

Hydrodynamics and Flow solver

Requirements and Options

5/9/2007

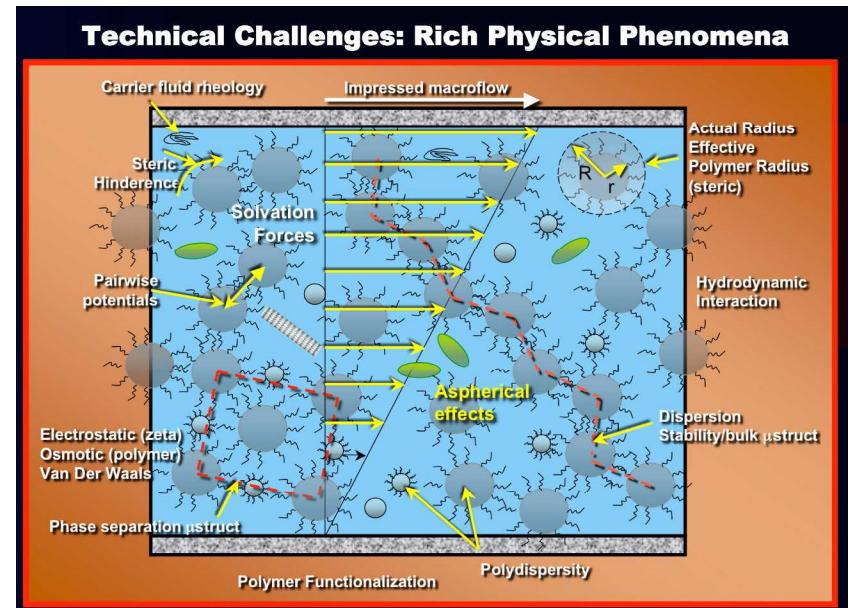
Jeremy Lechman, Randy Schunk
Multiphase and Nanoscale Transport Processes
Dept.

What We Won't Emphasize in this Section

- MD: effective potential details
- Details of fluid-solid coupling strategies
- $Pe = 0$ limit

Physical System: Total Size and Time

- High Pe: Rheology of dense, aspherical nanoparticle suspensions
 - Length and time scales
 - Some rules of thumb
 - $O(10^4)$ particles
 - Strain $O(10)$ box units
 - $\gamma \sim 100 \text{ s}^{-1}$
 - $2a_{\text{eff}} \sim 10 - 1000 \text{ nm}$
 - $\Phi_{\text{sc}} \sim 0.5$
 - $L \sim O(0.1 - 10 \text{ } \mu\text{m})$
 - $v_s \sim O(10 - 1000 \text{ } \mu\text{m/s})$
 - $T \sim O(0.001 - 1 \text{ s})$



Physical System: Dimensionless Numbers and Timescales

Physical parameters	$a = 10\text{nm}$	$a = 1\mu\text{m}$
$M \approx \frac{4}{3}\pi a^3 \times 10^{-12} \frac{\text{g}}{\mu\text{m}^3}$	$4.19 \times 10^{-18} \text{g}$	$4.19 \times 10^{-12} \text{g}$
$\frac{\xi_E}{\xi_S} \approx 1.6 \times 10^2 a$	≈ 1.6	$\approx 1.6 \times 10^2$
$\xi_S = 6\pi\eta a \approx 1.9 \times 10^{-5} a$	$\approx 1.9 \times 10^{-7} \frac{\text{g}}{\text{s}}$	$\approx 1.9 \times 10^{-5} \frac{\text{g}}{\text{s}}$
$D_{\text{col}} \approx \frac{k_B T}{6\pi\eta a} \approx \frac{0.2}{a}$	$\approx 20 \frac{\mu\text{m}^2}{\text{s}}$	$\approx 0.2 \frac{\mu\text{m}^2}{\text{s}}$
Hydrodynamic numbers	$a = 10\text{nm}$	$a = 1\mu\text{m}$
$\text{Pe} = \frac{v_S a}{D_{\text{col}}} \approx 5v_S a^2$	≈ 0.005	≈ 50
$\text{Re} = \frac{v_S a}{\nu} \approx 10^{-6} v_S a$	$\approx 10^{-7}$	$\approx 10^{-5}$
$\text{Kn} = \frac{\lambda_{\text{free}}}{a} \approx \frac{0.3}{a} \times 10^{-3}$	≈ 0.03	≈ 0.0003
$\text{Ma} = \frac{v_S}{c_s} \approx 6.76 \times 10^{-10} v_S \approx 6.8 \times 10^{-10}$	$\approx 6.8 \times 10^{-10}$	
Time-scales	$a = 10\text{nm}$	$a = 1\mu\text{m}$
$\tau_D = \frac{a^2}{D_{\text{col}}} \approx 5a^3$	$\approx 5 \times 10^{-6} \text{s}$	$\approx 5 \text{s}$
$\tau_S = \frac{a}{v_S} = \frac{\tau_\nu}{\text{Re}} = \frac{\tau_D}{\text{Pe}}$	$= 0.001 \text{s}$	$= 0.1 \text{s}$
$\tau_\nu = \frac{a^2}{\nu} \approx 10^{-6} a^2$	$\approx 10^{-10} \text{s}$	$\approx 10^{-6} \text{s}$
$\tau_B = \frac{M}{\xi_S} = \frac{2}{9} \tau_\nu$	$\approx 2.2 \times 10^{-11} \text{s}$	$\approx 2.2 \times 10^{-7} \text{s}$
$\tau_{\text{cs}} = \frac{a}{c_s} \approx 6.7 \times 10^{-10} a$	$\approx 6.7 \times 10^{-12} \text{s}$	$\approx 6.7 \times 10^{-10} \text{s}$

- **Note: Pe, Re, τ_D , τ_s**
- **Also, note: τ_ν , timescale for momentum to diffuse in fluid over length a**
 - Propagation length grows as \sqrt{t}
 - SD and the like imply $\tau_\nu = 0$
- **Low Pe: Suspension Stability/Self Assembly**
 - $\tau_D = d^2/D_{\text{col}} \sim O(0.001 - 1 \text{ s})$
 - $T \sim O(0.1 - 100 \text{ s})$
 - **Scales as a^3**

Radius, $a = 0.01\mu\text{m}$ (10nm) and $1\mu\text{m}$ in water at standard temperature and pressure pressure, moving at a velocity $v_S = 10\mu\text{m/s}$. Colloid assumed neutrally buoyant.
From Padding and Louis (2006) cond-mat/0603391

Survey of Methods

- **Stokes Methods: SD/BEM**
 - ASDB/BD-hydro costs $\sim O(N^{1.25}\log N)$ based on Ewald, Fourier sums for long-range terms; $\sim O(N)$ based on PPPM-like method
 - BEM costs $\sim O(N\log N)$ using multipole acceleration
 - no contact and near-contact is expensive
 - Quasi-analytical: aspherical is challenging
 - General form of the near-field terms (subgrid physics)?!
 - Effectively instantaneous hydrodynamics
 - Fluid-particle coupling “built-in”
- **FD/FE, LB**
 - Solve continuum Navier-Stokes PDE’s + B.C.’s and I.C.’s
 - Fluid-particle coupling required
- **Particle Based**
 - SRD, DPD, SPH, LB

Continuum Equations for Fluid

- Full Navier-Stokes Equations for Newtonian Fluid

$$\rho \frac{Du_i}{Dt} = \rho F_i + \frac{\partial \sigma_{ij}}{\partial x_j} \quad \sigma_{ij} = -p\delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_i}{\partial x_j} \delta_{ij} \right) + \mu_B \frac{\partial u_i}{\partial x_j} \delta_{ij}$$
$$\rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} = \rho F_i - \frac{\partial p}{\partial x_i} + \mu \left[\frac{\partial^2 u_i}{\partial x_j \partial x_j} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_j}{\partial x_j} \right) \right] + \mu_B \frac{\partial}{\partial x_i} \left(\frac{\partial u_j}{\partial x_j} \right)$$

- Incompressible fluid

$$\frac{\partial u_i}{\partial x_i} = 0$$

- Small Re, large $Sl = \ell/u_s t$, but $ReSl = \ell^2/\nu\tau = \tau_v/\tau$ still small
 - Quasi-static, creeping flow, Stokes Equations are valid with error $O(Re_p^{1/2})$

$$\left. \begin{aligned} ReSl \frac{\partial \mathbf{u}}{\partial t} + Re \mathbf{u} \cdot \nabla \mathbf{u} &= \rho \mathbf{F} - \nabla p + \nu \nabla^2 \mathbf{u} \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned} \right\} \Rightarrow \begin{aligned} \nabla p &= \rho \mathbf{F}(x, t) + \mu \nabla^2 \mathbf{u} \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$$

Computational Requirements

- Dense suspensions
 - contact or near contact
- Aspherical
 - general treatment
- Large systems & long times
 - Continuum approaches
 - $2a/dx \sim 10$, $L \sim 80a$
 - $N_{\text{nodes}} \sim O(10^7)$
 - $dt/\delta t_{\text{MD}} \sim O(10^2 - 10^3)$
 - $T_{\text{MD}} \sim O(10^5 - 10^8)$
 - # NS solves $\sim O(10^3 - 10^6)$
- Options?
 - Coarse-grain:
“telescope” time scales
 - Explicit algorithms
 - Quasi-implicit/Semi-implicit algorithms
 - SD/BEM

