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Abstract
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1 Introduction

At the apex of the financial system is a network of interrelated financial markets by 
which domestic and international financial institutions allocate capital and manage their 
exposure to risk. Critical to the smooth functioning of these markets are a number of 
financial infrastructures that facilitate clearing and settlement. The events of September 
11, 2001 underscored both the resiliency and the vulnerabilities of these financial 
infrastructures to wide-scale disruptions. Any interruption in the normal operations of 
these infrastructures may seriously impact not only the financial system, but also the 
economy as a whole. 

A growing body of policy oriented research is available. One segment of the literature 
focuses on simulating the default of a major participant and evaluating the effects on 
other institutions in payments1 and securities settlement systems2. Another segment 
presents detailed case studies on the responses of the U.S. financial system to shocks such 
as the 1987 stock market crash and the attacks of September 11, 2001.3 Much of the 
research has been conducted using data from real operating environments with the given 
payment flows and settlement rules of the respective systems. As such they are useful for 
assessing the operation of the particular system under disruptions, but the results are 
difficult to generalize to systems with other characteristics. Little research has focused on 
explaining the relationship between the characteristics of the system and its performance
during and following disruptions. Also the behavior of participants has been generally 
exogenously defined or assumed unchanged (or to change in a predetermined manner) 
when the policy parameters of the system change, or when a bank changes its settlement 
behavior as a consequence of operational of financial problems. Such assumptions are 
unlikely to hold in the case in real disruptions.   

This article argues that three aspects are important for answering the still unanswered 
questions on what makes a payment system and its participants robust or fragile towards 
disruptions, and what are the most efficient measures to reduce the likelihood and 
magnitude of disturbances. First, understanding the pattern of liquidity flows among the 
system participants. Second, understanding how the rules of the system affect the 
dynamics of liquidity flows. Third, the ability to evaluate likely behavioral changes of the 
participants before, during and following disruptions or as a consequence of policy 
changes.

This article presents new approaches at answering the above questions. It is organized as 
follows. Section two discusses how payment system interactions can be described by 
means of network topology and presents empirical results for the US Fedwire system. 
Section three describes dynamics that can take place in interbank payment systems and 
presents a simple model of a payment system based on simple rules of settlement. Section 

                                               

1 see Humphrey (1986), Angelini et al. (1996), Kuussaari (1996), Bech et al. (2002), Northcott (2002), 
Bech and Soramäki (2005), Bedford et al. (2005), and Mazars and Woelfel (2005)

2 see Hellqvist and Koskinen (2005) and Devriese and Mitchell (2006).

3 see Bernanke (1990), McAndrews and Potter (2002) and Lacker (2004).
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four presents some possible directions for modeling participant behavior in payment 
systems. Section five concludes.

2 Modeling interbank payment flows

A payment system can be treated as a specific example of a complex network (see e.g.
Newman 2003). In recent years, the physics community has made significant progress 
towards understanding the structure and functioning of complex networks. The literature 
has focused on characterizing the structure of networked systems and how the properties 
of the observed topologies relate to stability, resiliency and efficiency in case of 
perturbations and disturbances.

From a technical perspective, most payment systems are star networks where all 
participants are linked to a central hub (the operator) via a proprietary 
telecommunications network. From a payment processing perspective, payment systems 
are generally complete networks as all nodes (participants) are linked in the sense that 
they can send and receive payments from each other. However, these representations do 
not necessarily reflect the actual behavior of participants that controls the flow of 
liquidity in the system and thus the channels for contagious transmission of financial 
disturbances.  In common with other of social networks mediated by technology (such as 
e-mail or telephone calling), the networks formed by actual participant behavior are of 
more interest than the network structure of the underlying communication system.

2.1 Network representation of payment systems

Networks have been modeled in several disciplines such as in mathematics and computer 
science under graph theory, in applied mathematics and physics under network theory 
and in sociology under social network analysis. While the terminologies and research 
questions in the different traditions vary, common to all is the representation of the topic 
under study as (at minimum) two types of elements: nodes and connections between 
them, i.e., links. The following paragraphs summarize the main concepts.

Links can be either undirected or directed. Links can have weights attached to them 
representing the importance of the relationship between nodes. The strength of a node can 
be calculated as the sum of the weights of all the links attached to it. For a directed 
network, strength can be defined over both the incoming and outgoing links.

A link from a node to itself is called a loop. The neighbors of a node are all the nodes to 
which it has a link. The predecessors of a node are the nodes that have a link to the node 
and the successors are the nodes that have a link from the node. A walk is a sequence of 
nodes in which each node is linked to the next. A walk is a path if all its nodes are 
distinct. The length of a path is measured by the number links. If the start node and the 
end node of a path are one and the same, then it forms a cycle. 

A complete network is a network where all nodes have a link to each other. A tree is a 
network in which any two nodes are connected by exactly one path. A connected network 
is a network where any two nodes can be joined by a path while a disconnected network 
is made up of two or more connected components or sub-networks. These concepts are 
illustrated in Fig. 1a.
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Figure 1: Network modeling

a) b)

The most basic properties of a network are the number of nodes n and the number of 
links m. The number of nodes defines the size of a network while the number of links 
relative to the number of possible links defines the connectivity of a network. The degree
of the network is the average number of links for each node in the network. 

A starting point for the quantitative analysis of a network is to partition the set of nodes 
into components according to how they connect with other nodes. Dorogovtsev et al. 
(2001) divide a network into a single giant weakly connected component (GWCC) and a 
set of disconnected components (DCs). The GWCC is the largest component of the 
network in which all nodes connect to each other via undirected paths. The DCs are 
smaller components for which the same is true. The GWCC consists of a giant strongly 
connected component (GSCC), a giant out-component (GOUT), a giant in-component 
(GIN) and tendrils. The GSCC comprises all nodes that can reach each other through a 
directed path. A node is in the GOUT if it has a path from the GSCC but not to the 
GSCC. In contrast, a node is in GIN if it has a path to the GSCC but not from it. Tendrils 
are nodes that have no directed path to or from the GSCC. They have a path to the GOUT 
or a path from the GIN (see Figure 1b).

Application of the component analyses to liquidity flows between banks provide insights 
on the structure of these flows within the payment system and give clues with respect to 
the relative importance and vulnerability of banks in the system in case of disruptions. As 
banks in GOUT only receive funds from other banks in the GSCC, a disruption by a bank 
in GOUT would only affect other banks in that component. Banks in GIN are affected 
only by disruptions in the same component, and not by banks in other components as 
their payment processing is not dependent on incoming liquidity from these banks. Banks 
outside the GSCC tend to be smaller whereas all money center banks belong to the 
GSCC.

Two important characteristics of a node in a directed network are the number of links that
originate from the node and the number of links that terminate at the node. These two 
quantities are referred to as the out-degree and in-degree of a node respectively. The 
average degree of a node in a network is the number of links divided by the number of 
nodes, i.e. <k>=m/n. Networks are often categorized by their degree distributions. The 
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degree distribution of a classical random network (ER-network, Erdõs and Rényi 1959) is 
a Poisson distribution. Many real networks have fat-tailed degree distributions and a large 

number have been found to follow the power law y
i kxkP  ~)( for large-degree nodes. 

Networks with a power-law distribution are sometimes referred to as scale-free 
networks4. Scale free networks have been found to remain better connected when 
subjected to random failures than other types of networks. Albert et al. (1999) and 
Crucitti et al. (2004) find that the connectedness of scale-free networks is robust to 
random failures, but vulnerable to targeted attacks. However, one must be a bit careful 
here as the process acting on the network influences such analyses of robustness and 
vulnerability.

Simply put, banks that have a low in-degree and high weights for these links are likely to 
be more vulnerable to disturbances than other banks as the removal of one link will 
severely limit the amount of incoming funds. Conversely, banks with high out degree 
have ceteris paribus the potential to affect more counterparties if their payment 
processing is disrupted. Understanding the topology of payment flows is likely to be 
important in assessing the resiliency of a payment system to wide-scale disruptions. 

It is also common to analyze distances between nodes in the network. The distance from 
node i to node j is the length of the shortest path between the two nodes. The average 
distance from a node to any other node in a strongly connected network is commonly 
referred to as the average path length of a node. If the network is not strongly connected, 
paths between all nodes may not exist. In a payment network the path length may be 
important due to the fact that the shorter the distances between banks in the network, the 
easier liquidity can re-circulate among the banks. On the other hand, a payment system 
where liquidity flows over short paths is also likely to be more vulnerable to disruptions 
in these flows.

Sociologists have long studied clustering in social networks, i.e., the probability that two 
nodes which are the neighbors of the same node, themselves share a link. This is 
equivalent to the observation that two people, each of whom is your friend, are likely to 
be friends with each other. One way of measuring the tendency to cluster is the ratio of 
the actual number of links between the neighbors of a node over the number of potential 
links among them. A tree network has a clustering coefficient of zero, and a complete 
network a coefficient of one. In a classical random network, the clustering coefficient is 

the unconditional probability of connection, i.e. pC  .

In a payment network, the clustering coefficient measures the prevalence of payments 
between a bank’s counterparties. In terms of resilience one could hypothesize that 
disturbances in banks with a higher clustering coefficient might have a compounding 
impact on their counterparties, as some of the disturbance may be passed on by the 
bank’s neighbors to each other - in addition to the direct contagion from the source of the 
disruption.

                                               
4 This is because the power law distribution is the only scale-free distribution, i.e. if the scale by which x is 
measured is increased by a factor, the shape of the distribution p(x) is unchanged, except for an overall 
multiplicative constant (see Newman 2005)
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There are various measures of the centrality that indicate the relative importance of nodes
in a network. Four measures of centrality are commonly used in network analysis: 
degree, closeness, betweenness, and eigenvector centrality. The first three were described 
in their current form by Freeman (1979) while the last was proposed by Bonacich (1972). 
Degree centrality takes into account only the immediate neighborhood of the node, i.e. it 
is simply the number of links the node has. Closeness centrality as defined by Freeman is 
the sum of shortest paths from all other nodes. Betweenness centrality may be defined 
loosely as the number of times that a node is on the shortest path between any pair of 
nodes. Eigenvector centrality encapsulates the idea that the centrality of a node depends 
also on the centrality of the nodes that it is linked by (or links to). A famous 
commercialization of this centrality measure is the PageRank algorithm by Google (Brin 
and Page 1995). In general, the importance of the node will depend on process taking 
place in the network. Borgatti (2005) provides a good overview of alternative processes 
in networks and centrality measures applicable for their analysis.

Finally, a key question in the study of networks is how the topologies that are seen in 
reality have come into being. There are two classes of network formation models some 
times referred to as equilibrium and non-equilibrium models (Dorogovtsev and Mendes 
2003). Equilibrium models have a fixed set of nodes with randomly chosen pairs of nodes 
connected by links. Erdõs and Rényi (1959) develop a basic model of a n node network, 
with each pair of nodes connected by a link with probability p. This type of network is 
commonly referred to as a classical random network. Non-equilibrium network models 
grow a network by successively adding nodes and setting probabilities for links forming 
between the new nodes and existing nodes and between already existing nodes. Many of 
these models, notably the Barabasi and Albert (1999) model (BA-model), are based on 
preferential attachment. Preferential attachment assigns a probability of a link forming 
with a node that is increasing with the number of prior links of the node. 

2.2 Fedwire as an example of a complex network

Soramäki et al. (2007) analyze the topology of daily networks formed by the payment 
flows between commercial banks over Fedwire for a period of 62 consecutive business 
days. Apart from a few holidays, the statistics characterizing the network were quite 
similar from day to day. These networks shared many characteristics with other empirical 
complex networks, such as a scale-free degree distribution, high clustering coefficient 
and the small world phenomenon (short path lengths in spite of low connectivity). Like 
many other technological networks, high-degree nodes tend to connect to low-degree 
nodes. Similar conclusions can also be reached from analysis on BoJ-NET by Inaoka et 
al. (2005).

Moreover, Soramäki et al. (2007) report that the topology of the network was 
significantly altered by the attacks of September 11th, 2001. The number of nodes and 
links in the network and its connectivity was reduced, while the average path length 
between nodes was significantly increased. Interestingly, these alterations were of both 
similar magnitude and direction to those that occurred on several of the holidays 
contained within the period.

Figure 2a shows liquidity flows in Fedwire as a visual graph. The figure includes over
6,600 nodes and more than 70,000 links. Each link between two banks is shaded by the 
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value of payments exchanged between them, with darker shades indicating higher values. 
Despite the appearance of a giant fur ball, the graph suggests the existence of a small 
group of banks connected by high value links. To gain a clearer picture of this group, a 
subset of the network where the focus is on high value links is displayed in Figure 2b. 
This graph shows the largest undirected links that comprise 75 percent of the value 
transferred. The network consists of only 66 nodes and 181 links. The prominent feature 
is a densely connected sub-graph, or clique, of 25 nodes to which the remaining nodes 
connect. By itself it is almost a complete graph. A small number of banks and the links 
between them thus dominate the value of all payments sent over the network. 

Figure 2: Visualization of the liquidity flow network (Soramäki et al. 2006)

a) b)

The analysis finds that payment networks have characteristics similar to other social and 
technological networks. An unanswered question why the network has the structure it 
does: the network may grow over time by a logic that is very general or that is particular 
to payment systems, or to specific policies of a given system. This is an interesting topic 
for future research. The network structure has also implications for its robustness. 
Robustness of the network, however, also depends on the processes taking place in it. 
This is the topic of the next sections. 



8

3 Modeling payment system dynamics

3.1 Network dynamics

A number of payment system simulations carried out in recent years have used actual or 
generated payment data. These simulations have studied the actual dynamics of payment 
systems, where system rules have varied from simple real-time gross settlement to 
complex hybrid settlement mechanisms with offsetting and multilateral settlement 
capabilities. The research can be summarized as trade-off questions between liquidity,
speed of settlement and risks. The impact of bank behavior has not been taken 
endogenously into account in these simulations. A summary of this line of research is 
provided in Leinonen (2005) and is not presented here.

From a network perspective, the performance of banks (nodes) is often dynamically 
dependent on the performance of other banks within the network and upon the structure 
of linkages between banks. A failure by one node in the network, for example, may 
hinder flows in the network and adversely impact the performance of the other nodes as 
the disturbance propagates in the network. 

One branch of network literature has investigated the resilience of different network 
topologies in terms of a connectivity threshold (i.e. percolation threshold)5 at which a 
network dissolves into several disconnected components. A well known finding is that 
scale free networks are more robust to random failures than other types of networks. 
However, they are very susceptible to the removal of the very few highly connected 
nodes. These static failure analyses may be applicable to some networks if the interest is 
the availability of paths between nodes in the network - but are less applicable to 
networks of monetary flows which contain both flows via the shortest paths as well as
longer walks within the network.

Another branch of the literature has studied the impact of perturbations that cascade 
through the network on the basis of established theoretical or domain-specific rules6. In 
these dynamical models nodes generally have a capacity to operate at a certain load, and 
once the threshold is exceeded, some or all of the node's load is distributed to 
neighboring nodes in the network (Bak et al. 1987). While the detailed dynamics depend 
on the rules applied for the cascades, generally the most connected nodes (or nodes with 
highest load in relation to overall capacity) are more likely than average nodes to trigger 
cascades. Increased heterogeneity makes the system more robust to random failures, but 
more susceptible to targeted attacks that may cause global cascades.

Cascade models have been applied by physicists to systems within fields ranging from 
geology to biology to sociology (e.g., Jensen 1998). This research has demonstrated that 
models made of very simple agents, interacting with neighboring agents, can yield 
surprising insights about system-level behavior. In the spirit of these cascade models, 

                                               
5 e.g. Bollobas (1985), Moore and Newman (2000) and Callaway et al. (2000) 

6 e.g. Watts (2002) and Crucitti et al. (2004b) for random and complex networks, respectively, and Sachtjen 
et al. (2000) and Kinney et al. (2004) for power networks.
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Beyeler et al. (2006) formulate a simple agent-based model for liquidity flows within a 
payment system.

3.2 Simple payment system model

The model of Beyeler et al. includes only the essential processes of a payment system and 
its accompanying liquidity market. A set of banks exchange payments through a single 
common payment system. All payments occur only along the links of a scale-free 
network - as was shown to be representative of Fedwire liquidity flows. Banks’
customers randomly instruct them to make a unit payment to a neighboring connected 
bank. Banks are reflexively cooperative: they submit the payment if the balance in their 
payment system account allows; otherwise they place the instruction on a queue for later 
settlement.

If the receiving bank has instructions in its queue, the payment it just received enables it 
to remove a queued instruction and submit a payment in turn. If the bank that receives 
that payment is also queuing instructions, then it can make a payment, and so on. In this 
way a single initial payment made by a bank can cause many payments to be released 
from the queues of the downstream receiving banks. This is an example of the cascade 
processes typically studied in other models of self-organized criticality. Statistics on these 
settlement cascades are an indicator of the extent of interdependence of the banks, and in 
the model, they are a controlled by two parameters, the overall liquidity and market 
conductance. 

Figure 3: Simple payment system model (Beyeler et al. 2006)

In the absence of a liquidity market, only abundant liquidity allows banks to operate 
independently; reducing liquidity increases the likelihood that a given bank will exhaust 
its balance and begin queuing payments. A bank that has exhausted its balance must wait 
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for an incoming payment from one of its neighbors. When liquidity is low a bank’s 
ability to process payments becomes coupled to its neighbors’ ability to process. The 
output of the payment system as a whole is no longer determined by overall input, but 
instead becomes dominated by the internal dynamics of the system. Figure 4a shows how 
the correlation between arriving instructions and submitted payments degrades in the 
model as liquidity is reduced (green: high liquidity; orange: medium liquidity; red: low 
liquidity). A settlement cascade, that is the release of queued payments as a result of a 
single initiating payment, can comprise hundreds of queued payments as illustrated in 
Figure 4b.

To explore how liquidity markets reduce coupling among network neighbors and thereby 
reduce congestion, market transactions were represented as a diffusive process where a 
bank’s balance plays the role of a potential energy or pressure. Banks with high balances 
tend to contribute liquidity to the market, while banks with low balances tend to draw 
liquidity from the market. There is no decision-making or price setting in this simple 
market model, but it reflects two essential features of a real market: liquidity flows from 
banks with surplus funds to banks that need funds, and liquidity can flow from any bank 
to any bank – flows are not confined to the links of the payment network. It creates a 
separate global pathway for liquidity flow. The ease of liquidity flow through the market 
is described by a single conductance parameter.

Figure 4: Instruction and Payment Correlation (a), and Settlement Cascade Length 
Distribution (b).

a) b)

With a liquidity market included, the number of payments closely tracks the number of 
instructions as the coupling between banks is weakened and the size of the settlement 
cascades is reduced. The rate of liquidity flow through the market relative to the rate of 
flow through the payment system was surprisingly small. The performance of the system 
can be greatly improved even though less than 2 per cent of the system through-put flows 
through the market.
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4 Modeling bank behavior

4.1 Decision making, learning and adaptation

Wide-scale disruptions may not only present operational challenges for participants in the 
interbank payment system, but they may also induce participants to change the way they 
conduct business. The actions of participants have the potential to either mitigate or 
exacerbate adverse effects. Hence, understanding how participants interact and react 
when faced with operational adversity will assist operators and regulators in designing 
countermeasures, devising policy, and providing emergency assistance, if necessary. 

The first approach to study bank behavior in payment systems has been to use standard 
game theory. Angelini (1998) and Kobayakawa (1997) use a setup derived from earlier 
literature on precautionary demand for reserves. Angelini (1998) shows that in a RTGS 
system, where banks are charged for intraday liquidity, payments will tend to be delayed 
and that the equilibrium outcome is not socially optimal. Kobayakawa (1997) models the 
intraday liquidity management process as a game of uncertainty, i.e., a game where 
nature moves after the players. Kobayakawa (1997) shows that both delaying and not 
delaying can be equilibrium outcomes when intraday overdrafts are priced. McAndrews 
and Rajan (2002) study the timing and funding of transfers in the Fedwire funds transfer 
system. They show that banks benefit from synchronizing their payment pattern over the 
course of the business day because it reduces the overdrafts. Bech and Garratt (2003) 
develop a stylized two period - two player model with imperfect information. They 
analyze the strategic incentives under different intraday credit policy regimes employed 
by central banks and characterize how the Nash equilibria depend on the underlying cost 
parameters for liquidity and delays. It turns out that two classical paradigms in game 
theory emerge: the Prisoner’s Dilemma in case where intraday credit is provided against 
collateral and the Stag Hunt coordination game in the case where the central bank charges 
a fee. Hence, many policy issues can be understood in terms of well-known conflicts and 
dilemmas in economics. 

Other approaches that have been applied to similar problems of repeated interaction 
among a large number of players are evolutionary game theory and reinforcement 
learning (such as Q-Learning by Watkins et al. 1992). Agents who learn about each 
others' actions through repeated strategic interaction is a leading theme in evolutionary 
game theory. In most of the existing literature it is customary to look at the players' 
asymptotic behavior in situations where the payoffs are some known function of players' 
strategies. In one strand of the literature, this knowledge is a prerogative of the players, 
who can therefore use adaptive rules of the type "choose a best reply to the current 
strategy profile". In a second research line, the learning rules do not require knowledge of 
the payoff function on the part of the learners. Such rules are instead of the kind "adopt 
more frequently a strategy that has given a high payoff". 

Galbiati and Soramäki (2007) use methods from reinforcement learning (Barto and 
Sutton 1998) and fictitious play (Brown 1951) to numerically solve a model with
interactions among a large number of banks that settle payments on a continuous basis 
under imperfect information, stochastic payoffs and a finite but long sequence of 
settlement days. The model is summarized and discussed in more detail below.
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4.2 Multi-agent model of bank behavior

Galbiati and Soramäki (2007) develop a dynamic multi-agent model of an interbank 
payment system where payments are settled on the basis of pre-committed funds. In the 
model banks choose their level of committed funds on the basis of private payoff 
maximization. 

The model consists of a sequence of settlement days. Each of these days is a 
simultaneous-move game, in which each bank chooses the amount of liquidity to commit 
for payment processing, and receives a stochastic payoff. Payoffs are determined by 
means of simulating the settlement day with the amounts of liquidity chosen by the 
banks. Instructions to be settled by the banks arrive on the basis of a Poisson process and 
are ex-ante unknown to the banks. As shown in section 3.2, the relationship between 
instruction arrival and payment settlement is very complex and could not so far be 
described analytically. Adaptation takes place through reinforcement learning with 
Bayesian updating, with banks maximizing immediate payoffs. Figure 5 shows the 
sequence of decisions, events, and learning in the model.

Figure 5: Overview of a multi-agent learning model of a payment system (Galbiati 
and Soramäki 2007)

By the process of individual pay-off maximization, banks adjust their demand for 
liquidity up (reducing delays) when delay costs increase, and down (increasing delays), 
when they rise. It is well known that the demand for intraday credit is generated by a 
tradeoff between the costs associated with delaying payments, and liquidity costs. 
Simulating the model for different parameter values, they find that the demand for 
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intraday credit is an S-shaped function of the cost ratio between intraday credit costs and 
the costs associated with delaying payments7 (see Figure 6a).

Figure 6: Demand for intraday credit (a), Payoff comparison (b).

An interesting question is how good the performance of the banks is in absolute terms. To 
understand this we compare the payoffs received by the banks through adaptation with 
two extreme strategies:

a) delay all payments to the end of the day;

b) commit enough liquidity to be able to process all payments promptly.

The performance of these three strategies is shown in Figure 6b. For any level of the 
delay cost, the adaptive banks obtain better payoffs than either of the two extreme 
strategies, as they manage to learn a convenient trade-off between delay and liquidity 
costs. On the contrary, the strategy under a) becomes quickly very expensive as delay 
costs increase, and the strategy under b) is exceedingly expensive when delays are not 
costly.

Ideally, banks should be taking into consideration the future stream of pay-offs as well. 
This would create a value of information to the banks as discounting expected future 
payoffs would create an explicit trade-off between exploitation (the use of actions that 
appear optimal in the light of the available information), and exploration (the use of 
seemingly sub-optimal actions, which might appear such because of lack of 
experimentation). Banks may also be risk-averse, interested not only in the expected pay-
off, but also its variability. These are among the topics for future research.

5 Conclusion

This article presented three elements of payment systems, new approaches for 
understanding and analyzing them, and presented examples on how these approaches can 
be applied to specific research questions. It argues that performance of a payment system 

                                               
7 in the model both costs are assumed to be linear
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is a function of network topology, the “physics” of the system and the behavior of banks 
– one factor alone is not enough to evaluate efficiency or robustness.

First, the payment system can be understood as a network of liquidity flows and can be 
modeled as a graph. Each model of a payment system assumes some topology, be it 
random, complete or a topology closer to the system being modeled - such as the scale-
free topology of Fedwire. Graph theory and social network analysis provide good tools 
for analyzing the structure of interbank payment systems and their liquidity flows.
Understanding how banks are connected in the payment network is important for 
analyzing their robustness. The concepts developed in the field can help us structurally 
analyze payment flows in the system (see e.g. Newman 2003). Measures of average path 
length can tell us how quickly disturbances are likely to reach other banks in the network. 
More research is clearly needed to identify measures that explain the connection between 
system topology and its robustness. Centrality measures can help us identify banks that 
are not only important through their size, but also due to their position in the network and 
due to their linkages to other banks (see e.g. Borgatti 2005). A likely fruitful area in 
payment system research would be to use such approaches for the identification of 
important (and vulnerable) banks in networks representing RTGS or netting systems.

Second, payment systems have rules, procedures and technical constraints for the 
processing of individual payments that may produce emergent behavior at the system 
level. An example of these is the settlement cascades that take place at low levels of 
liquidity and low market conductance. The model of payment system dynamics exhibits a 
transition from independent to highly interdependent behavior, and allows the study of 
factors that control system-wide interdependence. Complexity theory and models 
developed in statistical mechanics (see e.g. Bak 1987 and Sachtjen et al 2000) can help 
explain how simple local rules create emergent system level behavior.

Third, banks react to changes in the environment - be these changes in policy or 
disruptions to the system's operation or changes in the behavior of other banks. 
Understanding how banks might react, and the impact of simultaneous reactions at the 
system level, greatly helps in evaluating risks and efficiencies of payment systems. While 
the incentives of banks may be analyzed individually in isolation, or when operating in a 
stipulated environment, their interaction in a system of banks with their own incentives 
necessitates a model. In modeling bank behavior, methodologies developed under
reinforcement learning (Sutton and Barto 1998) and learning in games (Fudenberg and 
Levine 1998) may prove useful. As seen by the given example, already simple 
“intelligence” by agents can produce realistic behavior and add value to the analysis of 
payment systems. In the development of more realistic behavior for banks in settling 
payments, an important unanswered question is whether and what kind of bank behavior
can be identified from empirical payment data.
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