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The THz Spectrum

107 108 109 1010 1011 1012 1013 1014 1015 1016Hz

radio microwave terahertz infrared visible UV

The Electromagnetic Frequency Spectrum

• Frequency range 1011 to 1013 Hz
– Wavelength range 3 mm to 30 µm

– Wavenumber range 3.3 to 333 cm-1

– Photon energy range 0.4 to 40 meV

Electronics PhotonicsUndeveloped
Regime
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THz Molecular Signatures
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• Rotational resonances in the THz
• Moment-of-Inertia spectroscopy:

– Depends on mass distribution
– Many distinctive spectral lines

• Better chem detection & ID than 
using other spectral regions

CO vapor

Frequency  (THz)
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...But often requires very high resolution
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Chemical Identification and
THz “See-through” Imaging

0.6 THz image

(from X. C. Zhang, RPI)

Kemp et al. Proc of SPIE 5070, 2003

M.C. Wanke & I. Brener
Sandia
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Secure Wireless Telecomm

Commerical wireless cell phones 
(3G CDMA):

• Carrier frequency  2 GHz
• Data rate ~ 3 MB/s max
• Transmission range ~ 1 km
• Dynamic range 140 dB max

Using a THz carrier offers advantages…

Over microwaves:
• Higher carrier  higher data rates (~10 GB/s)

• Shorter wavelength  higher directionality
• Secure short burst beamed messages

Over infrared:
• Less scattering by “dry” aerosols (smoke) ?

• Atmospherically limited range < 100 m  less 
susceptible to intercept
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THz: Other uses

•Measure Semiconductor properties 
–non-contact resistivity

•Pharmaceutical Quality control
–Does the pill have anything in it?

•Medical Imaging (tumors)
–Non-ionizing radiation

•Semiconductor Physics
– frequencies comparable to inverse 

relaxation times

–plasmons



Slide 8

Outline

• Terahertz intro and motivation
• THz Sources
• THz Detectors
• Plasmon FET THz detectors
• Conclusion



Slide 9

THz Sources: Free Electron Laser

UCSB’s free-electron lasers deliver kilowatts of tunable
coherent radiation from 120 GHz to 4.5 THz.
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THz Sources: Far-Infrared Laser

CO2 Laser
10m 

wavelength

User filled tube
(Formic Acid, Methanol)

Up to 150mW
Output power

Tunable through choice of gases and pump lines, 
Not continuously tunable
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THz Sources: Backward Wave Oscillator

Conventional

TeraPhysics
Claim 40mW tunable THz output

600 times smaller than conventional unit

New Development
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THz Sources: Multipliers

Tretyakov et. al., Int. Journal of IR and mm waves, 20, 1443
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THz Sources: Quantum Cascade Laser

• Repeat the unit cell

– Recycle the electrons

– Increase gain 
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Significance of Layer Thickness
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Sub-nanometer control required 
for frequency control

Decrease by 2 ML shifted 
wavelength from 100µm to 
141µm (MIT)
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THz Sources: QCLs
Good growth is key

276 Å period

4 Å barrier

Dark - AlInAs
Light - GaInAs
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John Reno, Sandia National Labs
One of the few THz QCL growers in the US
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THz Sources: QCL
Why?

• 2 mm x 0.1 mm, 

• 1 gram

• Multiple wavelengths

• 10 mW LO power

• Scalable to mass production

• Potentially low cost

3 mm

2 m

• Well Proven

• Large

• Heavy

• 50mW->150mW power
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THz Sources: Optical Switches

Cheville, SPIE 5411, 196

Delay line
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THz Sources: Optical Switches

Bjarnson, etal, APL 86, 3983
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THz Sources: Optical Switches

Bjarnson, etal, APL 86, 3983
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THz Detectors:
What is Noise Equivalent Power (NEP) and 

why should I care?

• Definition

– Noise(V/Hz) / Responsivity(V/W) =W/Hz

• Example

– Measure with a  1Hz bandwidth

– Say NEP = 1uW/Hz

– Signal-to-noise = 1 for 1uW incident power

• Importance

– Electronics can’t help you if you have a lousy NEP!
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THz Detectors
• Schottky Diode

– NEP 10-10W/Hz

• Pyroelectric

– Cheap, good for general purpose lab use

– Typically slow, < 100Hz NEP 10-9W/Hz

• Nb Bolometer 

– Hot electron bolometer, ns response times

– NEP 10-9W/Hz to 10-13W/Hz

• Silicon Bolometer

– Slow, typically operate at 400Hz 

– NEP 10-12,13W/Hz

• InSb bolometer

– Use a magnetic field (permanent magnet)

– Hot electron bolometer, 1s response times

– NEP 10-12W/Hz

• Impurity Band Detectors (Gallium doped Germanium)

– 50kHz, NEP 10-13W/Hz

• Quantum Hall Effect Detector (Kalugin, NM Tech)

– Response times 10ns to 50ms, NEP~10-14W/Hz
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Plasmonic FET:
Grating Gate Detector

S D

G

G

4 m

Top View

2 x 2 mm

GaAs/AlGaAs
Single or Double Quantum Wells
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Plasmonic FET: Plasmons

• Collective oscillation of 
electrons

Sea of electrons

  jp kVnf G
2 

Plasmon frequency dependence

Plasmons in the device

Carrier density Wavevector

Plasmon Resonance
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Plasmonic FET: 2D-Plasmons
More than one wavevector is accessible

  jp kVnf G
2 

j=1
k=k1,n=n1

j=2
k=2k1, n=n1/2

j=3
k=3k1, n=n1/3

All have the same
frequency

n x k = constant
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Plasmonic FET: 
Operating Modes and Performance

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
-D

 V
o
lta

g
e
 R

e
sp

o
n

se
 (


v)

Gate Bias (V)

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

C
o
n

d
u

ct
a

n
ce

 (
M

h
o
s)

Gate Bias (V)

760 GHZ Illumination

J=5

J=7

Few mV/W tunable responsivity
NEP ~ 10-5 W/Hz
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Plasmonic FET: 
The Split-Grating Gate Detector

Biased to plasma 
resonance
Tunable

Biased to 
depletion

Responsivity

S D

• Bulk gates biased at plasma 
frequency (defines absorption 
frequency)

Desired Benefits
• responsivity of pinchoff mode
• tunability of plasma resonant mode.

SPIE March 2005

•Single gate line biased to 
depletion
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Photoresponse is NOT ‘diode like’Split-gate SQW Detector Responsivity few V/W
 3 orders of magnitude improvement!
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Plasmonic FET: 
Split-gate detector Tunability
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Plasmonic FET:
‘Rapidly’ sweepable spectroscopy
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Plasmonic FET: 
Temperature Dependence

Noise goes down as temperature goes up!
What does that mean?
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Split-Gate Detectors fabricated 
on thermally isolating membranes
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Experiment: 50x enhancement
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Plasmonic FET: Future Outlook
Sub-wavelength detectors enable 

multi-spectral imaging

200um x 200um Detector
Beam Image

Multi-element “pixel”
Elements operate at 
different wavelengths

System spotsize: Limited by wavelength
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Conclusions

• In 5-10 years, probably won’t be able to call 
the THz undeveloped anymore.

• Several companies currently make THz 
spectrometers

• Many combinations of sources/detectors have 
been used for creating THz images

• It is not clear that there will be a ‘winning’ 
combination of sources/detectors.  More 
likely source/detector pairings for specific 
applications
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Plasmonic FET: Origin of large 
Photoresponse
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Plasmonic FET: 
Split Gate Detectors IV Characteristics
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What is going on?
Real-Space Transfer

Electrons fired over QW edge gets pushed to delta

Delta                                                 

1 or 2 wells                                               

Delta                                                

e-

Bias Gate to depeletion

Electric field

S D

Padovani & Stratton, Solid State Electronics, 9 (695), 1966

Greg Aizin (CUNY)

Thermionic Field Emission
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Ibias

Vx

Vy

Hall bar

meander

Corbino device

THz Detectors: Quantum Hall Detector

FIR
B

GaAlAs GaAs

CB

EF
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THz Detectors: Quantum Hall Detector

Y.Kawaguchi, K.Hirakawa, M.Saeki, K.Yamanaka, S.Komiyama, Appl.Phys.Lett.80, 136 (2002)

Nikolai Kalugin, NM Tech
Tunable by gate and magnetic field

Response times 10ns to 50ms, NEP~10-14W/Hz


