

Predictive Materials Aging & Reliability

Five Year Plan for FY08-12

Performing Organization: Sandia National Labs

Principal Investigator: Rob Sorensen, 505.944-5558,
nrsoren@sandia.gov

Customer	Collaboration
Steve Marotta, US Army Redstone 256-876-9283	Contact for RRAPIDS. Working to include engineered aging structures in DoD hardware.
Tom Erickson Tom.erickson@us.army.mil, 256-876-0218 (Redstone)	Materials in general. TCG lead. Primary contact for adhesives degradation. Primary contact for DoD hardware information.
Don Skelton, Picatinny (Army Corrosion Office) 973-724-4071	MEMS & MEMS applications.
Jim Zunino, Picatinny (Army Corrosion Office), 973-724-6773	MEMS & MEMS applications.
Robert Kuper, Picatinny	Post-Mortem characterization of prospective replacement MEMS devices.
Abdul Kudiya, Redstone Arsenal (AMRDEC)	
Dave Locker, Redstone Arsenal (AMRDEC)	
Mike Bucher, NSWC	
Michael Deeds, NSWC	

Predictive Materials Aging & Reliability

Five Year Plan for FY08-12

Performing Organization: Sandia National Labs

Principal Investigator: Rob Sorensen, 505.944-5558,
nrsoren@sandia.gov

Customer	Collaboration
<i>Ken Adkins</i> <u>Kenneth.adkins@us.army.mil</u> , 918-420-8236 ARMY-DAC-McAlester OK	<i>Advice on application to Army hardware</i>
ARDEC, US Army Redstone	<i>MEMS Device Reliability</i>
Army Corrosion Office (Picatinny Arsenal)	<i>MEMS Device Reliability</i>
Bob Paulson, Sandia, (Enhanced Surveillance)	<i>Enhanced Surveillance manager.</i>
Jeff Braithwaite, Sandia, (Enhanced Surveillance)	<i>Directs materials aging efforts for Enhanced Surveillance. Integrator for SOHPAC.</i>

Predictive Materials Aging & Reliability Funding

Planned:

FY08	FY09	FY10	FY11	FY12
\$862K	\$885K	\$888K	\$890K	\$890K

Historical:

prior FYs	FY03	FY04	FY05	FY06	FY07
	\$1140K	\$1190K	\$1056K	\$1235K	\$760K

Values include the total of both DoD and DOE \$s

Predictive Materials Aging & Reliability Funding by Task for FY08

Tasks *	FY08 Funding**	FY07 Funding
1. Solder	\$180k	\$150K
2. Corrosion	\$220k	\$187K
3. Adhesives	\$252k	\$225K
4. MEMS	\$210k	\$188K
Total FY08 Project Funding	\$862k	\$760K

*Indicate a new task as "(new start)" next to title

**Indicate any previous-year task that was terminated as \$ 0K

Values include the total of both DoD and DOE \$s

Predictive Materials Aging & Reliability

GOTChA

Goal: ----- Predict the effect of materials aging on system performance (solder, corrosion, adhesives, MEMS) -----

Objective: -----

Develop physical-based models for key degradation processes.

Challenges: -----

Solder

- Modeling the mass transport mechanisms of Sn-whiskering
- Developing an assembly process that provides consistent solder joint quality

Corrosion

- Environment (micro & macro unknown)
- Corrosion is controlled by latent defects
- Electrical system model unavailable
- Validation data do not exist

Adhesives

- Measuring hydrolysis in ultrathin (~100 Å) silane films in adhesive joints
- Extrapolating to low temperature, low water content, and a range of pH
- Validating model for a range of silane chemistry

MEMS

- Test structures in surface polysilicon and LIGA only
- Mechanism-properties relationships do not exist
- No link to reliability of MEMS devices
- No mechanism for translating results into DOD/DOE device design.

Predictive Materials Aging & Reliability

GOTChA

Approach:

Solder

- Determine the interface microstructure and reaction kinetics
- Identify Sn whisker growth vs. time, temp, and stress

Corrosion

- Use engineered aging structures to monitor corrosion
- Develop corrosion model for known defects and degradation modes
- Generate a device-level failure criterion & model
- Validate with field returned units & dormant storage parts

Adhesives

- Measure degrad. of fract. toughness at high temp. and extrapolate to lower temp. using hydrolysis kinetics from thin film measurements

MEMS

- Start with SOI as MEMS (relevant to DOD/DOE missions)
- Fabricate test structures in 2nd, preferably metal-based, MEMS processing technology
- Use DOD input, previously developed test structures and fundamental knowledge gained from mechanism-properties studies to guide direction of aging and environment studies.

Tasks:

Solder

- Obtain Sn diffusion rate kinetics by creep tests
- Evaluate 3-D package test vehicles

Corrosion

- Complete bondpad model $f([Cl], RH, T)$
- Develop EAS structures for bondpad & connector corrosion
- Deploy EAS structures with tuned sensitivity in storage locations
- Perform failure analysis on field returns (database)

Adhesives

- Fracture toughness measured at high temp.
- Hydrolysis kinetics in thin films vs temp. and pH for different silanes

MEMS

- Develop key mechanism-properties relationships in SOI
- Develop key mechanism-properties relationships in 2nd processing technology

Solder Interconnect Reliability

Phemenological and Numerical Models for Predicting Reliability

- Assess interface reactions (microstructure and rate kinetics) between Pb-free solders and Pd.
- Develop a computational model to predict Sn whisker growth.
- Investigate 3-D packaging technology for high-reliability applications.

Impact

- Understanding Sn-Ag-Cu/Pd reactions will minimize process defects and reliability concerns of Ni/Pd/Au finishes.
- A Sn whisker growth model will minimize the reliability concerns with COTS parts using 100% Sn finishes.
- A reliability database will enable the implementation of 3-D packaging technology for high-reliability, weapons and space hardware.

Assurance of success

- Sandia has an extensive experience in the study of Pb-free interface reactions.
- Sn whisker model development is a joint effort between Sandia materials and computational engineers and materials scientists at U. of Rochester (NY).
- Contractor (ACI) and Sandia facilities are engaged in the test vehicle evaluation.
- *Partnering with other SNL programs jointly supporting Sn whisker model and 3-D packaging studies.*

Accomplishmens/milestones

- Microstructure and dissolution/IMC rate kinetics of Pb-free solder/Pd interfaces / 09/07.
- Sn whisker data completed for thin film test vehicle/journal article / 09/07
- Set contract with Amer. Compet. Inst. to build 100 3-D packaging test vehicles for reliability analysis / 09/07.

Corrosion

What are you trying to do in this task?

- Produce a validated, physical based model of bondpad & connector corrosion
- Develop engineered aging structures (EAS) to TRL level 7.
- Use EAS deployed in real environments to obtain validation data for the corrosion model.

What makes you think you can do it?

- A first generation model of bondpad corrosion exists.
- Uncertainty quantification techniques are available
- Extensive SNL program on embedded surveillance (electronics, sensor, communication expertise)

What difference will it make?

- The corrosion model will allow us to make reliability predictions based on corrosion in PEM devices and connectors.

What / When Will You Deliver?

- EAS structures for interfacing with RRAPIDS (9/07)
- Second generation corrosion model (11/07)
- Connector corrosion model (11/08)

Adhesives

- What are you trying to do in this task?
- model hydrolysis kinetics of silane films in adhesive joints for conditions experienced in the field

What makes you think you can do it?

- We validated a method to measure fracture toughness at high temp.
- We developed methods to meas. hydrolysis kinetics in thin silane films for wide range of conditions

What difference will it make?

- Hydrolysis of silane coupling agents is a major degradation mechanism in adhesive joints
- No kinetic model for hydrolysis of silanes in adhesive joints exists to date that can predict lifetimes for low T and low water content. This model will provide the first such guidance.

What / When Will You Deliver?

- Hydrolysis model in the absence of residual stresses (11/07)
- Hydrolysis model that includes the effects of residual stresses (9/11)

MEMS Reliability Four-Question Chart

What are you trying to do in this task?

Understand the reliability MEMS materials and devices

- Provide semi-standard measurement techniques, materials and tribological properties data within a MEMS fabrication processes
- Apply results and analysis to lifetime/reliability issues in prospective MEMS devices across the DOD/DOE complex

What makes you think you can do it?

- Previously developed strength, friction and fatigue test designs for SMM polysilicon (one MEMS technology) will guide aging/lifetime/reliability diagnostic studies
- Experience with microsystems reliability physics

What difference will it make?

- Optimized design and reliability of MEMS-based components and systems
- Properties database of MEMS process materials
- Mechanism-based understanding of reliability and lifetime issues associated with MEMS devices

What / When Will You Deliver?

- SOI strength, friction, fatigue test structure fabrication and preliminary evaluation 10/06
- Demonstrated working ability to drop-in any MEMS processing technology by 09/08
- Preliminary lifetime-reliability study using diagnostic test structures 1/08

Solder Interconnect Reliability

Key Personnel

Name	Org	Role
<i>Paul Vianco</i> ptvianc@sandia.gov 505-844-3429	<i>Sandia National Laboratories, Albuquerque, NM</i>	<i>Task Leader</i>
<i>Tom Erickson</i> tom.erickson@rdec.redstone.army.mil 256-876-2781	<i>US Army RDECOM Redstone Arsenal, AL</i>	<i>Customer</i>
<i>Professor: Dr. J.C.M. Li</i> li@me.rochester.edu <i>Graduate student: Ms Jing Cheng</i> jcheng@me.rochester.edu	<i>University of Rochester, NY</i>	<i>Principle investigators on a portion of the Sn whisker modeling sub-task.</i>
<i>Jeff Braithwaite</i> jwbrait@sandia.gov 505-844-7749	<i>Sandia National Laboratories, Albuquerque, NM</i>	<i>Enhanced Surveillance Campaign (DoE) providing leveraged support for the Sn whisker modeling sub-task.</i>
<i>Dan Kral</i> dikral@sandia.gov 505-844-4104	<i>Sandia National Laboratories, Albuquerque, NM</i>	<i>NNSA Satellite Programs (DoE) providing leveraged support for the 3-D package-on-package sub-task</i>

Corrosion - Key Personnel

Name	Org	Role
Rob Sorensen (nrsoren@sandia.gov – 505.844.5558)	Sandia	Task Leader <i>Atmospheric corrosion</i>
Jamie Stamps (jfstamp@sandia.gov – 925.294.2132)	Sandia <i>Livermore</i>	Embedded evaluation test bed and hardware
Steve Marotta (steve.marotta@us.army.mil - 256-876-9283)	US Army <i>Redstone</i>	RRAPIDS point of contact
David Robinson (drobin@sandia.gov – 505.844.5883)	Sandia	Bayesian techniques, model development

Adhesives - Key Personnel

Name	Org	Role
Michael Kent mskent@sandia.gov , 505-845-8178	SNL	Task Leader
Dave Ready edreedy@sandia.gov , 505-844-3297	SNL	Oversee fracture toughness testing
Doug Adolf Dbaolf@sandia.gov , 844-4773	SNL	Advise on hydrolysis model and other failure mechanisms
Rob Jensen Rjensen@arl.mil , 410-306-1910	ARL -Aberdeen	Advise on hydrolysis model
Tom Erickson Tom.erickson@us.army.mil , 256-876-0218	ARMY- Huntsville	Application to Army hardware
Ken Adkins Kenneth.adkins@us.army.mil , 918-420-8236	ARMY-DAC- McAlester OK	Advise on application to Army hardware

MEMS Reliability - Key Personnel

Name	Org	Role
Thomas Buchheit tebuchh@sandia.gov (505)-845-0298	Dept. 1824 Sandia Labs	Task Leader
Michael Dugger mtdugge@sandia.gov (505)-844-1091	Dept. 1824 Sandia Labs	Tribology, (Friction, Wear)
Brad Boyce blboyce@sandia.gov (505)-845-7525	Dept. 1824 Sandia Labs	Mechanical Properties
Danelle Tanner tannerdm@sandia.gov (505)-844-8973	Dept. 1769-1 Sandia Labs	Reliability Physics
Phillip Reu preu@sandia.gov (505)-284-8913	Dept. 1526 Sandia Labs	Applied Mechanics

Predictive Materials Aging & Reliability

Current & Prior FY Results

- **Deliverables**
 - Peer-reviewed journal article describing the interface reactions between molten SnAgCu solder and Pd (09/07).
 - Peer-reviewed journal article of creep and thin film Sn whisker experiments (09/07).
 - Report on MEMSCap SOI results 2/07
- **Milestones**
 - Demonstrated corrosion EASs with the embedded evaluation testbed
 - Hydrolysis model in absence of residual stress to be delivered 11/07
- **Accomplishments**
 - Develop EAS structures for Al bondpad corrosion (1st & 2nd generation)
 - Hydrolysis kinetics partially completed for 3 silane films vs temp. and pH, completed toughness tests for 2 of 3 temps.
 - Designed and developed on-chip SOI fatigue test structures
- **Transitions**
 - Embedded evaluation workshop held at Redstone (RRAPIDS)
 - RRAPIDS prototype delivered to Sandia and included in dormant storage task
- **Other key results**
 - Xx

Predictive Materials Aging & Reliability

Milestones/Deliverables for FY08-12

Project Milestones/Deliverables (*What is to be delivered to the customers?*)
Suggestion: 1-3 for FY08, and 1-3 for balance of the planning period

Milestones/Deliverables	Date	TCG-I & M&SI Taxonomy ID*	DoD / DOE Linkage
1. <i>Hydrolysis model in absence of residual stress</i>	11/07		<i>Applicable to all adhesive joints with silane coupling agents</i>
2. <i>First version of Sn whisker model</i>	6/08		<i>Applicable to all adhesive joints with silane coupling agents</i>
3. <i>Embedded evaluation EAS devices at TRL 6</i>	6/09		<i>Military systems – long-term storage</i>
4. <i>Final report on 3-D packaging reliability</i>	9/09		<i>Lighter, smaller weapon systems for the battlefield</i>
5. <i>Peer reviewed journal article on Sn whisker growth</i>	9/11		<i>All military electronics using COTS components</i>
6. <i>Hydrolysis model in presence of residual stress</i>	9/11		<i>Applicable to all adhesive joints with silane coupling agents</i>
7. <i>Demonstrate ability to drop in diagnostic test structures for MEMS processing technology</i>	FY11		

Predictive Materials Aging & Reliability

Outcomes/Accomplishments for FY08-12

Task Outcomes /Accomplishments (*What are the intermediate accomplishments required to achieve project milestones / deliverables?*) Suggestion: 1-3 per task

Task	Outcomes/ Accomplishments	Date	TCG-I & M&SI Taxonomy ID*	Task Dependencies
Solder	<i>Compile data for Sn whisker model</i> <i>Design & build validation test vehicle for Sn whiskering</i> <i>Design & build test vehicle for 3-D packaging reliability tests</i>	12/07 9/09 9/08		
Corrosion	<i>Initial (beta) version of bondpad corrosion model using Bayesian methodologies</i> <i>Demonstration of EAS structures for Al & Cu corrosion</i> <i>Deploy EASs in dormant storage</i>	11/07 9/07 1/08		
Adhesives	<i>Method for studying effect of residual stress on hydrol. Rates</i> <i>Measure effects of residual stress on hydrol. rate</i>	9/08 FY10		
MEMS	<i>Report on friction studies on SOI devices</i> <i>Perform strength, friction, and fatigue reliability studies on 2nd microsystems fabrication technology</i>	11/08 11/09		

Predictive Materials Aging & Reliability

Metrics & Exit Criteria for FY08-12

Project Milestone/Deliverable	Metrics or Exit Criteria (Typically 1 per Milestone/Deliverable)
<i>1. Hydrolysis model in absence of residual stress</i>	<i>Model distributed to DoD Journal Article Published</i>
<i>2. First version of Sn whisker model</i>	<i>Validated data from laboratory experiments</i>
<i>3. Peer reviewed journal article on Sn whisker growth</i>	<i>Article posted on JMP website</i>
<i>4. Embedded evaluation EAS devices at TRL 6</i>	<i>Successful use of EAS structures in laboratory test</i>
<i>5. Final report on 3-D packaging reliability</i>	<i>Report posted on JMP website</i>
<i>6. Hydrolysis model in presence of residual stress</i>	<i>Model distributed to DoD Journal Article Published</i>
<i>7. Demonstrate ability to drop in diagnostic test structures for MEMS processing technology</i>	<i>Diagnostic test structures and methods successfully employed in two separate technologies</i>

Predictive Materials Aging & Reliability (Solder)

Solder	FY08	FY09	FY10	FY11	FY12
SnAgCu/Pd Interface Reactions	▲ Manuscript				
Sn Whisker Model			▲ Validated Model	▲ Journal Article	
Compile experimental data	██████████				
Version 1 of model		██████████			
Version 2 of model			██████████		
Validation			██████████		
3-D Packaging Reliability			▲ Final Report		
Design & Build relevant test vehicles	██████████				
Perform thermal cycling		██████████			
Failure analysis					
Chip stacking study for 3-D packaging				██████████	

Predictive Materials Aging & Reliability (Corrosion)

Corrosion	FY08	FY09	FY10	FY11	FY12
Bondpad Corrosion Model	2nd Generation model	Journal Article			Integrated model
Link to electrical system	[REDACTED]				
Connector Corrosion Model		1 st Generation Model		2 nd Generation Model	
EAS Structures	[REDACTED]			[REDACTED]	
Design and build EAS structures for bondpad & connector corrosion	[REDACTED]			[REDACTED]	TRL 7 level
Deploy in dormant storage	[REDACTED]				
Interface with RRAPIDS	Initial interface (TRL 5)	[REDACTED]			
Use EAS data to exercise model				[REDACTED]	

Predictive Materials Aging & Reliability (Adhesives)

Predictive Materials Aging & Reliability (MEMS)

MEMS	FY08				FY09				FY10				FY11				FY12		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Strength, Friction, Fatigue studies on 1st generation MEMSCAP SOI design	■																		
Strength, Friction, Fatigue studies on 2 nd generation SOI design					■■■■■	■■■■■													
Identify second MEMS processing technology for diagnostic testing	▲						■■■■■												
Strength, Friction, Fatigue studies for second technology			■■■■■					■■■■■	▲										
Identify Accelerated Aging/Reliability testing protocol			▲							■■■■■									
Aging and Reliability studies for predictive model development using diagnostic test structures							■■■■■						■■■■■						
Confidence in providing flexible test platforms for obtaining fundamental measurements of strength, friction, and fatigue in any MEMS technology													■■■■■	▲					
Correlation between aging and reliability failures in prototype devices and predictions based on studies using diagnostic test structures													■■■■■						

Predictive Materials Aging & Reliability - Issues

Solder

- *Sn whiskering is not well understood.*
- *3-D packaging may include processing ideas that affect reliability predictions.*

Corrosion:

- *Bondpad corrosion is driven by latent defects.*
- *Al corrosion is stochastic – modeling becomes difficult.*
- *System performance models are not generally available.*

Adhesives:

- *Variation of hydrolysis rates for different silane chemistries was not expected and needs to be understood*
- *Fracture testing to date involves only one silane chemistry. This testing should be performed with a second silane.*

MEMS

- *MEMSCAP SOI technology contains significant stress in the structural layer*