

Modeling the Anisotropic Viscoelastic Behavior of the Cornea

SAND2007-2351P

Presented to the Engineering Sciences External Review Panel
Sandia National Laboratories, April 16-17, 2007

Thao D. Nguyen, Reese E. Jones, Mechanics of Materials, Physical and Engineering Sciences, Livermore, CA
Brad L. Boyce, J. Mark Grazier, Microsystem Materials, Materials Performance and Aging, Albuquerque, NM

Overview

Approach:

- Conduct uniaxial tensile strip tests (creep and cyclic loading) to characterize viscoelastic behavior.
- Construct anisotropic viscoelastic model of the cornea based on deformation mechanisms of lamellae.
- Develop inflation tests of intact cornea with digital image correlation to characterize physiological anisotropic viscoelasticity.
- Develop finite element model of pressurization experiments to post-process experimental data and obtain physiological properties.

Objective:

- Develop new Sandia capability for combined in-vitro experimentation and modeling for nonlinear anisotropic viscoelastic behavior of hydrated soft biological materials.
- Develop a physics-based predictive model of the microstructural underpinnings of the mechanical and structural behavior of the cornea.
- Team Members: 8776: R.Jones (PI), T. Nguyen; 1824: B. Boyce, J. Grazier
Collaborators: UCSF (Dept. of Ophth.): S. McLeod (MD); B. Sands (MD)

Constitutive Relations

Homogenized stress response of stroma: $S_{ij} = \frac{\partial \sigma_{ij}}{\partial C}$

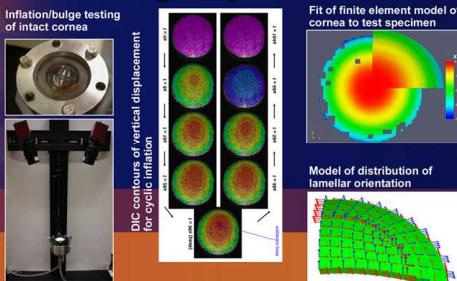
$$\sigma_{ij} = \frac{\mu}{\sqrt{I_3}} (b - I_3^{-1} 1) + \frac{1}{2\pi\sqrt{I_3}} \int_{-\pi}^{\pi} \frac{\partial W_1^{eq}}{\partial A} \lambda^i m D(\theta, X) d\theta$$

Viscous flow rule for lamellae

$$\frac{\lambda_k^v}{\lambda_k^s} = \frac{1}{\eta_k^s} \tau_k^v$$

Phenomenological lamellar viscosity model

$$\eta_k^v(\tau_k^v) = \eta_{0k} \left[\frac{\tau_{0k}}{\tau_k^v} \operatorname{Sinh} \left(\frac{\tau_k^v}{\tau_{0k}} \right) \right]^{-1}$$

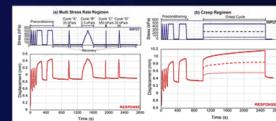

reference value activation stress

Homogenized flow for stroma

$$\sigma_{ij}^{eq} = \sum_k^N \frac{1}{\sqrt{I_3}} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \eta_k \lambda_k^s m \otimes m D(\theta, X) d\theta \right] : b_k^{ij-1} \left(-\frac{1}{2} \mathcal{L}_k b_k^{ij} \right) b_k^{ij-1}$$

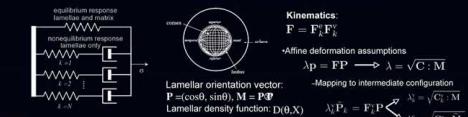
η_s Homogenized viscosity tensor

Digital Image Correlation of Bulge Experiments



Cornea Tensile Strip Tests

B. L. Boyce, R. E. Jones, T. D. Nguyen, "Stress-controlled viscoelastic tensile response of bovine cornea," accepted to *Journal of Biomechanics*, 2007.


- Bovine corneas obtained from Sierra Medical.
- Corneas harvested within 24 hours, tested in 48 hours of slaughter
- Tensile strips 7.0 mm x 1.25 mm cut from corneas with metal dye
- Strips extracted along Nasal-Temporal (NT) and Inferior-Superior (IS) meridians.
- Tests conducted in Cytosol Ophthalmic Balanced Saline Solution at 30C.
- Cornea strip fixture used pneumatic compression grips.
- Tests conducted using MTS servohydraulic machine under stress control to accommodate material remodeling during preconditioning.

Loading Regimen

- Developed for repeatability.
- Maximized dwell time for full recovery.
- Same precondition used for all load levels.

Rheological Model

Free energy density of stroma

$$W_s(C, C_k^s, M_k) = W_m(C) + \overline{W}_t(C, C_k^s, \bar{M}_k)$$

$$\text{Isotropic contribution of matrix: } W_m(C) = \frac{\mu}{2} (I_1 - 3) + \frac{\mu}{2\gamma} (I_1^{-\gamma} - 1)$$

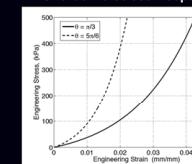
$$\text{Anisotropic contribution of lamellae: } \overline{W}_t(C, C_k^s, M_k) = \frac{1}{2} \int_{-\pi}^{\pi} \overline{W}_t(\lambda, \theta, \lambda_k^s) D(\theta, X) d\theta$$

Free energy density of lamella

$$W_t(\lambda, \lambda_k^s) = W_t^{\text{eq}}(\lambda) + \sum_k^N W_t^{\text{non eq}}(\lambda_k^s)$$

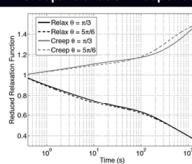
$$W_t^{\text{eq}}(\lambda) = \alpha_{\text{eq}}^{\text{eq}} \left(\exp \left[\beta \left(\lambda^2 - 1 \right) \right] + \frac{\beta}{\lambda^2} \right)$$

$$\text{Phenomenological potential for lamellae: } W_{t_k}^{\text{non eq}}(\lambda_k^s) = \alpha_{\text{eq}}^{\text{non eq}} \left(\exp \left[\beta \left(\lambda_k^s - 1 \right) \right] + \frac{\beta}{\lambda_k^s} \right)$$


Probing Anisotropic Viscoelastic Response

Density distribution function for limbus

$$D(\theta) = \sin^8 \left(\theta - \frac{4\pi}{3} \right) + 0.727$$


(Pinsky et al. 2005,
Aghamohammadi et al. 2002)

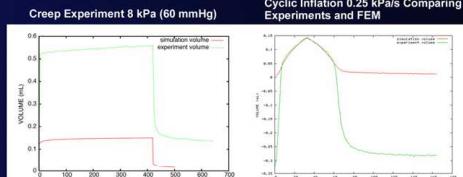
Short-time Stress Response

Preferred orientation (higher lamellar density) significantly stiffer.

Creep/Relaxation Response

Time dependent behavior is orientation dependent!

Conclusion/Future Work


Developed anisotropic viscoelastic model for the tensile behavior of cornea based on the collagen fibril architecture.

- Applies multiple nonlinear stress-activated non-equilibrium processes.
- Anisotropic internal variable formulation specifies flow rule at lamellar level not at tissue level.
- Properties of stroma (composite level) related to properties of lamellae (fiber level) and lamellar distribution.
- Consistent homogenization scheme used for effective moduli and viscosities.
- Model can be applied to other fiber-reinforced soft tissues and composites.
- Can be modified for viscoplasticity

Very good agreement with results of uniaxial tensile and cyclic tests.

- Developing digital-image-correlation inflation experiments to evaluate physiological anisotropic viscoelastic behavior of the cornea
- Developing finite element model of the inflation experiments to post-process inflation experiments and obtain physiological properties.

Preliminary Comparing Modeling and Simulations

- Currently, the FEM model of the cornea is too stiff, possibly because constitutive model developed from tension test did not account for the crimping of the collagen fibrils of the unloaded cornea.
- Refine the experiments to include a preload at intra-ocular pressure.

