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Outline

« Safeguards and Non-proliferation

— How could antineutrino measurements contribute to
reactor safeguards?

 How would antineutrino safeguards work?
« Antineutrino Detection

* Deployment of a demonstration detector

- Experimental data from the detector

« Conclusions
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Outline

« Safeguards and Non-proliferation

— How could antineutrino measurements contribute to
reactor safeguards?
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Reactor monitoring with antineutrinos touches on only one
element in a long fuel cycle, but important as it is here that
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ntineutrino Safeguards and Monitoring

 Direct measurements at reactors using antineutrinos
could:
— Independently detect outages in real time

— Independently verify declarations of power history and
plutonium content

—  Give early detection of unauthorized production of
plutonium

—  Check progress of plutonium disposition, and ensure
burnup is appropriate to core type

« Compact antineutrino detectors could provide
continuous, non-intrusive, unattended
measurements suitable for IAEA and other reactor
safeguards regimes
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Outline

 How would antineutrino safeguards work?
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What is an (anti)neutrino?

* Produced in radioactive beta decay
n-=>v,+pt+e
* Only interact with matter by way of the weak nuclear
force

— Therefore matter is almost invisible to neutrinos

— To detect small numbers of neutrinos you need to create
huge numbers

“All you have to do is imagine something that does practically nothing.
You can use your son-in-law as a prototype”

-Richard Feynman on the difficulty of detecting neutrinos
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Previous Reactor Antineutrino Experiments

1.4F
* Reactors have been
1.2 % used as the source for
many neutrino
1 Dm#’@f # _ ..-—.._—.._gh-..m.. o oscillation searches
0.8 %% « These experiments
- Yy £ developed
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actors Produce Antineutrinos in Large Quantities
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* ~ 6 Antineutrinos are produced by each fission:

UorPu ey
— N\7 oC })th :_‘ If"“*-\\ i E
* Antineutrinos interact so weakly that o oV g o
they cannot be shielded, %’ . ’%ﬂ ‘%‘
but small detectors have useful interaction rates ‘e

* (0.64 ton detector, 24.5 m from 3.46 GW reactor core
* 3800 events/day for a 100% efficient detector

* Rate is sensitive to the isotopic composition of the core

* e.g. fora PLWR, antineutrino rate change of about 10% through a 500 day
PLWR fuel cycle, caused by Pu ingrowth

N; =y(1+k)F,

Constant / Fuel composition dependent
il il (Geometry, Sum over fissioning isotopes, Integral

W Lawrence Livermore  Detector mass) over energy dependent cross section, @ Sandia

National Laboratory energy spectrum, detector efficiency P;ﬁ:f,:?énes



e Antineutrino Production Rate varies with
Fissioning Isotope: PLWR Example

The fuel of a PLWR evolves under The energy spectrum and
irradiation: 235U is consumed and integral rate produced by
239py js produced each fissioning isotope is
different
0
r : . ‘ ; : : ‘
.g 1.0 - 235I e 235U
n N - ] | —
i.ll., 0.8 E_ z::LPju ] : _. 239p,
0.6 F “Pu | i
o - v
Co04r = e .
(o] - :
g 0.2 :_ 7 a
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Prediction for a PLWR
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Prediction for CANDU?
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 Antineutrino Detection
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| i Antineutrino Detection

 We use the same antineutrino detection technique used to first
detect (anti)neutrinos:
Vo.tp—2>et+n
— inverse beta-decay produces a pair of correlated events in the
detector — very effective background suppression

* Gd loaded into liquid scintillator captures the resulting neutron after
a relatively short time

511 ke _
 Positron
511 ke .
— Immediate

Ve D \ — 1- 8 MeV (incl 511 keV ¢vs)
““““““ > § Gd * Neutron
l >y ~8MeV — Delayed (t = 28 nus)
T~30 s — ~ 8 MeV gamma shower
prompt signal + n capture on 6d (200 ps and 2.2 MeV for KamLAND)

University of California Sandia
| Lawrence Livermore National
National Laboratory Laboratories



\

Backgrounds

* Uncorrelated Backgrounds

— Are the random coincidence of two
unrelated events in the detector

— Have a different time structure to
antineutrino interactions
— Can be reduced by:
» using radiopure materials
+ Adding gamma and neutron shielding

University of California

'l Lawrence Livermore
National Laboratory

» Correlated Backgrounds

— Have the same time structure as
antineutrino interactions

— Cosmic ray muons produce fast
neutrons, which scatter off protons
and can then be captured on Gd

— Can be reduced by:

* going underground
+ Tagging muons near the detector
« Adding neutron shielding

n deposits energy

e —
Gd
T~30 us l
Zy ~ 8 MeV
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Outline

* Deployment of a demonstration detector
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S
: Deployment Goals/Design Principles

* Previous experiments have demonstrated the physics
behind this monitoring concept.

* Our goal has been to demonstrate that such monitoring is
possible using a system that is:

— Automated

— Nonintrusive

— Simple (e.g. ~ 3 people vs. 10-100 for physics expt.)

— Inexpensive (e.g. <10 PMTs vs. 100-1000 for physics expt.)
— Uses well known detection concepts/technology

— Physically robust for reactor environment

We have met all of these goals with our deployment at
the San Onofre Nuclear Generating Station

University of California Sandia
| Lawrence Livermore rl'l National
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Prototype deployment —
San Onofre Nuclear Generating Station
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SONGS Unit 2 Tendon Gallery

* Tendon gallery is ideal
location

— Rarely accessed for plant
operation

— As close to reactor as you
can get while being outside
containment

— Provides ~20 mwe
overburden

*«3.4GWun=>10%?"v /s

* In tendon gallery ~107 v /s
per m?

 Around 3800 interactions
expected per day (~ 102/ s)
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Sandia/LLNL Antineutrino Detector

* Detector system is...
_ ~1 m3 Gd d oped water/polyethylene shielding Muon veto paddies
liquid scintillator
readout by
8x 8” PMT

— 6-sided water
shield

— 5-sided active
muon veto

Liquid scintillator filled cells
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m Installation at SONGS




Outline

- Experimental data from the detector
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Candidate event extraction

* We record ~30 million events
per day, only a handful of
which are antineutrino
interactions

« An automatic energy
calibration is performed using B _
background 2.6 MeV gamma ||’y v candidates, 28us

» Cuts are applied to extract
correlated events:

— energy cuts
>2.5 MeV prompt
>3.5 MeV delayed

— at least 100us after a muon
in the veto detector 1000

« Examine time between prompt 0 200 400 600 800
and delayed to pick out Inter-event time (us)
neutron captures on Gd

University of California Sandia
'l Lawrence Livermore National
National Laboratory Laboratories

100000 —

10000 — unc_:orrelated background, -
. 1/singles rate .

/

Counts




University

LZ4

Short Term monitoring — Reactor Scram
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integrated for 24 hrs.
The reactor is
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maintenance
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background rate
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Relative Power Monitoring Precision

Daily average

8 % relative uncertainty
in thermal power estimate
(normalized to 30 day avg.)

Weekly average

3% relative uncertainty

in thermal power estimate
(normalized to 30 day avg.)

0.4 0.9 1 1.1 1.&

Relative Power Measured using Only Antineutrinos
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Prediction for our Dataset

500
>
! M - 100
? 400 | : : “ﬁ \ r"ﬁg\
o \ - 80
o
< 300 - Cycle 13 Cycle 13 Cycle 14 L 60
- Outage
3 = > |< > < >
= - 40
E 200 -
Ee] - 20
L
§ 100 - J 0
8 —— Predicted rate
—— Reported power
0 T T T T T T T T T
06/2005 10/2005 02/2006 06/2006 10/2006
Date

University of California

'l Lawrence Livermore
National Laboratory

Reactor Power (%)

M)

Sandia
National
Laboratories



 Removal of 250 kg
239pPy, replacement
with 1.5 tons of fresh

Our Dataset / 235 fuel
/
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 Conclusions
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« Antineutrino monitoring could provide:
— Real-time operational status
— A fissile inventory measurement early in the fuel cycle
— Verification of operator power and inventory declarations
— Reduced frequency of inspection visits
— Reduction in reliance on surveillance and bookkeeping

But:

* Footprint may be too large
— Shielding makes up 80% of footprint in current design

* Not enough reactors with suitable deployment locations?

— Possible to deploy on/near surface?
* IAEA may have more pressing safeguards problems

IAEA has expressed recent interest in our results

University of California

| Lawrence Livermore
National Laboratory

What Would It Take for the IAEA to Adopt this Method?
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Conclusion

Antineutrino detectors can be used to monitor nuclear reactors
remotely and non-invasively

— This has been firmly established by prior experiments and has been
demonstrated by our collaboration with a simple and practical device

The technology may fill an important niche by providing
unattended monitoring and quantitative measurements early in
the fuel cycle

— But IAEA must be convinced that it really improves their regime

Strong overlap with detector development for next generation of
neutrino oscillation experiments (0,;)

— gives an opportunity for improved precision on Pu content limits

Ongoing effort:
— Shrink footprint and improve efficiency, deployability
— Quantify benefits relative to existing safeguards methods

University of California Sandia
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i Clear indication of antineutrino detection

200 1 Reactor i
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| i SONGS1 Efficiencies

We estimate:
* DAQ efficiency: 58%

— Muon deadtime, shortest time measured between events is 10us

* Positron detection (2.45 MeV cut): 55%

— High uncorrelated background rate <2.45 MeV

 Neutron detection : 40%

— Poor containment of Gd shower with only 1m?3(0.25 m3)
* Fiducial Volume: 60%
* Total: 8%

Figure of Merit: Detected v/ Total Volume
400/day/20 m3=20+Vv/ m3 day
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%‘
> 2
‘ SONGSX Efficiencies

We estimate:

- DAQ efficiency: 58% 85%
* Positron detection (1.5 MeV cut?): 55% 65%
* Neutron detection : 40% 50%
* Fiducial Volume: 60% 95%
- Total: 8% 26%

Figure of Merit: High: 1300/day/4.5 m3= 280 v/ m3 day
Low: 800/day/8.0 m3=100v/ m?3 day
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, i Calibration

« An automatic energy calibration is performed using
the 2.6 MeV line from the Th chain

— this relatively simple procedure is sufficient
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