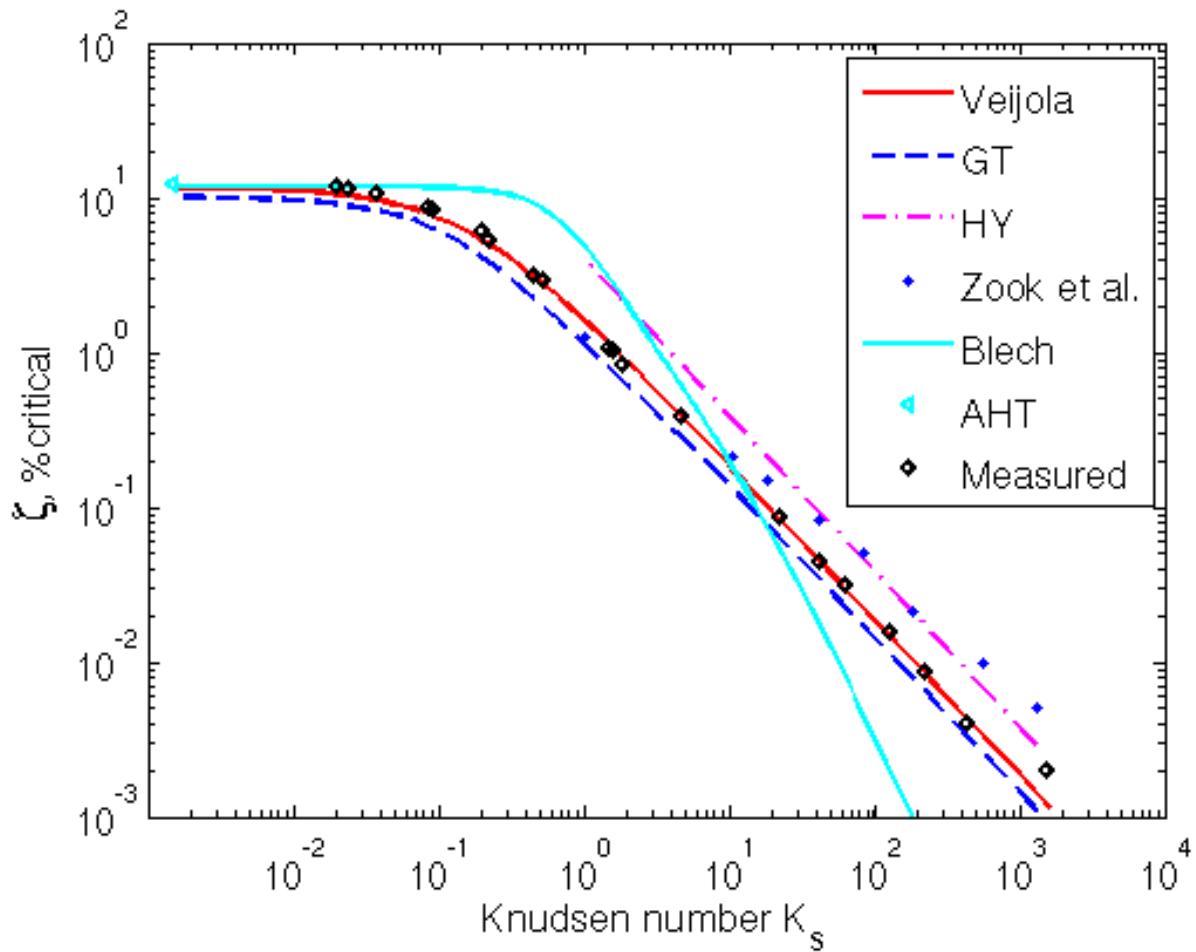
At low pressures, Non-Squeeze-Film Damping (NSFD) is the dominant damping.



To obtain squeeze-film damping from measured total damping, NSFD is subtracted out.

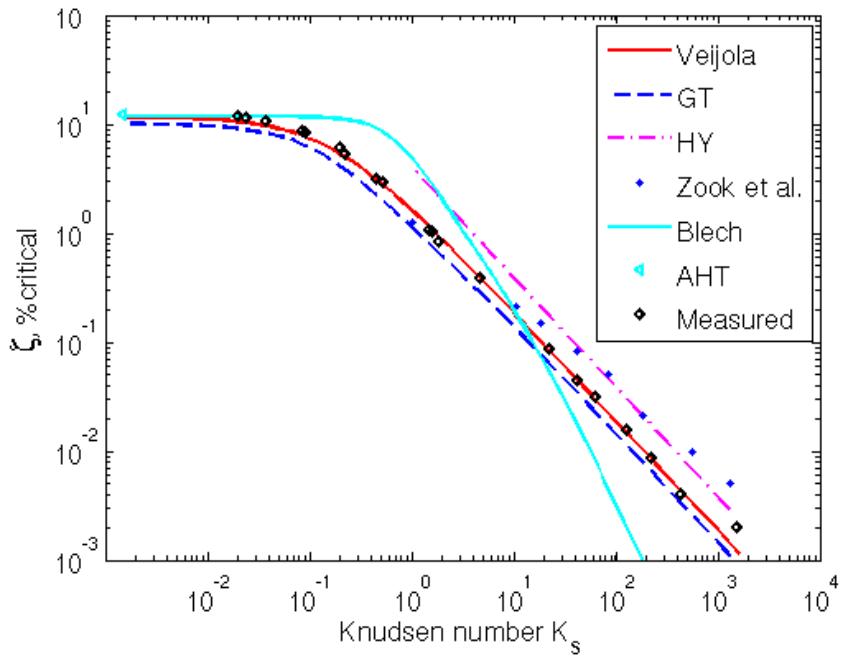
Most Models Predictions Differ from Measured Data

slide 18



Conclusions:

slide 19



- On rigid plates with width $\sim 150 \mu\text{m}$, oscillating around $4.5 \mu\text{m}$ above the substrate, squeezed air film can cause large damping.
- Continuum models such as Blech's model, Andrews et al.'s model, and Veijola's model are not less accurate than molecular models.
- For the conditions tested here, in atmospheric air the simplest model mentioned by Andrews et al. is as good as any more sophisticated models.
- In the high squeeze number regime (low pressures or high frequencies), the Veijola model is shown to match experimental data accurately.

Acknowledgment

slide 20

The authors thank the following contributors:

- David Epp for some of the modal analysis.
- Chris Dyck and Bill Cowan's team for providing the test structures.
- Carl Diegert for the confocal microscope photographs.
- Jim Redmond and Steve Kempka for technical guidance and programmatic support.

Questions ??

Thank you!

hSumali@Sandia.gov

Backup Slides

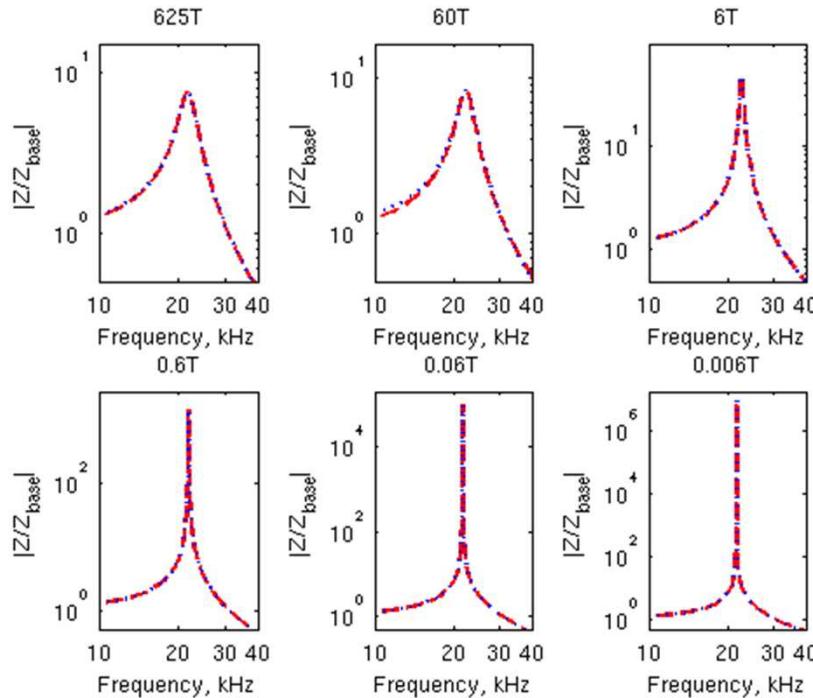
slide 21

Which Frequency to use for Predicting Damping Ratio

slide 22

- Models predict damping factor c as function of frequency.
- Which frequency should be used?
- Try 1 and 2 below

1. Curve-fit frequency response function to obtain a damping ratio ζ .



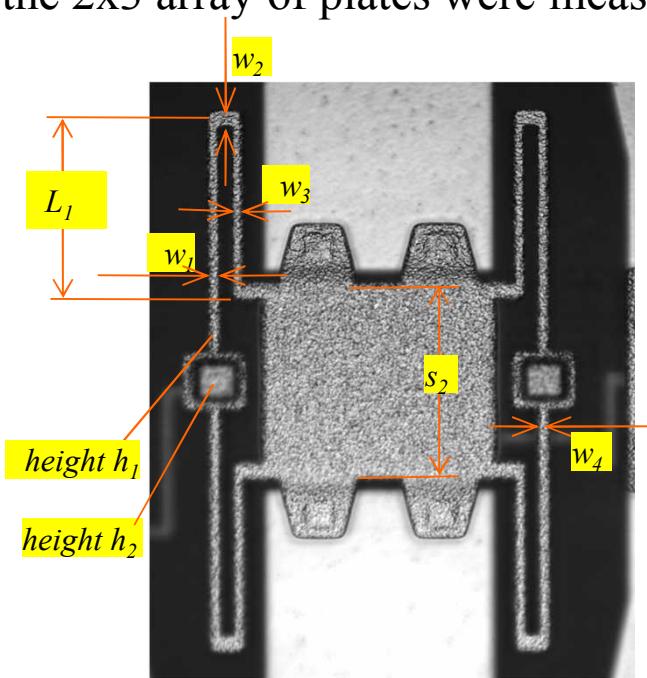
2. Use Resonant frequency in the models.

- 1 and 2 turns out to give practically the same damping factor.
- 2 requires less work.

Measurement Was Repeated on Array of Plates.

slide 23

- Every structure under test was different.
 - by design
 - also due to fabrication variations.
- Dimensions of the 2x3 array of plates were measured with interferometry.



w2	14.6	13.6	13.6
w3	9.7	8.8	8.8
w4	8.8	9.7	9.7
L1	225.1	175.4	126.7
s1	0	0	0
s2	143.2	144.2	144.2
h1	5.7	5.7	5.7
h2	10.4	10.3	10.2

w1	9.7	10.7	10.7
w2	14.6	13.6	13.6
w3	8.8	9.7	8.8
w4	9.7	9.7	9.7
L1	226.1	175.4	126.7
s1	0	0	0
s2	144.2	144.2	144.2
h1	5.7	5.7	5.7
h2	10.4	10.6	10

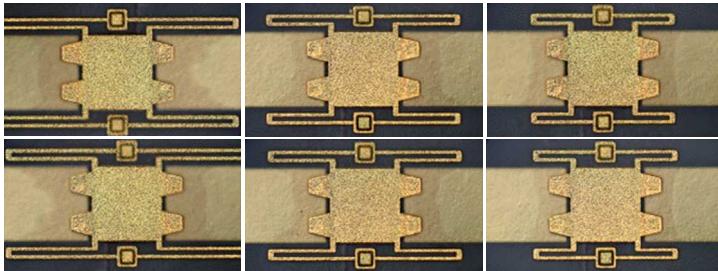
- Squeezed-film damping ratios were predicted using measured dimensions, measured natural frequency.

Measurement Gives Natural Frequency and Damping.

slide 24

Numbers in tables correspond to position in array

*Des. and Fab. by Chris Dyck, SNL
Photograph by Carl Diegert, SNL*



Natural frequency, Hz

10509	17350	21721
12003	18507	29071

- Shorter springs result in higher natural frequencies, as expected.
- The two rows were significantly different.
 - Fabrication variation
 - Much more common in MEMS than in macro world

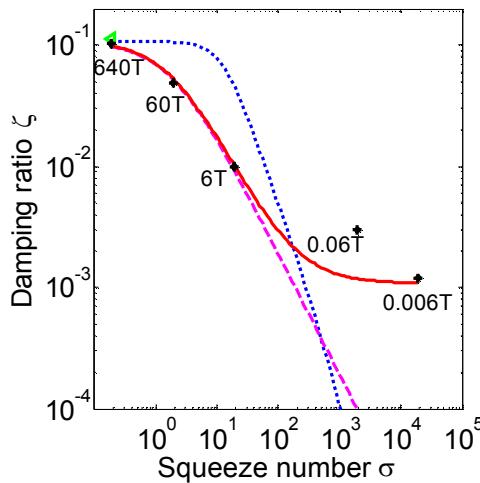
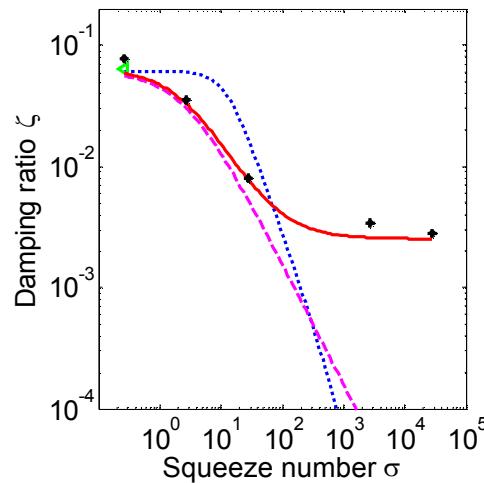
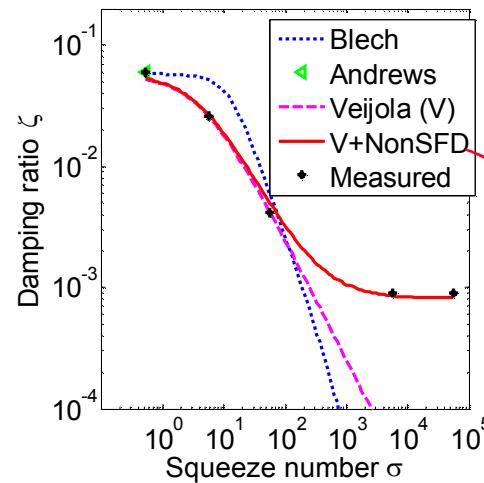
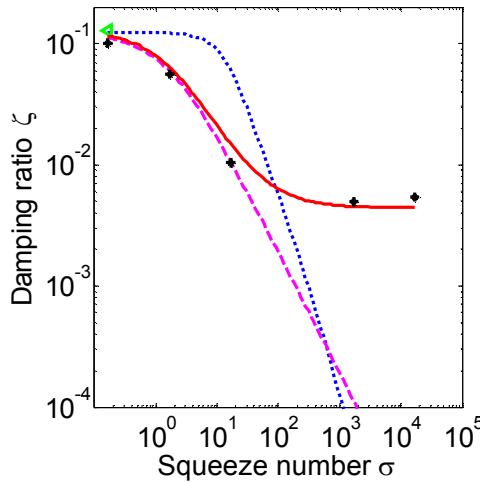
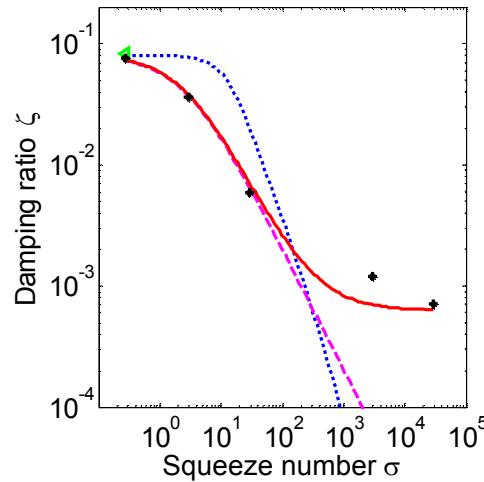
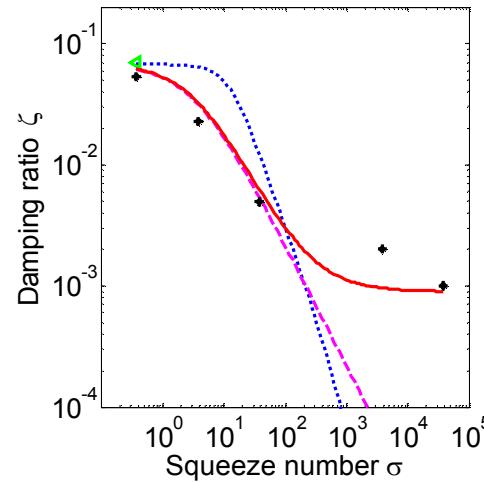
Damping ratios ζ , % of critical

Atm P=625Torr		
10.05	7.61	5.35
10.36	7.72	5.93
P = 60 Torr		
5.58	3.57	2.26
4.93	3.56	2.58
P = 6 Torr		
1.03	0.59	0.49
1	0.79	0.41
P = 60 mTorr		
0.49	0.12	0.2
0.3	0.34	0.09
P = 6 mTorr		
0.54	0.07	0.1
0.12	0.28	0.09

- Lower pressure results in lower damping, as expected.
- Curve-fitting was not reliable at 6 mT.
 - $\zeta < 0.1\%$.
 - Window was needed to reduce leakage, but distorted damping.

Some Model Predictions Agree with Measurement.

slide 25



Squeeze number

$$\sigma = 12\mu \left(\frac{a}{h} \right)^2 \left(\frac{\omega}{P} \right)$$

- Non-squeeze-film damping accounts for solid structural and other unknown damping.
- At high pressure, nonSFD does not contribute much.
- At near-vacuum:
 - Gas damping is negligible.
 - Assume 90% of damping is nonSFD.