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Some Experimental Questions

• how best to disperse a nanoparticle in a polymer?

– what materials?

– use surfactant or polymer brush?  what chain lengths?

– what molecular weight vs. nanoparticle size?

• interfacial properties of nanocomposites

– where do the particles go?

– segregation, e.g. in block copolymer domains?

– what happens at a substrate?



Challenges in Modeling

7Å         (buckeyball)
2 - 10 nm (cross-linked polymers, dendrimers)
2 - 50 nm (metals, oxides, ...)

polymer sizes

e.g.  PS at entanglement length 18kDa
Rg ≈ 3.6 nm

nanoparticle sizes:

can’t treat nanoparticles as flat surfaces



Simulations

• length scales large for atomistics

• coarse-grained models

– dilute limit

• polymer dynamics near 1 nanoparticle

• calculate PMF between two particles

– small particles, D = 2 or 3x monomer size

Starr et al., Macromolecules, 2003

alkanethiols on Au
nanoclusters

Grest, Stevens, 2007



Bulk: Liquid State Theory

PRISM theory

athermal: phase separation 
due to depletion attraction

with nanoparticle-polymer attractions

Hooper and Schweizer, Macromolecules 39, 5133 (2006)

Hooper and Schweizer, J. Chem. 
Phys. 124, 6986 (2004)



Hybrid SCF Theories

• self-consistent field theory for polymers

– especially diblocks

• particles

– density functional theory (e.g. hard spheres)

– treat as surfaces

Düchs, Fredrickson, Sides, 2007
Balazs, Curr. Opin. Solid St. 
& Mat. Sci., 2003



Density Functional Theory (DFT)
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Structure of a Fluids-DFT

ansatz for Helmholtz free energy:

form in grand canonical (open) ensemble

minimize free energy

equations to solve for (r)



Advantages/Capabilities of DFT

•treat different length scales

• packing of individual “atoms” or sites

• nano to mesoscopic length scales

•different kinds of fluids

• hard spheres

• attractive, Coulombic interactions

• polymers

•compare directly to simulation results

•phase-space studies
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Laura Frink, PI

http://software.sandia.gov/tramonto/index.html

• solve in 3D, Cartesian grid

• Newton-Raphson solver

• parallel

• sophisticated linear solver algorithms

• arc-length continuation algorithms

DFTs = nonlinear integral equations



What can F-DFT do?

•forces between particles
•phase behavior
•solvation free energies

•implicit solvent

•complex geometries

•complex chain architectures

•compare to simulation (MD)
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The Problem:

- adsorbed chains length N
-sticky ends, energy e

- matrix chains length P
- athermal ( = 0)
- nanorods with diameter D

dispersion of nanosized objects in a polymer melt

same rules as for polymer-stabilized colloids?

is the force always repulsive?
will the chains desorb?



CMS-DFT

Uext

Uext + Um

• Minimize free energy, [T,V,; r]
• Solve self-consistently for density 
profile and mean field:
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Chandler, McCoy, Singer (1986); 
McCoy et al. (1990s)



Our approach: CMS-DFT
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Input to CMS-DFT: PRISM Theory

• Liquid state theory for homogeneous polymer fluids

– intramolecular correlations AB 

– intermolecular correlations gAB(r), cAB(r)

• Excellent for repulsive interactions

Curro and Schweizer

gAB ABCAB
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Calculation Details

• parallel cylinders

• athermal (repulsive interactions)

• adsorbed chains 

• N = 20

•bd
3 = 0.04

• matrix chains

• P = 10,20,40

•bd
3 = 0.76

surface interactions:

• repulsive for matrix chains, sites 2-20 on adsorbing chains

• attractive to one end of adsorbing chains, depth e



Diagram of State for Flat Surfaces

grafted chains on flat surfaces
behavior depends on:

N, P, 

Gay, Macromolecules, 1997
Ferreira et al., Macromolecules, 1998

attractive
force

cause of attraction:
surface tension between
brush and melt
•for long matrix chains
•high surface coverage

N=20, =0



Nanorods: Brush Profiles

D = 3d D = 4d

N = 20, P = 20



Brush Scaling

Flory argument: 

Ball et al., Macromolcules, 1991



Two Nanorods

e = 10kT

e = 6kT

N = 20, P = 20, D = 4d



Force between rods

N = 20, P = 20, D = 4d
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Less force due to curvature

planar brush: e = 8 kT
cylindrical brush: e = 10 kT

N = 20, P = 20, D = 4d

similar brush heights, profiles
force less in curved system



Chains go around rods



Polymer-Mediated Attractions

N = 20, P = 40, D = 4d
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A Model Athermal System: PS NPs in PS

hard-sphere like nanoparticles

NPs stay dispersed!
(for RNP < Rg)

mix in melt PS

Mackay et al., Nature Mat., 2003
E. Harth, J. Am. Chem. Soc., 2002



Polymer/NP Thin Films

PS nanoparticles blended with PS on silicon

40 nm thick film

NPs prevent dewetting!

Krishnan et al, Langmuir, 2005



Where are the nanoparticles?

neutron reflectivity
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•nanoparticles segregate to surface
•lower surface energy/more surface roughness



polymer
nanoparticle

Coarse-Grained Model

athermal system:  repulsive LJ spheres

D



Kuhn length for PS:  1.485 nm

D = 2.0 = 2.97 nm
D = 2.5 = 3.71 nm



What’s an appropriate DFT?

treat particles, polymers in same framework

accuracy for mixtures of diff. size sites

“WTC”-DFT

based on associating fluids
(Wertheim’s TPT1 theory for bulk)

reference fluid: monomers monomers bond:bonding sites

as bonding energy           get polymers 

S. Tripathi and W.G. Chapman, Phys. Rev. Lett. 94, 
087081 (2005);  J. Chem. Phys. 122, 094506 (2005) 



Elements in WTC functional

ideal gas part:

hard sphere functional:

chain bonding contribution:



Calculational Details

• start at low particle concentrations

• keep total packing fraction fixed:

• follow solution as particle concentration increases

surface potential:

monomers
nanoparticles



F-DFT matches simulation

Nanoparticle/Polymer Thin Films

with E. S. McGarrity and M. E. Mackay (MSU)

N = 20, D = 2



Layering Transitions

no layers

1 layer

2 layers

N = 20, D=2



Layering

Excess adsorptions



This is a polymer effect!

binary hard sphere mixture

Ds = 1
Db = 2

no phase transition:



Larger Particles

N = 20, D = 2.5

•ongoing study

•effects of attractions?



Summary

• nanorods

– brush profiles similar to scaling

– attractions for P>N

– repulsions for P=N despite some desorption

• nanoparticle/polymer films

– DFT appears accurate compared to MD

– first-order layering transitions

– polymer effect
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